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We show that the three-dimensional Thurston geometries are vacuum solutions to the 3D new massive
gravity equations of motion. We analyze their Lorentzian counterparts as well.
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Introduction.—Thurston’s conjecture is a statement
about how any three-dimensional manifold can be canoni-
cally decomposed into parts. These simpler parts admit one,
and only one, of eight model geometries. Shortly after
Thurston’s conjecture [1], Ricci flow was created as an
attempt to prove it [2]. The Ricci flow equation has the
same form as a heat equation, in this analogy, the role of the
temperature is played by the metric. The first sketch of
proof that the conjecture is true came decades later [3].
In gravitational physics, Thurston geometries enter the

picture in 4D spatially homogeneous cosmological models
[4–6] and have been used to construct 5D black holes
[7–9]. In 3D gravity, Thurston metrics are interpreted as
gravitational instantons. Some Thurston model geometries
are Euclidean vacua of massive gravity theories (see
Ref. [10] for a recent discussion on some aspects of exotic
massive gravity [11]). Let us mention that there are a
number of massive gravity theories in three dimensions,
many of which are closely related to topologically massive
gravity (TMG) [12,13]; some of these relations are dis-
cussed in [11]. However, no systematic study has been
undertaken so far. In this Letter, we address the question if
all Thurston geometries are vacuum solutions of three-
dimensional new massive gravity (NMG) [14].
We are concernedwith the following equations ofmotion:

Λgþ GðgÞ − 1

2m2
KðgÞ ¼ 0: ð1Þ

HereΛ is the cosmological constant andwe parameterize the
NMGcouplingconstant asm−2, however, there is noneed for
m2 to be positive. The NMG tensor, K, has components

Kμν ¼ 2□Rμν −
1

2
∇μ∇νR −

1

2
□Rgμν þ 4RμανβRαβ

−
3

2
RRμν − RαβRαβgμν þ

3

8
R2gμν: ð2Þ

It was established, in a sequence of papers [15–17], that
Eq. (1) admit the form of a Klein-Gordon-type equation
with a curvature-squared source term and a constraint
equation. This ultimately allows for all algebraic type D
and N solutions of TMG to be mapped into NMG. The
reason behind this map is that for these algebraically special
metrics the TMG equations of motion correspond to a
“square root” of the NMG Klein-Gordon-type equation. In
contrast, the converse is not true, that is, not every type D
and N solution of NMG is also a solution of TMG.
In addition, the study of the various compatible geo-

metric structures on three-dimensional manifolds has been
a central theme in contact geometry. Recently, a class of
contact structures has emerged, arising in the context of six-
dimensional supergravity [18], three-dimensional massive
gravity, and two-dimensional superconductors [19]. They
have been dubbed ε-contact manifolds, where the sign of ε
indicates if a distinguished vector field in the manifold is
timelike, spacelike, or null. For example, the contact sphere
with a para-Sasakian structure is one such manifold where
the Maxwell-Chern-Simons field equations are obtained by
extremizing its helicity while identifying the contact form
with the electromagnetic gauge potential.
Previous results show that ε-contact three-manifolds that

are also K-contact and η-Einstein are solutions of NMG. In
Ref. [19] we specialized in a Lorentzian Nil geometry [20].
However, our results are independent of the metric’s
signature. In particular, every Sasakian geometry satisfies
the NMG equations of motion. This should be understood
in light of the uniformization theorem of Sasakian three-
manifolds [21,22]. The three representative metrics of the
theorem are all Thurston model geometries.
Thurston geometries.—In this section, we summarize

and discuss the results of evaluating the NMG equations of
motion in each of the Thurston geometries: E3, S3, H3,

E1 × S2, E1 ×H2, gSLð2;RÞ, Nil, and Sol [23–25].
Let us consider first, the three Thurston geometries

formed by a direct product E1 × E2 ¼ E3, E1 × S2, and
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E1 ×H2. Euclidean space E3 is flat and thus to be a
solution of NMG it only requires

Λ ¼ 0; ð3Þ
in other wordsm2 is unspecified. For the remaining product
spaces we write the scalar curvature as

