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We solve the large deviations of the Kardar-Parisi-Zhang (KPZ) equation in one dimension at short time
by introducing an approach which combines field theoretical, probabilistic, and integrable techniques. We
expand the program of the weak noise theory, which maps the large deviations onto a nonlinear
hydrodynamic problem, and unveil its complete solvability through a connection to the integrability of the
Zakharov-Shabat system. Exact solutions, depending on the initial condition of the KPZ equation, are
obtained using the inverse scattering method and a Fredholm determinant framework recently developed.
These results, explicit in the case of the droplet geometry, open the path to obtain the complete large
deviations for general initial conditions.
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Large deviation rate functions characterize rare events
and play a key role in nonequilibrium statistical physics
as generalizations of the thermodynamic potentials [1–3].
They have been much studied for interacting particle
models in one dimension. For diffusive systems, the macro-
scopic fluctuation theory (MFT) [4] provides a powerful
framework to calculate the large deviation of the density, of
the current, and of other fluctuating quantities, in agree-
ment with the available exact solutions [5]. For driven
diffusive systems, however, such as the asymmetric exclu-
sion process (ASEP) [6], there is not yet a general approach
to calculate the large deviations for all geometries.
Exact results from the matrix product ansatz [7] and the
Bethe ansatz are available in special cases, for instance, in a
stationary regime, either on a finite ring, where rate
functions are found to exhibit a universal shape, for the
totally asymmetric simple exclusion process (TASEP)
[8,9], the ASEP [10,11], and the Kardar-Parisi-Zhang
(KPZ) equation [12,13], or in open geometries [14–16].
The KPZ equation is a prominent example of the driven

diffusive class. It allows for a few exact solutions valid for
all times [17–31], which exhibit at large times the universal
typical fluctuations common to systems in the KPZ class
[32–34]. Much recent attention has shifted to its large
deviation properties, at late times [35–46] and also at short
times [37,38,47–64] where two main approaches were
developed. The first one uses the aforementioned exact
solutions for all times, obtained from a mapping of KPZ
observables to the integrable (replica) delta Bose gas. This
allowed researchers to obtain the short time large deviations
in a few cases [37,38,47–50]. A more versatile approach,

closer in spirit to the MFT, is the weak noise theory (WNT)
[53–63,65]. It is a saddle point method on the dynamical
field theory, which is exact at short time. It leads to a system
of two coupled nonlinear partial differential equations,
which determine the “optimal” KPZ height field and noise
producing the rare fluctuation. Until now, however, these
equations have been solved only numerically, except in
some limits where useful but approximate solutions were
found. Although the existence of multisoliton solutions was
noted [55], no exact solution allowing for the full calcu-
lation of the large deviations was obtained.
In this Letter, we construct the exact solution to the weak

noise theory of the KPZ equation. Through the integrability
of the Zakharov-Shabat (ZS) system, originally introduced
to solve the nonlinear Schrödinger equation (NLS) [66], we
show that the full space time dependence of the optimal
height and noise fields admit representations in terms of
Fredholm determinants. We provide an explicit formula for
the KPZ droplet initial condition and give the general form
for a large class of initial conditions.
The KPZ equation [67] describes the stochastic growth

in time τ of the height field hðy; τÞ of an interface, here in
one space dimension y ∈ R:

∂τhðy;τÞ ¼ ν∂2
yhðy;τÞþ

λ0
2
½∂yhðy;τÞ�2þ

ffiffiffiffi
D

p
ηðy;τÞ; ð1Þ

where ηðy; τÞ is a standard space time white noise, i.e.,
ηðy; τÞηðy0; τ0Þ ¼ δðτ − τ0Þδðy − y0Þ, where � � � denotes
averages over the noise. We choose units such that
D ¼ λ0 ¼ 2 and ν ¼ 1 [68]. We consider the probability
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PðH;TÞ to observe the value hð0; TÞ ¼ H −H0 at time
τ ¼ T, where H0 is a constant chosen below. At short time,
although the typical height fluctuations are Gaussian
with Edwards-Wilkinson scaling δH ∼ T1=4, the KPZ non-
linearity leads to nontrivial and nonperturbative tails for
PðH;TÞ, describing rare events. For T ≪ 1, it takes the
large deviation form

PðH; TÞ ∼ exp½−ΦðHÞ=
ffiffiffiffi
T

p
�; ð2Þ

where the exact rate function ΦðHÞ was obtained for
droplet, Brownian, and flat initial height profiles, from
the exact solutions [47,48,50,58].
We now explain how to obtain such a rate function from

the WNT: We first derive the WNT equations in a way
leading directly to the so-called fP;Qg system, which we
then analyze. To that aim, it is useful to define the rescaled
time and space variables as t ¼ τ=T and x ¼ y=

ffiffiffiffi
T

p
, where

T, the observation time, is fixed. Through the Cole-Hopf
map, the KPZ field is equivalently described introducing
Zðx; tÞ ¼ ehðy;τÞþH0 , which satisfies the (rescaled) stochas-
tic heat equation (SHE) in the Ito sense

