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We present the first lattice QCD calculation of the distribution amplitudes of longitudinally and
transversely polarized vector mesons K� and ϕ using large momentum effective theory. We use the clover
fermion action on three ensembles with 2þ 1þ 1 flavors of highly improved staggered quarks action,
generated by the MIMD Lattice Computation Collaboration, at physical pion mass and f0.06; 0.09; 0.12g fm
lattice spacings and choose three different hadron momenta Pz ¼ f1.29; 1.72; 2.15g GeV. The resulting
lattice matrix elements are nonperturbatively renormalized in a recently proposed hybrid scheme. An
extrapolation to the continuum and infinite momentum limit is carried out. We find that, while the
longitudinal distribution amplitudes tend to be close to the asymptotic form, the transverse ones deviate rather
significantly from the asymptotic form. Our final results provide crucial ab initio theory inputs for analyzing
pertinent exclusive processes.
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Introduction.—Searching for new physics beyond the
standard model (SM) is a primary goal of particle physics
today. A unique possibility for doing so is to investigate
flavor-changing neutral current processes that are highly
suppressed in the SM. Some prominent examples of such
processes include B → K�lþl− and Bs → ϕlþl− decays.
Recent experimental analyses by the Belle and LHCb
collaborations [1–5] have revealed notable tensions
between the SM predictions of such processes and data
and attracted quite considerable theoretical interest (see
Refs. [6–8] and many references therein). Various new
physics interpretations have been proposed to resolve such
tensions, but to firmly establish their existence requires an

accurate and reliable theoretical understanding of the
dynamics of weak decays.
In the low recoil region (high q2), the B → K� and

Bs → ϕ form factors can be directly calculated on the
lattice (see, for instance, Refs. [9,10]). However, these
decays at large recoil are also of experimental interest; for
instance, the P0

5 anomaly has attracted much theoretical and
experimental attention [11,12]. In the latter’s kinematics
region, decay amplitudes are split into short-distance hard
kernels and long-distance universal inputs. The universal
inputs that enter include the light-cone distribution ampli-
tudes (LCDAs) of the vector mesons K�;ϕ which, to
leading-twist accuracy, specify the longitudinal momentum
distribution among the valence quark and antiquark in the
meson. While the hard scattering kernel is perturbatively
calculable, the LCDAs can only be extracted from non-
perturbative methods or from fits to relevant data. A reliable
knowledge of LCDAs is essential in making predictions on
physical observables, and in particular the transition form

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 127, 062002 (2021)

0031-9007=21=127(6)=062002(7) 062002-1 Published by the American Physical Society

https://orcid.org/0000-0002-9195-0954
https://orcid.org/0000-0003-4445-5448
https://orcid.org/0000-0001-9223-6472
https://orcid.org/0000-0002-5635-4903
https://orcid.org/0000-0002-5231-4795
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.062002&domain=pdf&date_stamp=2021-08-03
https://doi.org/10.1103/PhysRevLett.127.062002
https://doi.org/10.1103/PhysRevLett.127.062002
https://doi.org/10.1103/PhysRevLett.127.062002
https://doi.org/10.1103/PhysRevLett.127.062002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


factors at large recoil can be typically affected by Oð10%Þ
by the nonasymptotic terms of LCDAs in the light-cone
sum rules approach [13,14]. To date most of the available
analyses have made use of estimates based on QCD sum
rules [15] or Dyson-Schwinger equations [16], but a first-
principle description of LCDAs for the vector ðK�;ϕÞ
meson is still missing.
Lattice QCD provides an ideal ab initio tool to access

nonperturbative quantities in strong interaction. Though
some of the lowest moments of the ρ LCDA have been
studied in Ref. [17], a direct calculation of the entire
distribution has not been feasible until the recent proposal
of a large momentum effective theory (LaMET) [18,19].
This is realized by simulating, on the lattice, appropriately
chosen equal-time correlations and then converting them to
the LCDAs through a perturbative matching. Since the
LaMETwas proposed, much progress has been achieved in
calculating various parton distribution functions [20,21]
(and many references therein) as well as distribution
amplitudes for light pseudoscalar mesons [22–24]. Other
variants have also been explored in Refs. [25–27].
In this Letter, we present the first lattice calculation of