R ¼ � 2

l2
; ð4Þ

where the plus sign is for E1 × S2. As NMG vacua the
length scale l is fixed by the cosmological constant.
Moreover, the quadratic-curvature coupling constant is
also fixed by Λ

l2 ¼ � 1

2Λ
; m2 ¼ Λ; ð5Þ

where, once more, the plus sign is for E1 × S2. Lorentzian
counterparts of these spaces are ðAÞdS2 × S1 which were
found to be a solution of Eq. (1) in Refs. [17,26], as long as
Eqs. (5) hold.
Although Euclidean space E3 is a product space E1 × E2

it is also a space of constant (sectional) curvature κ.
Evidently, κ vanishes for E3. The other two spaces with
constant κ are S3 (κ > 0) and H3 (κ < 0). We write their
scalar curvature as

R ¼ � 6

l2
; ð6Þ

where the minus sign is forH3. As it is for E3,m2 is unfixed
by the NMG equations of motion, however, there is a
constraint in the parameter space given by

Λ ¼ � 1

l2
−

1

4l4m2
: ð7Þ

This equation determines the value of l in terms of the
NMG couplings and corresponds to Eq. (3.9) of Ref. [27]
for the plus sign. Moreover, these are the same equations
(A)dS spacetimes must satisfy as NMG vacua,
cf. [14,28,29]. However, since l2 must be positive then
the range of values of the coupling constants are restricted.
Notice that when m−2 ¼ 0 we recover Einstein gravity and
the familiar conditions l2 ¼ �Λ−1.
Thus far, we have discussed five of the eight Thurston

model geometries. These five geometries are closely related
to the three representative geometries of the uniformization
theorem for Riemann surfaces, i.e., H2, E2, and S2. We
considered the trio of product spaces and the trio with
constant sectional curvature, κ, where E3 appears in both
triplets. We now advance by looking at yet another triogSLð2;RÞ, Nil, and S3 which are all line bundles over the
representative Riemann surfaces mentioned above.
This new triplet appears in a version of the uniformiza-

tion theorem that exists in three dimensions for Sasakian

manifolds [21]. In short, compact Sasakian three-manifolds
admit only three different types of geometries. The repre-
sentatives of these three types are precisely Nil, S3, andgSLð2;RÞ. Furthermore, these correspond to the only three
Thurston models on compact Seifert bundles with nonzero
Euler number [25]. They are all contact manifolds satisfy-
ing the η-Einstein condition [30]

RicðgÞ ¼ λgþ νη ⊗ η; ð8Þ

where η is the contact form, g is the metric, and λ, ν are
some constants. When ν ¼ 0 the manifold is also Einstein,
this is the case for S3. Just as three-manifolds are Einstein
manifold if and only if they have constant κ, Sasakian three-
manifolds are η-Einstein if and only if they have constant
ϕ-holomorphic sectional curvature k [22,30,31].
Now, let us recall that a contact manifold possesses a

special hyperplane distribution in its tangent bundle. In
three-manifolds this contact distribution is a plane distri-
bution. We mention this now because sectional curvature is
a function of plane distributions. In three-manifolds any
tangent space is three dimensional. Thus, there are at each
point of the manifold ð3

2
Þ ¼ 3 independent planes. We say

that a manifold has constant sectional curvature if for any
plane at any point κ takes the same value. In Sasakian
manifolds, we say that a manifold has constant ϕ-holo-
morphic sectional curvature if the sectional curvature
restricted to the contact distribution is constant [31].
Here ϕ refers to the almost contact structure. Every plane
on the distribution is generated by some vector field X on it
and ϕX, which results from the action of ϕ on X. The point

is that manifolds such as Nil and gSLð2;RÞ do not have
constant sectional curvature but do have constant ϕ-
holomorphic sectional curvature.
Let us mention that every Sasakian manifold is ε-contact

and K-contact. Thus, by our previous results [19], the
η-Einstein geometries described above are vacuum solu-
tions of NMG. Let us discuss this in further detail starting
with the Nil geometry which is described by the metric

g ¼ l2

4
ðdx ⊗ dxþ dy ⊗ dyþ η ⊗ ηÞ; ð9Þ

where

η ¼ xdy − dz: ð10Þ

In this case, the sectional curvature of planes in the contact
distribution is k ¼ −3l−2. In NMG, the length scale l is set
by the cosmological constant by

l2 ¼ −
1

2Λ
; ð11Þ

and the NMG parameters must obey
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m2 ¼ 21Λ < 0; ð12Þ

in order for Eq. (9) to satisfy the equations of motion.
We now turn to the universal cover of SLð2;RÞ, which is