∂tZðx; tÞ ¼ ∂2
xZðx; tÞ þ

ffiffiffi
2

p
T1=4η̃ðx; tÞZðx; tÞ; ð3Þ

where η̃ðx; tÞ is another standard space time white noise.
This equation is now studied for t ∈ ½0; 1�. The noise
amplitude is now of the order of T1=4; hence, a short
observation time T ≪ 1 corresponds to a weak noise. Our
convenient choice is H0 ¼ 1

2
logT [69]. It is convenient to

study the following generating function which admits a
large deviation principle at short time T ≪ 1, with z ≥ 0:

expð−zeH=
ffiffiffiffi
T

p
Þ ∼ exp½−ΨðzÞ=

ffiffiffiffi
T

p
�: ð4Þ

Inserting Eq. (2) into the lhs, we see that, for T ≪ 1, ΨðzÞ
and ΦðHÞ are related through a Legendre transform:

ΨðzÞ ¼ min
H

½zeH þΦðHÞ�: ð5Þ

Here we aim to calculate ΨðzÞ and ΦðHÞ using the WNT,
for an initial condition of the form ehðy;0Þ ¼ ð1= ffiffiffiffi

T
p Þ×

Z0ðy=
ffiffiffiffi
T

p Þ, where Z0ðxÞ is given, an example being the
droplet initial condition Z0ðxÞ ¼ δðxÞ.
Any average of the form (4) can be represented using the

dynamical field theory associated to the rescaled SHE (3) as

eð1=
ffiffiffi
T

p Þ∬ dtdxjðx;tÞZðx;tÞ ¼ R
DZDZ̃e−ð1=

ffiffiffi
T

p ÞS½Z̃;Z;j� with the
dynamical action

S½Z̃; Z; j� ¼
Z þ∞

0

dt
Z
R
dx½Z̃ð∂t − ∂2

xÞZ − Z̃2Z2 − jZ�;

ð6Þ

where Z̃=
ffiffiffiffi
T

p
is the response field. In Eq. (4), the source

field is jðx; tÞ ¼ −zδðxÞδðt − 1Þ. For T ≪ 1, the action is
evaluated by a saddle point method. Defining Z̃ ¼ −zP,
Q ¼ Z, and g ¼ −z, the saddle point equations of the
WNT, ðδS=δZ̃Þ ¼ 0 and ðδS=δZÞ ¼ 0, take the form of the
fP;Qg system

∂tQ ¼ ∂2
xQþ 2gPQ2;

−∂tP ¼ ∂2
xPþ 2gP2Q; ð7Þ

a close cousin of the NLS equation [70], which was also
discussed in Ref. [55]. While the fP;Qg system is
interesting in its own right, we will apply its study to
the following mixed boundary conditions, of interest for
the WNT:

Qðx; 0Þ ¼ Q0ðxÞ; Pðx; 1Þ ¼ δðxÞ: ð8Þ

The source j imposes this form for P at t ¼ 1 [71,72],
while Q is specified at t ¼ 0 from the initial height of the
KPZ equation, i.e., Q0ðxÞ ¼ Z0ðxÞ. The function ΨðzÞ in
Eq. (4) is obtained from the action S in Eq. (6) at the
saddle point. Using the first equation in (7), it can bewritten
in the form (5), allowing one to identify ΦðHÞ≡
g2

R
1
0 dt

R
R dxP2Q2, withH¼H�

z≔arg minH½zeHþΦðHÞ�,
in agreement with Ref. [53] (see also [72]). The “optimal
shape” hoptðy; τÞ of the KPZ height field from the WNT,
i.e., the most probable one realizing the value hoptð0; TÞ ¼
H −H0 at τ ¼ T and y ¼ 0, is obtained from the
solution Qðx; tÞ of (7) for t ∈ ½0; 1� as ehoptðy;τÞ ¼
ð1= ffiffiffiffi

T
p ÞQ½ðy= ffiffiffiffi

T
p Þ; ðτ=TÞ�.

Let us first analyze the fP;Qg system (7) for general
initial conditions and return to the WNT later. Remarkably,
(7) belongs to the Ablowitz-Kaup-Newell-Segur (AKNS)
class of integrable nonlinear problems [78], for which there
exists a Lax pair, i.e., a pair of linear differential equations
whose compatibility conditions are equivalent to (7). Here
the system reads ∂xv⃗ ¼ U1v⃗, ∂tv⃗ ¼ U2v⃗, where v⃗ ¼
ðv1; v2Þ⊺ is a two-component vector (depending on x, t,
and k) where