LCDAs for vector mesons K�;ϕ in LaMETwith the clover
fermion action on three ensembles with 2þ 1þ 1 flavors
of highly improved staggered quarks (HISQ) action [28],
generated by MIMD Lattice Computation Collaboration
[29], at physical pion mass and f0.06; 0.09; and 0.12g fm
lattice spacings. To improve the signal-to-noise ratio of the
simulation, we take the smearing transformation of the
hypercubic fat link [30]; the other simulation setup is given
in Table I. A hybrid renormalization scheme [31] is used to
renormalize bare quantities, after which an extrapolation is
taken to the continuum limit, as well as to the infinite
momentum limit, based on data at three hadron momenta,
Pz ¼ f1.29; 1.72; 2.15g GeV. It should be noted that a
momentum boost close to or larger than the inverse lattice
spacing may introduce uncontrolled discretization effects,
while the dispersion relation is satisfied with the Oða2Þ
corrections, as shown in the Supplemental Material [32]. In
the calculation, we neglect the strong decays of K�;ϕ due
to their narrow decay widths. The finite width corrections
should be solved with a proper finite-volume analysis,
which is beyond the scope of this work. Our final results
indicate that, while the longitudinal LCDAs are close to the
asymptotic form, the transverse ones deviate considerably
from the asymptotic form.

LCDAs from LaMET.—The leading-twist LCDAs for
longitudinally and transversely polarized vector mesons,
ΦV;L and ΦV;T , are defined as follows [34]:

Z
dξ−e−ixp

þξ−h0jψ̄1ð0Þ=nþUð0; ξ−Þψ2ðξ−ÞjVi

¼ fVnþ · ϵΦV;LðxÞ; ð1Þ
Z

dξ−e−ixp
þξ−h0jψ̄1ð0Þσþμ⊥Uð0; ξ−Þψ2ðξ−ÞjVi

¼ fTV ½ϵþpμ⊥ − ϵμ⊥pþ�ΦV;TðxÞ; ð2Þ

where Uð0; ξ−Þ ¼ P exp½igs
R
0
ξ−
dsnþ · AðsnþÞ� is the

gauge link defined along the minus light-cone direction,
ϵ is the polarization vector of the vector meson, and nþ is
the unit vector along the plus light-cone direction. fV and
fTV are the decay constants defined by the local vector and
tensor current, respectively. Here for K�, ψ1 denotes the
strange quark field and ψ2 is the light u=d quark. For the ϕ
meson, both ψ1;2 are strange quark fields.
According to LaMET, the above LCDAs can be obtained

by first calculating the following bare equal-time correla-
tions on the lattice:

h0jψ̄1ð0ÞγtUð0; zẑÞψ2ðzẑÞjVi ¼ HV;LðzÞϵtfV;
h0jψ̄1ð0ÞσνρUð0; zẑÞψ2ðzẑÞjVi ¼ HV;TðzÞfTV ½ϵνpρ − ϵρpν�;

ð3Þ

where the Lorentz indices in the second line are chosen as
fν; ρg ¼ z; y, and the gauge link Uð0; zẑÞ is along the z
direction. The quantities HV;fL;TgðzÞ can be renormalized
nonperturbatively in an appropriate scheme [31,35–40].
Here, we choose the hybrid scheme [31] proposed recently
that has the advantage that the renormalization factor does
not introduce extra nonperturbative effects at large z that
distort the IR property of the bare correlations. This scheme
works as follows: At jzj ≤ zS where zS is within the region
where the leading-twist approximation is valid, we can
choose the regularization-independent momentum subtrac-
tion (RI/MOM) scheme [38] to avoid certain discretization
effects (alternative choices include, e.g., the ratio [27]
scheme), while for jzj > zS one applies the gauge-link
mass subtraction scheme:

HR
Vðz; a; PzÞ ¼

HVðz; a; PzÞ
Zðz; aÞ θðzS − jzjÞ

þHVðz; a; PzÞe−δmðμ̃Þz

× ZhybridðzS; aÞθðjzj − zSÞ; ð4Þ

where the superscript R denotes the renormalized quantity
and μ̃ denotes the intrinsic scale dependence of the gauge

TABLE I. Information on the simulation setup. The light and
strange quark mass (both valence and sea quark) of the clover
action are tuned such that mπ ¼ 140 MeV and mηs ¼ 670 MeV.