described by the metric

g ¼ l2ðdr ⊗ drþ sinh2rcosh2rdθ ⊗ dθ þ η ⊗ ηÞ; ð13Þ

with

η ¼ dψ þ sinh2rdθ: ð14Þ

The Sasakian structure on gSLð2;RÞ includes the (1,1)
tensor

ϕ ¼ − sinh r cosh r
∂
∂r ⊗ dθ

þ 1

sinh r cosh r
∂
∂θ ⊗ dr −

sinh r
cosh r

∂
∂ψ ⊗ dr: ð15Þ

Additionally, let us mention that the ϕ-holomorphic sec-
tional curvature of the metric is k ¼ −7l−2. Moreover,
inserting Eq. (13) into the NMG equations of motion,
Eq. (1), yields

l2 ¼ −
109

50Λ
and m2 ¼ 625

109
Λ < 0; ð16Þ

which tell us how the cosmological constant fixes the
curvature radius and how the coupling constants are con-

strained so that the geometry of gSLð2;RÞ is a vacuum
solution.
In sum, except for Sol, all Thurston geometries are either

a space with a product structure, constant sectional curva-
ture or constant ϕ-holomorphic sectional curvature. For the
Sol geometry we write its metric as

g ¼ l2ðe−2zdx ⊗ dxþ e2zdy ⊗ dyþ dz ⊗ dzÞ: ð17Þ

The isometry algebra of this metric is solvable.
Considering now the NMG equations, we find that the

conformal scale is fixed by

l2 ¼ −
1

2Λ
; ð18Þ

telling us that Λ must be negative and, what is more,

m2 ¼ 5Λ: ð19Þ

Anticipating the results provided below let us note that
the Jordan normal form of the Cotton-York tensor for the
Sol geometry is

Y ¼ 2l3

0
B@

−1 0 0

0 0 0

0 0 1

1
CA; ð20Þ

which tells us that it has two independent real eigenvalues.
Thus, the Sol geometry is algebraically general in the
classification of [32].
Lorentzian signature.—Since NMG is a gravity theory,

obviously, one is interested in Lorentzian geometries. Some
Lorentzian metrics are obtained from Euclidean ones by a
Wick rotation [33]. For instance Minkowski from E3, de
Sitter from S3, and anti–de Sitter (AdS) from H3 orgSLð2;RÞ. However, since there is no distinguishable
direction over which to perform the rotation other inequi-
valent metrics arise from the same Euclidean geometry. The
canonical Lorentzian metric on the three-sphere is an
example

g ¼ l2

4
ð−η ⊗ ηþ dΘ ⊗ dΘþ sin2ΘdΦ ⊗ dΦÞ; ð21Þ

where

η ¼ dΨþ cosΘdΦ: ð22Þ

This metric is not diffeomorphic to de Sitter spacetime but
both are obtained from Wick rotations applied to the
Thurston geometry S3.
The metric in Eq. (21) does not have constant sectional

curvature. However, if we restrict ourselves to planes in the
contact distribution then the sectional curvature of Eq. (21)
is constant. This is

κðpÞ ¼ 7

l2
; ð23Þ

for p in the contact distribution generated by η. The metric
is η-Einstein and K-contact. Moreover Eq. (23) is highly

suggestive it relates to gSLð2;RÞ. Indeed, requiring the
metric in Eq. (21) to satisfy the NMG equations of motion
leads to

l2 ¼ 109

50Λ
; and m2 ¼ 625

109
Λ > 0; ð24Þ

which should be compared with Eqs. (16). Perhaps these
results are not so surprising when one keeps in mind that
SU(1,1) is isomorphic to SLð2;RÞ.
The metric in Eq. (21) is a special case of the only SU(2)

left-invariant family of Lorentzian geometries [34]. Except
for S2 × E1, all Thurston geometries are left-invariant
metrics. The para-Sasakian Nil geometry mentioned above
belongs to one of two nonflat families of left-invariant
Lorentzian Nil geometries. The other one is
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g ¼ l2

4
ðdx ⊗ dxþ dy ⊗ dy − η ⊗ ηÞ; ð25Þ

where η is given by Eq. (10). This metric has been studied
in the physics literature before, see, e.g., Ref. [35] where
the metric is studied in TMG and the Cotton-York tensor is
interpreted as the energy-momentum tensor of a perfect
fluid. This carries over to the case at hand as follows. The
ε-contact, η-Einstein, and K-contact properties of the
metric and the contact form imply [19]