U1 ¼
� −ik=2 −gPðx; tÞ
Qðx; tÞ ik=2

�
; U2 ¼

�
A B

C −A

�
; ð9Þ

where A ¼ k2=2 − gPQ, B ¼ gð∂x − ikÞP, and C ¼
ð∂x þ ikÞQ. One can check that the compatibility con-
dition ∂tU1 − ∂xU2 þ ½U1; U2� ¼ 0 recovers the system (7)
which we solve through the following scattering problem.
Let v⃗ ¼ ek

2t=2ϕ with ϕ ¼ ðϕ1;ϕ2Þ⊺ and v⃗ ¼ e−k
2t=2ϕ̄ be

two independent solutions of the linear problem such that
at x → −∞, ϕ ≃ ðe−ikx=2; 0Þ⊺, and ϕ̄ ≃ ð0;−eikx=2Þ⊺.
Assuming from now on that P and Q vanish at infinity,
the x → þ∞ behavior of these solutions defines scattering
amplitudes
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ϕ ≃
x→þ∞

�
aðk; tÞe−ikx=2
bðk; tÞeikx=2

�
; ϕ̄ ≃

x→þ∞

�
b̃ðk; tÞe−ikx=2
−ãðk; tÞeikx=2

�
:

ð10Þ

Plugging this form into the ∂t equation of the Lax pair
at x → þ∞, one finds a very simple time dependence:
aðk; tÞ ¼ aðkÞ and bðk; tÞ ¼ bðkÞe−k2t, ãðk; tÞ ¼ ãðkÞ
and b̃ðk; tÞ ¼ b̃ðkÞek2t. Another relation is obtained
from the Wronskian of the two solutions: aðkÞãðkÞ þ
bðkÞb̃ðkÞ ¼ 1 [79].
Before providing explicit formulas for these scattering

amplitudes, let us show how to obtain from them the
solution for the fP;Qg system, i.e., how to construct the
inverse scattering transform. The spatial part of the Lax
pair is a 1D Dirac equation called the ZS system, origi-
nally introduced to solve the NLS equation [66,80] and
extended by AKNS [78]. It was shown very recently
[81,82] that the inverse scattering problem can be solved
by the means of Fredholm determinants (FDs). Introducing
the two reflection coefficients rðkÞ ¼ bðkÞ=aðkÞ and
r̃ðkÞ ¼ b̃ðkÞ=½gãðkÞ�, one defines two functions [83]:

AtðxÞ ¼
Z
R

dk
2π

rðkÞeikx−k2t; BtðxÞ ¼
Z
R

dk
2π

r̃ðkÞek2t−ikx

ð11Þ

and two linear operators from L2ðRþÞ to L2ðRþÞ with
respective kernels

Axtðv; v0Þ ¼ Atðxþ vþ v0Þ; Bxtðv; v0Þ ¼ Btðxþ vþ v0Þ:
ð12Þ

Note that these functions and kernels obey the simple heat
equation in space time, and we assume that AtðxÞ and BtðxÞ
vanish fast enough for x → þ∞. The solutions P and Q
[81,82] are reconstructed as

Qðx; tÞ ¼ hδjAxtðI þ gBxtAxtÞ−1jδi;
Pðx; tÞ ¼ hδjBxtðI þ gAxtBxtÞ−1jδi; ð13Þ

where jδi is the vector with component δðvÞ so that
hδjOjδi ¼ Oð0; 0Þ for any operator O. The product PQ,
which is a conserved charge, i.e., ∂t

R
R dxPQ ¼ 0 as easily

verified from (7), can be expressed from a FD as
gPQ ¼ ∂2

x logDetðI þ gBxtAxtÞ. The formula (13), thus,
provides the general solution of the fP;Qg system, para-
meterized by the two functions At and Bt, equivalently, by
the scattering amplitudes. Although these are in one-to-one
correspondence with the fP;Qg boundary data, making it
explicit is nontrivial and is our aim below. Particular cases
are such that Axt and Bxt are operators of finite ranks,
leading to solitonic-type solutions [72]. The simplest one

leads to gPQ ¼ f½ðκ þ μÞ2�=4cosh2 1
2
ðκ þ μÞ½x − x0ðtÞ�g.

In the context of WNT, this soliton has been used as an
approximate solution for H → þ∞, and another rank-one
family was noticed in Ref. [55]. However, this is insuffi-
cient to obtain the full rate function ΦðHÞ, which requires
the (infinite-rank) general solution obtained in this work.
Let us now apply this to the WNT, i.e., for the boundary

data in Eq. (8), and characterize the scattering amplitudes.
Integrating the ∂x equation of the Lax pair at t ¼ 1 for ϕ̄
and ϕ using Eq. (8) allows one to obtain [72] that
b̃ðkÞ ¼ ge−k

2

. In addition, if the initial condition Qðx; 0Þ
is even in x (which we assume from now on), then ãðkÞ ¼
að−kÞ ¼ ½aðkÞ�� and bðkÞ is real and even. From the
Wronskian, this leads to the form

aðkÞ ¼ e−iφðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gbðkÞe−k2

q
; ð14Þ

where we still have two unknown functions, a phase φðkÞ,
which is odd φðkÞ ¼ −φð−kÞ, and bðkÞ.
To determine them, we have derived from Eqs. (12) and