Ensemble a (fm) L3 × T cSW mu=d ms

a12m130 0.12 48 × 64 1.050 88 −0.0785 −0.0191
a09m130 0.09 64 × 96 1.042 39 −0.0580 −0.0174
a06m130 0.06 96 × 192 1.034 93 −0.0439 −0.0191
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link, including both UVand IR. We have chosen Zðz; aÞ as
the RI/MOM renormalization factor computed from

Zðz; aÞ ¼ 1

12
Tr½hSðpÞi−1 × hSðpjzÞiγzγ5

×
Y
n

UzðnẑÞSðpj0ÞhSðpÞi−1γzγ5�p2¼−μ2
R
;

pz¼0

: ð5Þ

The Zhybrid denotes the endpoint renormalization constant
that can be determined by imposing a continuity condition
at z ¼ zS,

ZhybridðzS; aÞ ¼ eδmðμ̃ÞzS=ZðzS; aÞ: ð6Þ

The mass counterterm δmðμ̃Þ can be extracted from the
RI/MOM renormalization factor [31]. The zS are chosen as
0.24 fm and 0.36 fm within the perturbative region, and
their difference is treated as a systematic error.
By Fourier transforming HR

V;fL;Tg to momentum
space, we then obtain the quasi-distribution amplitudes
(quasi-DAs)

Φ̃V;fL;Tgðy; PzÞ ¼
Z

dze−iyPzzHR
V;fL;Tgðz; PzÞ; ð7Þ

where the continuum limit has been taken. It can be
factorized into the LCDAs through the factorization
theorem [41]

Φ̃V;fL;Tgðy; Pz; μRÞ

¼
Z

1

0

dxCV;fL;Tgðx; y; Pz; μR; μÞΦV;fL;Tgðx; μÞ; ð8Þ

where the matching kernel CV;fL;Tg was derived first in the
transverse momentum cutoff scheme in Ref. [42] and then
in the RI/MOM scheme in Ref. [43]. The μ and μR reflect
the generic renormalization scale dependence of LCDAs
and quasi-DAs. The matching formula and more details of
the hybrid scheme can be found in the Supplemental
Material [32].
Numerical setup.—On the lattice, one directly calculates

the two-point correlation function defined as

Cm
2 ðz; P⃗; tÞ ¼

Z
d3 ye−iP⃗·y⃗h0jψ̄1ðy⃗; tÞΓ1Uðy⃗; y⃗þ zẑÞ

× ψ2ðy⃗þ zẑ; tÞψ̄2ð0; 0ÞΓ2ψ1ð0; 0Þj0i; ð9Þ

where the longitudinal polarization case (m ¼ L) has
Γ1 ¼ γt and Γ2 ¼ γz, and the transverse polarization case
(m ¼ T) has Γ1 ¼ σzy and Γ2 ¼ γx=γy. Then, the quasi-
DAs can be extracted from the following parameterization:

Cm
2 ðz; P⃗; tÞ

Cm
2 ðz ¼ 0; P⃗; tÞ ¼

Hb
V;mðzÞ½1þ cmðzÞe−ΔEt�
½1þ cmð0Þe−ΔEt�

; ð10Þ

where cmðzÞ and ΔE are free parameters accounting for the
excited state contaminations, and Hb

V;mðzÞ are the bare
matrix elements for the quasi-DAs. When t is large enough,
the excited state contaminations parameterized by cmðzÞ
and ΔE are suppressed exponentially, and the ratio defined
in Eq. (10) approaches the ground state matrix element
Hb