(13), and the boundary data (8) at t ¼ 1, the following
integral equation which the functions At¼1; Bt¼1 must obey
(see [72]):

B1ðxÞ ¼ δðxÞ þ gΘð−xÞ
Z þ∞

0

dvB1ðxþ vÞA1ðvÞ; ð15Þ

where A1ðvÞ ¼ ðp � A0ÞðvÞ ≔
R
R dypðv − yÞA0ðyÞ denot-

ing the heat kernel at unit time pðzÞ ≔ ðe−z2=4= ffiffiffiffiffiffi
4π

p Þ.
Droplet initial condition.—Let us now specialize to

Q0ðxÞ ¼ δðxÞ. The solution of (7) then satisfies the
symmetry Qðx; tÞ ¼ Pðx; 1 − tÞ. This, in turn, implies that
AtðxÞ ¼ B1−tðxÞ and rðkÞ ¼ ek

2

r̃ð−kÞ, also implying
bðkÞ ¼ 1, which we use below. Hence, in Eq. (15), we
can replace A1ðvÞ by ðp � B1ÞðvÞ and we obtain a closed
nonlinear integral equation for the function B1 (which
equals A0). This equation still looks formidable; however,
for readers familiar with random walks, it has a flavor of
another famous integral equation, the Hopf-Ivanov (HI)
equation [84,85], which, however, is linear, and reads

B1ðxÞ ¼ δðxÞ þ gΘð−xÞ
Z

0

−∞
dypðx − yÞB1ðyÞ: ð16Þ

Amazingly, we found that these two equations, (16) and
(15), are equivalent. This can be tested in perturbation in g
and is shown to all orders in Ref. [72]. The HI equation
arises in survival probabilities of random walks [86–89].
Indeed, writing B1ðxÞ as a series, B1ðxÞ ¼ δðxÞ þPþ∞

n¼1 g
nB1;nðxÞ, and inserting in (16) leads to the recursion

B1;nðxÞ ¼
R
y<0 pðx − yÞB1;n−1ðyÞ. The interpretation is

then straightforward. Consider XðjÞ ∈ R a discrete time
random walk, Xðjþ 1Þ ¼ XðjÞ þ zj, with zj indepen-
dent identically distributed with jump probability pðzÞ.
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Then B1;nðxÞ is the probability that the walk starting at
Xð0Þ ¼ 0 arrives at XðnÞ ¼ x in n ≥ 1 steps, while remain-
ing negative, fXðjÞ ≤ 0gj¼0;…;n [and

R
0
−∞ dxB1;nðxÞ ¼

ð2nn Þ2−2n is given by the universal Sparre Andersen theorem
[90,91] ].
To show that the solution of Eq. (16) also solves Eq. (15)

then amounts to splitting the walk into two independent
parts, upon crossing the level x for the last time [72].
Introducing the Laplace transform B̂1ðsÞ ¼

R
0
−∞ esxB1ðxÞ,

the solution of the HI equation is known to be [85]

B̂1ðsÞ ¼ exp

�
−
Z
R

dq
2π

s
s2 þ q2

log½1 − gp̃ðqÞ�
�
; ð17Þ

where p̃ðkÞ is the Fourier transform of pðzÞ, here
p̃ðkÞ ¼ e−k

2

. Going from Laplace to Fourier, from
Eq. (11) one finds rðkÞ ¼ ek

2

r̃ð−kÞ ¼ B̂1ðsÞjs¼−ikþ0þ .
Using ½1=ðsþ iqÞ� → PV½i=ðk − qÞ� þ πδðk − qÞ, we
obtain from Eq. (17) the reflection coefficient rðkÞ and
its phase φðkÞ:

rðkÞ ¼ eiφðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ge−k

2

q ; φðkÞ ¼
Z
�

R

dq
2π

k logð1 − ge−q
2Þ

q2 − k2
;

ð18Þ

which, together with Eqs. (11)–(13), completes the solution
of (7) for droplet IC. Plots of the optimal height logQðx; tÞ
are shown in Fig. 1 and Ref. [72]. Note that for t ¼ 1 a
simpler formula, Qðx; 1Þ ¼ A1ðjxjÞ, holds.
To extractΦðHÞ≡ g2

R
R

R
1
0 dxdtP

2Q2 from our solution
requires the computation of a difficult integral. This is
overcome by relating it, as well as ΨðzÞ, to conserved
quantities. We use the construction of ZS [66] to generate
all conserved quantities Cn for the fP;Qg system; see [72].
We find C1¼g

R
RdxPQ and C3¼gðRRdxP∂2

xQþgP2Q2Þ.
The values CnðgÞ taken by these conserved charges can
be retrieved from the Laurent expansion of logaðkÞ ¼P

n≥1½CnðgÞ=ðikÞn�. Until now, this is general for any initial
condition of the fP;Qg system. Now recall that for the
droplet IC we obtained logaðkÞ¼−iφðkÞþ1

2
logð1−ge−k

2Þ.
Since the second term has vanishing Laurent expansion,
we find that −iφðkÞ ¼ P

n≥1½CnðgÞ=ðikÞn�. Expanding in
powers of 1=k in Eq. (18), we obtain [92]

C1ðgÞ ¼
1ffiffiffiffiffiffi
4π

p Li3=2ðgÞ; C3ðgÞ ¼
−1ffiffiffiffiffiffiffiffi
16π

p Li5=2ðgÞ: ð19Þ

Since C1 ¼ g
R
R dxPQ is time independent, evaluated at

t ¼ 1 it leads to C1ðgÞ ¼ gQð0; 1Þ ¼ geH. On the other
hand, differentiating the Legendre transform in Eq. (5)
with respect to z gives Ψ0ðzÞ ¼ eH. This implies that
C1ð−zÞ ¼ −zΨ0ðzÞ, and by integration

ΨðzÞ ¼ Ψ0ðzÞ ≔ −
1ffiffiffiffiffiffi
4π

p Li5=2ð−zÞ; ð20Þ

which allows one to determine ΦðHÞ parametrically
as ΦðHÞ ¼ ΨðzÞ − zΨ0ðzÞ, eH ¼ Ψ0ðzÞ [it can also be
obtained from C3ðgÞ; see Ref. [72] ]. Our WNT result
(20) agrees with Ref. [47], without relying on an exact
solution of the KPZ equation.
Until now, we assumed z ¼ −g ≥ 0 corresponding to

H ≤ Ĥ0 ¼ − 1
2
logð4πÞ, the most probable value of H such

that Φ0ðĤ0Þ ¼ 0 [93]. However, (7) also holds for any
H > Ĥ0 [55,72], corresponding to the attractive regime
g > 0 of the fP;Qg system. Indeed, ΨðzÞ can be analyti-
cally continued to z < 0, allowing one to determine ΦðHÞ
for any H [47]. For H ∈ ð−∞; Hc�, Eq. (20) holds, with
z ¼ −g varying from þ∞ down to z ¼ −1. For H > Hc ¼
logf½ζð3=2Þ�=½ ffiffiffiffiffiffi

4π
p �g, a second continuation is needed,

ΨðzÞ ¼ Ψ0ðzÞ þ ΔðzÞ, with ΔðzÞ ¼ 4
3
flog½−ð1=zÞ�g3=2

with z ∈ ½−1; 0Þ as H ∈ ½Hc;þ∞Þ. These continuations
correspond to two branches of solutions of the fP;Qg
system for 0 < g ≤ 1. One finds [72] that the second branch
corresponds to the spontaneous generation of a solitonic
part in the solution, of rapidity κ0 with g ¼ e−κ

2
0 , which

dominates the large deviations forH → þ∞. It is described
by AtðxÞ ¼ AtðxÞjϕðkÞ→ϕðkÞþΔϕðkÞ þ 2κ0e−κ0xþκ2

0
tþiφðiκ0Þ,

where ΔφðkÞ ¼ 2 arctanðκ0=kÞ and BtðxÞ ¼ A1−tðxÞ. The
values of the odd conserved charges are increased by

FIG. 1. The optimal height hðx; tÞ ¼ logQðx; tÞ for the droplet
initial condition at various times t for final values (black dot)
H ¼ −3.81 (top) and H ¼ 3.42 (bottom).
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ΔCnðgÞ ¼ ð2=nÞκn0 , which for n ¼ 1 induces the additional
part ΔðzÞ.
General initial condition.—For general even Q0ðxÞ,

the only difference is that bðkÞ is nontrivial, with rðkÞ ¼
bðkÞek2 r̃ð−kÞ, and now AtðxÞ ¼ ðb̂ � B1−tÞðxÞ, where b̂ðxÞ
denotes the Fourier transform of bðkÞ and � the convolu-
tion. Equation (15), replacing A1ðvÞ ¼ ðp � b̂ � B1ÞðvÞ,
is again equivalent to a linear HI equation for B1ðxÞ,
obtained by simply replacing p by p � b̂ in Eq. (16),
with the same random walk interpretation for a new
jump probability pðzÞ → ðp � b̂ÞðzÞ. Thus, this leads to

rðkÞ ¼
n
½bðkÞeiφðkÞ�

.h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gbðkÞe−k2

q io
and φðkÞ ¼R�Rðdq=2πÞfk log½1 − gbðqÞe−q2 �=ðq2 − k2Þg. One now

finds C1ðgÞ ¼
R
Rðdq=2πÞLi1½gbðqÞe−q

2 �, leading to [94]