V;mðzÞ. Based on the comparison between the joint two-
state fit and constant fit shown in the Supplemental
Material [32], we choose to use the constant fit in the
range of t ≥ 0.54 fm to provide a conservative error
estimate in the following calculation.
The numerical simulation is based on three ensembles

with 2þ 1þ 1 flavors of HISQ [28] at a physical pion
mass with f0.06; 0.09; and 0.12g fm lattice spacings. The
momentum smeared grid source [44] with the source
positions ðx0 þ jxL=2; y0 þ jyL=2; z0 þ jzL=2Þ are used
in the calculation, where ðx0; y0; z0Þ is a random position
and jx;y;z ¼ 0=1. It allows us to obtain the even momenta in
units of 2π=L with ∼8 times the statistics. We also repeat
the calculation at 8, 6, 4 time slices and fold the data in
the normal and reversed time directions, which is equiv-
alent to having 570 × 8 × 8 × 2, 730 × 8 × 6 × 2, and
970 × 8 × 4 × 2 measurements at three ensembles at
a ¼ 0.06, 0.09, and 0.12 fm, respectively. We have further
reversed the ẑ direction in Eq. (9) to double the statistics.
Based on the numerical results, we confirmed that the
dispersion relation can be satisfied for all the cases up to
theOða2p4Þ correction, and the continuum extrapolation in
the coordinate space or momentum space provides con-
sistent results [32].
Results.—After renormalization in the hybrid scheme,

we perform a phase rotation eizPz=2 to the renormalized
correlation, so that the imaginary part directly reflects
the flavor asymmetry between the strange and up and down
quarks. Taking the transversely polarized K� as an
example, we show in Fig. 1 the real (upper panel) and
imaginary part (lower panel) of the renormalized quasi-DA
matrix elements eizPz=2HK�;TðzÞ with the momentum
Pz ¼ 2π=L × 10 ¼ 2.15 GeV. As shown in the upper
panel, the matrix elements at different lattice spacings
are consistent with each other, indicating that linear
divergences arising from the gauge link have been canceled
up to the current numerical uncertainty. In the lower panel,
we find a positive imaginary part at all the lattice spacings,
which corresponds to a nonzero asymmetry with the peak at
x < 1=2. This is consistent with expectations that lighter
quarks carry less momentum of the parent meson.
As one can see from Fig. 1, the uncertainty of the lattice

data grows rapidly with the spatial separation of the nonlocal
operator. Thus, to have a reasonable control of uncertainties
in the final result we need to truncate the correlation at a
certain point. The missing long-range information can be
supplemented by a physics-based extrapolation proposed in
Ref. [31], which removes unphysical oscillations in a naive
truncated Fourier transform with the price of altering the
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endpoint distribution (at x ∼ 0 or 1), which cannot be
reliably predicted by LaMET anyway due to increasingly
important higher-twist contributions. Following Ref. [31],
we adopt the following extrapolation form:

HV;fL;Tgðz; PzÞ ¼
�

c1
ð−iλÞa þ eiλ

c2
ðiλÞb

�
e−λ=λ0 ; ð11Þ

where the exponential term accounts for the finite correlation
length for a hadron at finite momentum, and the two
algebraic terms account for a power law behavior of the
momentum distribution at x close to 0 and 1, respectively.
λ ¼ zPz, and the parameters c1;2; a; b; λ0 are determined by
a fitting to the lattice data in the region where it exhibits an
exponential decay behavior. To account for the systematics
from such an extrapolation, we have done two different
extrapolations, one including the exponential term and the
other not, and taken their difference as an estimate of
the systematics. This can be attributed as a source of
the uncertainty from the inverse problem, and a more
systematic strategy to handle the inverse problem of the
Fourier transform is available in Ref. [45]. The detailed

comparison of two extrapolations can be found in the
Supplemental Material [32].
After renormalization and extrapolation, we can Fourier

transform to momentum space and apply the corresponding
matching. In Fig. 2, we show as an example the comparison
of the quasi-DA and extracted LCDA for the transversely
polarized K�. The results correspond to the case with
Pz ¼ 2.15 GeV and a ¼ 0.09 fm. One notices that there is
a nonvanishing tail for the quasi-DA (yellow curve) in the
unphysical region (x > 1 or x < 0), but it becomes much
better for the LCDA (blue curve) after the perturbative
matching is applied.
We have performed a simple extrapolation to the

continuum limit using the results at three different lattice
spacings and the following formula:

ψðaÞ ¼ ψða → 0Þ þ c1aþOða2Þ; ð12Þ

with the OðaÞ correction being due to the mixed action
effect from the clover valence fermion on HISQ sea. As an
example, we show the extrapolated results for the trans-
versely polarized K� in Fig. 3 for three different momenta,
Pz ¼ f1.29; 1.72; 2.15g GeV. From this figure, one can see
that the asymmetry slightly increases with Pz. Defining the
asymmetry as casy ¼

R 1=2
0 dxϕðxÞ= R 1

1=2 dxϕðxÞ, we find
casy is 1.090(15), 1.176(07), and 1.227(08) for the three
momenta. Since the strange quark is heavier than the up or
down quark, a slight preference of x < 1=2 to x > 1=2 is
expectable. It suggests that a large Pz extrapolation is
essential to suppress the power corrections and reproduce
this correct preference behavior. Such a behavior is also
observed in the study of Kaon LCDAs in Ref. [24].
After matching from quasi-DA to LCDAs with

μ ¼ 2 GeV, our final results for LCDAs of the K� and ϕ
are given in Figs. 4 and 5, respectively, where the upper and
lower panels correspond to the longitudinal and transverse
polarization cases. In these figures, we have made a Pz → ∞
extrapolation using the following simple form:

FIG. 1. The two-point correlation function for the transversely
polarized K� in coordinate space. We make a phase rotation by
multiplying a factor eizPz=2 with Pz ¼ 2.15 GeV.

FIG. 2. Quasi-DA and LCDA extracted from it for the trans-
versely polarized K� using data at a ¼ 0.09 fm, Pz ¼ 2.15 GeV.
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ψðPzÞ ¼ ψðPz → ∞Þ þ c2
P2
z
þO

�
1

P4
z

�
: ð13Þ

We have chosen two renormalization scales (1.82 GeV and
3.04 GeV) and treated their differencewith an estimate of the

systematic error from matching. It is worth emphasizing that
the endpoint regions are difficult to access in LaMET. The
endpoint can be roughly estimated from the largest attainable
λ (conjugate variable of x in the Fourier transform) as
1=λmax. In the present calculation, we have λmax ≈ 14

(specifically zPz¼1.29 GeV
max ≈ 2.1 fm, zPz¼1.72 GeV

max ≈ 1.6 fm,

zPz¼2.15 GeV
max ≈ 1.3 fm), thus we take a conservative estimate
of the predictable region as [0.1, 0.9]. Beyond this region, we
plot a shaded area with systematic errors difficult to estimate.
As a comparison, we also show in Fig. 4 the asymptotic form
6xð1 − xÞ and the model results from earlier QCD sum rule
calculations [15] and the Dyson-Schwinger equations (DSE)
results [16] in Fig. 5. Our results indicate that, while the
longitudinal LCDAs tend to be close to the asymptotic form,
the transverse LCDAs have relatively large deviations from
the asymptotic form. These behaviors might have important
implications for the study of semileptonic B → K�lþl−

decay toward the search for new physics and can be explored
in the future.
Summary.—We have presented the first lattice QCD

calculation of LCDAs of longitudinally and transversely
polarized vector mesons K�;ϕ using LaMET. We did not
consider the ρ meson due to its large width, which will
introduce sizable systematic errors. The continuum and

FIG. 3. The continuum limit of the LCDA for the transversely
polarized K�, extrapolated from three different lattice spacings.

FIG. 4. LCDAs for the longitudinally polarizedK� (upper panel)
and transversely polarized K� (lower panel). The results are
extrapolated to the continuous limit (a → 0) and the infinite
momentum limit (Pz → ∞). Regions with x < 0.1, x > 0.9 are
shaded, as systematic errors in these regions are difficult to estimate. FIG. 5. Similar to Fig. 4 but for the ϕ vector meson.
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infinite momentum limits are taken based on calculations
at physical light and strange quark mass with three lattice
spacings and momenta. Our final results are then com-
pared to the asymptotic form and QCD sum rule results.
While the longitudinal LCDAs tend to be close to the
asymptotic form, the transverse ones have relatively large
deviations from the asymptotic form. Our final results
provide crucial ab initio theory inputs for analyzing
pertinent exclusive processes.
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