zΨ0ðzÞ ¼
Z
R

dq
2π

log½1þ zbðqÞe−q2 �: ð21Þ

Interestingly, such a form was observed to describe all
known exact solutions [95], e.g., flat IC [96]. Thus, for a
general initial condition, we reduced the problem to
computing a single unknown function bðkÞ and relating
it to Q0ðxÞ, a question left for the future. In Ref. [72], we
give a formula relating bðkÞ, Q0ðxÞ, and Pðx; 1Þ allowing
for expansions around the droplet solution.
In conclusion, our solution allows one to calculate the

optimal height and noise for arbitrary values of H,
previously inaccessible. The Fredholm approach provides
a novel analytical and numerical scheme for the solution of
the integrable fP;Qg system as shown in Fig. 1; see [72].
The present work demonstrates that inverse scattering
methods can successfully address optimal fluctuation
theory of stochastic systems, leading to analytic results
and interesting phenomena such as spontaneous soliton
generation.
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[27] T. Gueudré and P. Le Doussal, Directed polymer near a hard
wall and KPZ equation in the half-space, Europhys. Lett.
100, 26006 (2012).

[28] A. Borodin, A. Bufetov, and I. Corwin, Directed random
polymers via nested contour integrals, Ann. Phys.
(Amsterdam) 368, 191 (2016).

[29] G. Barraquand, A. Borodin, I. Corwin, and M. Wheeler,
Stochastic six-vertex model in a half-quadrant and half-line
open ASEP, Duke Math. J. 167, 2457 (2018).

[30] A. Krajenbrink and P. Le Doussal, Replica Bethe Ansatz
solution to the Kardar-Parisi-Zhang equation on the half-
line, SciPost Phys. 8, 035 (2019).

[31] G. Barraquand, A. Krajenbrink, and P. Le Doussal, Half-
space stationary Kardar–Parisi–Zhang equation, J. Stat.
Phys. 181, 1149 (2020).

[32] I. Corwin, TheKardar-Parisi-Zhang equation and universality
class, Random Matrices: Theory Appl. 01, 1130001 (2012).

[33] J. Quastel and H. Spohn, The one-dimensional KPZ
equation and its universality class, J. Stat. Phys. 160, 965
(2015).

[34] K. A. Takeuchi, An appetizer to modern developments
on the Kardar–Parisi–Zhang universality class, Physica
(Amsterdam) 504A, 77 (2018).

[35] P. Le Doussal, S. N. Majumdar, and G. Schehr, Large
deviations for the height in 1D Kardar-Parisi-Zhang growth
at late times, Europhys. Lett. 113, 60004 (2016).

[36] P. Sasorov, B. Meerson, and S. Prolhac, Large deviations of
surface height in the 1þ 1 dimensional Kardar-Parisi-
Zhang equation: exact long-time results for λH < 0, J. Stat.
Mech. (2017) 063203.

[37] A. Krajenbrink and P. Le Doussal, Simple derivation of the
ð−λHÞ5=2 large deviation tail for the 1D KPZ equation,
J. Stat. Mech. (2018) 063210.

[38] A. Krajenbrink, P. Le Doussal, and S. Prolhac, Systematic
time expansion for the Kardar-Parisi-Zhang equation, linear
statistics of the GUE at the edge and trapped fermions, Nucl.
Phys. B936, 239 (2018).

[39] I. Corwin and P. Ghosal, Lower tail of the KPZ equation,
Duke Math. J. 169, 1329 (2020).

[40] I. Corwin, P. Ghosal, A Krajenbrink, P. Le Doussal, and
L.-C. Tsai, Coulomb-Gas Electrostatics Controls Large
Fluctuations of the Kardar-Parisi-Zhang Equation, Phys.
Rev. Lett. 121, 060201 (2018).

[41] L.-C. Tsai, Exact lower tail large deviations of the KPZ
equation, arXiv:1809.03410.

[42] A. Krajenbrink and P. Le Doussal, Linear statistics and
pushed Coulomb gas at the edge of the β-random matrices:
Four paths to large deviations, Europhys. Lett. 125, 20009
(2018);, Supplementary Materials available at arXiv:
1811.00509.

[43] I. Corwin and P. Ghosal, KPZ equation tails for general
initial data, arXiv:1810.07129.

[44] P. Le Doussal, Large deviations for the Kardar–Parisi–
Zhang equation from the Kadomtsev–Petviashvili equation,
J. Stat. Mech. (2020) 043201.

[45] M. Cafasso and T. Claeys, A Riemann-Hilbert approach to
the lower tail of the KPZ equation, arXiv:1910.02493.

[46] S. Prolhac, Riemann surfaces for KPZ with periodic
boundaries, SciPost Phys. 8, 008 (2020).

[47] P. Le Doussal, S. N. Majumdar, A. Rosso, and G. Schehr,
Exact Short-Time Height Distribution in 1D KPZ Equation
and Edge Fermions at High Temperature, Phys. Rev. Lett.
117, 070403 (2016).

[48] A. Krajenbrink and P. Le Doussal, Exact short-time height
distribution in the one-dimensional Kardar-Parisi-Zhang
equation with Brownian initial condition, Phys. Rev. E
96, 020102(R) (2017).

[49] A. Krajenbrink and P. Le. Doussal, fluctuations of the KPZ
equation in a half-space, SciPost Phys. 5, 032 (2018).

[50] A. Krajenbrink, Beyond the typical fluctuations: a
journey to the large deviations in the Kardar-Parisi-
Zhang growth model, Ph.D thesis, PSL Research University,
2019, https://tel.archives-ouvertes.fr/tel-02537219/.

[51] A. K. Hartmann, P. Le Doussal, S. N. Majumdar, A. Rosso,
and G. Schehr, High-precision simulation of the height
distribution for the KPZ equation, Europhys. Lett. 121,
67004 (2018).

[52] A. Hartmann, A. Krajenbrink, and P. Le Doussal, Probing
the large deviations of the Kardar-Parisi-Zhang equation
with an importance sampling of directed polymers in
random media, Phys. Rev. E 101, 012134 (2020).

[53] B. Meerson, E. Katzav, and A. Vilenkin, Deviations of
Surface Height in the Kardar-Parisi-Zhang Equation, Phys.
Rev. Lett. 116, 070601 (2016).

[54] A. Kamenev, B. Meerson, and P. V. Sasorov, Short-time
height distribution in 1D KPZ equation: Starting from a
parabola, Phys. Rev. E 94, 032108 (2016).

[55] M. Janas, A. Kamenev, and B. Meerson, Dynamical phase
transition in large-deviation statistics of the Kardar-Parisi-
Zhang equation, Phys. Rev. E 94, 032133 (2016).

PHYSICAL REVIEW LETTERS 127, 064101 (2021)

064101-6

https://doi.org/10.1088/1742-5468/2010/07/P07010
https://doi.org/10.1088/1742-5468/2010/07/P07010
https://doi.org/10.1088/1742-5468/2010/03/P03022
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1002/cpa.20347
https://doi.org/10.1002/cpa.20347
https://doi.org/10.1209/0295-5075/107/10011
https://doi.org/10.1103/PhysRevLett.106.250603
https://doi.org/10.1088/1742-5468/2012/06/P06001
https://doi.org/10.1214/15-AAP1099
https://doi.org/10.1214/15-AAP1099
https://doi.org/10.1103/PhysRevLett.108.190603
https://doi.org/10.1103/PhysRevLett.108.190603
https://doi.org/10.1007/s10955-013-0710-3
https://doi.org/10.1007/s11040-015-9189-2
https://doi.org/10.1007/s11040-015-9189-2
https://doi.org/10.1209/0295-5075/100/26006
https://doi.org/10.1209/0295-5075/100/26006
https://doi.org/10.1016/j.aop.2016.02.001
https://doi.org/10.1016/j.aop.2016.02.001
https://doi.org/10.1215/00127094-2018-0019
https://doi.org/10.21468/SciPostPhys.8.3.035
https://doi.org/10.1007/s10955-020-02622-z
https://doi.org/10.1007/s10955-020-02622-z
https://doi.org/10.1142/S2010326311300014
https://doi.org/10.1007/s10955-015-1250-9
https://doi.org/10.1007/s10955-015-1250-9
https://doi.org/10.1016/j.physa.2018.03.009
https://doi.org/10.1016/j.physa.2018.03.009
https://doi.org/10.1209/0295-5075/113/60004
https://doi.org/10.1088/1742-5468/aa73f8
https://doi.org/10.1088/1742-5468/aa73f8
https://doi.org/10.1088/1742-5468/aac90f
https://doi.org/10.1016/j.nuclphysb.2018.09.019
https://doi.org/10.1016/j.nuclphysb.2018.09.019
https://doi.org/10.1215/00127094-2019-0079
https://doi.org/10.1103/PhysRevLett.121.060201
https://doi.org/10.1103/PhysRevLett.121.060201
https://arXiv.org/abs/1809.03410
https://doi.org/10.1209/0295-5075/125/20009
https://doi.org/10.1209/0295-5075/125/20009
https://arXiv.org/abs/1811.00509
https://arXiv.org/abs/1811.00509
https://arXiv.org/abs/1810.07129
https://doi.org/10.1088/1742-5468/ab75e4
https://arXiv.org/abs/1910.02493
https://doi.org/10.21468/SciPostPhys.8.1.008
https://doi.org/10.1103/PhysRevLett.117.070403
https://doi.org/10.1103/PhysRevLett.117.070403
https://doi.org/10.1103/PhysRevE.96.020102
https://doi.org/10.1103/PhysRevE.96.020102
https://doi.org/10.21468/SciPostPhys.5.4.032
https://tel.archives-ouvertes.fr/tel-02537219/
https://tel.archives-ouvertes.fr/tel-02537219/
https://tel.archives-ouvertes.fr/tel-02537219/
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1103/PhysRevE.101.012134
https://doi.org/10.1103/PhysRevLett.116.070601
https://doi.org/10.1103/PhysRevLett.116.070601
https://doi.org/10.1103/PhysRevE.94.032108
https://doi.org/10.1103/PhysRevE.94.032133


[56] B. Meerson and J. Schmidt, Height distribution tails in the
Kardar-Parisi-Zhang equation with Brownian initial con-
ditions, J. Stat. Mech. (2017) 103207.

[57] N. R. Smith, A. Kamenev, and B. Meerson, Landau
theory of the short-time dynamical phase transition of the
Kardar-Parisi-Zhang interface, Phys. Rev. E 97, 042130
(2018).

[58] N. R. Smith and B. Meerson, Exact short-time height
distribution for the flat Kardar-Parisi-Zhang interface, Phys.
Rev. E 97, 052110 (2018).

[59] T. Asida, E. Livne, and B. Meerson, fluctuations of a
Kardar-Parisi-Zhang interface on a half-line: The height
statistics at a shifted point, Phys. Rev. E 99, 042132 (2019).

[60] B. Meerson and A. Vilenkin, fluctuations of a Kardar-Parisi-
Zhang interface on a half line, Phys. Rev. E 98, 032145
(2018).

[61] N. R. Smith, B. Meerson, and P. Sasorov, Finite-size effects
in the short-time height distribution of the Kardar–Parisi–
Zhang equation, J. Stat. Mech. (2018) 023202.

[62] N. R. Smith, B. Meerson, and A. Vilenkin, Time-averaged
height distribution of the Kardar-Parisi-Zhang interface, J.
Stat. Mech. (2019) 053207.

[63] Y. Lin and L.-C. Tsai, Short time large deviations of the
KPZ equation, Commun. Math. Phys. 386, 359 (2021)..

[64] A. K. Hartmann, B. Meerson, and P. Sasorov, Optimal paths
of non-equilibrium stochastic fields: The Kardar-Parisi-
Zhang interface as a test case, Phys. Rev. Research 1,
032043(R) (2019).

[65] I. V. Kolokolov and S. E. Korshunov, Explicit solution of
the optimal fluctuation problem for an elastic string in
random potential, Phys. Rev. E 80, 031107 (2009); Uni-
versal and non-universal tails of distribution functions in the
directed polymer and KPZ problems, Phys. Rev. B 78,
024206 (2008); Optimal fluctuation approach to a directed
polymer in a random medium, Phys. Rev. B 75, 140201(R)
(2007).

[66] A. Shabat and V. Zakharov, Exact theory of two-dimen-
sional self-focusing and one-dimensional self-modulation
of waves in nonlinear media, Sov. Phys. JETP 34, 62 (1972).

[67] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic Scaling of
Growing Interfaces, Phys. Rev. Lett. 56, 889 (1986).

[68] This is equivalent to using everywhere the following units of
space, time, and heights: y� ¼ ð2νÞ3=ðDλ20Þ, τ� ¼ 2ð2νÞ5=
ðD2λ40Þ, and h� ¼ ð2ν=λ0Þ, respectively.

[69] So that H remains Oð1Þ as T → 0. Indeed, from Ito
one has exp½hðy; τÞ� ¼ 1=

ffiffiffiffiffiffiffiffi
4πτ

p
for, e.g., droplet IC and,

more generally, exp½hðy; τÞ� ¼ ð1= ffiffiffiffi
T

p Þ RRðdx0= ffiffiffiffiffiffiffi
4πt

p Þ×
e−ðx−x0Þ2=ð4tÞQ0ðx0Þ.

[70] If Ψðx; τÞ solves NLS, then Q ¼ Ψðx; τÞjτ→−it and P ¼
Ψ�ðx; τÞjτ→−it solves the fP;Qg system.

[71] The equation for P should, thus, be solved backward in
time.

[72] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.064101 for the
principal details of the calculations described in the Letter
and additional information about the results, which includes
Refs. [73–77].

[73] Note that with our notations Hz¼0 equals Ĥ0 and not H0.
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i.e., such that Φ0ðĤ0Þ ¼ 0. Since one has, to OðzÞ,
ΨðzÞ ≃ zeH , it implies from Ref. [69] that Ĥ0 ¼ log eH ¼
log

R
Rðdx0=

ffiffiffiffiffi
4π

p Þe−ðx0Þ2=ð4ÞQ0ðx0Þ for a general initial con-
dition and Ĥ0 ¼ − 1

2
logð4πÞ for the droplet IC.

[94] Where we recall that bðqÞ depends on z.
[95] See Table 7.1 in Ref. [50] and also Ref. [38].
[96] Deriving it from the WNT requires to extend our method to

a nondecaying Q0ðxÞ, a work in progress.
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