K ¼ agþ bη ⊗ η; ð26Þ

for some constants a and b. A direct calculation shows
Eq. (25) is a solution of NMG. In fact, the restrictions on
the parameter space are exactly as in Eq. (32). By defining a
unit timelike form

u ¼ l
2
η; ð27Þ

we now have

1

2m2
K ¼ pgþ ðρþ pÞu ⊗ u: ð28Þ

In other words, on shell, the NMG equations are effectively
those of Einstein gravity coupled to a perfect fluid, where
the isotropic pressure and energy density are given by

p ¼ 3Λ and ρ ¼ 5Λ; ð29Þ

respectively.
The geometry in Eq. (25) and other left-invariant metrics

on Nil, SU(2), and SU(1,1) have been studied before in the
context of NMG, as Lorentzian Bianchi type metrics
[15,17]. What is more, except for H3 and E1 ×H2, one
or more Lorentzian analogs of the Thurston geometries
have been studied in these works.
The Dumitrescu-Zeghib metrics.—Thus far, we have

seen that some Lorentzian left-invariant metrics sharing
the isometry group with the Thurston metrics are NMG
vacua. Some also lead to applications in physics. Recalling
that there is no Lorentzian counterpart to the correspon-
dence between Riemannian metrics and reductions of the
structure group of the frame bundle (cf. Theorem 5.8 in
[36]), the Lorentzian counterpart to the geometrization
theorem remains an open problem.
Nevertheless, amongst the various possible Lorentzian

analogs of the Thurston metrics, in this Letter we study
those found in [37], where it was established that there are
exactly four left-invariant metrics which are Lorentzian and
at the same time are preserved by the canonical action of the
isometry group. This is compelling because it is exhaustive
and provides only a handful of metrics. More precisely, it
was established that any compact locally homogeneous

Lorentz threefold M is isometric to a quotient of a Lorentz
homogeneous space G=I by a discrete subgroup Γ of G
acting properly and freely on G=I. A famous, closely
related, noncompact spacetime is the Bañados-Teitelboim-
Zanelli (BTZ) black hole [38]. It is locally homogeneous
and is isometric to a quotient of a Lorentz homogeneous
space by a discrete subgroup [39]. Specifically, it is AdS
spacetime with additional (nonobvious) identifications; for
further details we recommend [40]. A further result of [37]
is that when I is noncompact then G=I is isometric to a Lie
group L endowed with a Lorentzian left invariant metric,

where L is isomorphic to E3, gSLð2;RÞ, Nil, or Sol.
For E3 and gSLð2;RÞ these are the Minkowski and AdS

metrics, respectively. The Minkowski metric is one of only
three left-invariant Lorentzian metrics on Nil [20], however,
it is not preserved by the canonical action of Nil. From
Ref. [34] we know that there are in total seven left-invariant

Lorentzian metrics on gSLð2;RÞ. However, only the AdS
metric is the one which is preserved by its canonical action.
The Minkowski metric is flat and thus the only require-

ment for it to be a NMG vacuum solution is Λ ¼ 0. Turning
to AdS we see that it is analogous to two Thurston
geometries. On the one hand, it has negative constant
sectional curvature likeH3. This implies that for it to satisfy
the NMG equations it must satisfy Eq. (7) with the negative
sign. On the other hand, AdS can also be obtained from
Eq. (13), i.e.,

g ¼ l2ðdr ⊗ drþ sinh2rcosh2rdθ ⊗ dθ − η ⊗ ηÞ; ð30Þ

where η is the same as in Eq. (14). This means that AdS

spacetime is also analogous to the geometry of gSLð2;RÞ.
TheNil group is also called theHeisenberg group because

of its relation to quantum mechanics. In Ref. [37] Lorentz-
Heisenberg (Lorentz-Sol) is thenamegivento theunique left-
invariant Lorentzian geometry which is preserved by the
canonical action of the Nil (Sol) group. We use the same
nomenclature in what follows.
We write the Lorentz-Heisenberg metric as

g ¼ l2

4
ð−dx ⊗ dxþ dy ⊗ dyþ η ⊗ ηÞ; ð31Þ

where η is as in Eq. (10). This geometry parallels its
Euclidean counterpart. That is, it is para-Sasakian, η-
Einstein and has constant φ-holomorphic sectional curva-
ture c ¼ 3l−2. Here φ is the (1,1) tensor in the almost para-
contact structure of the Nil group. It is a NMG vacuum
under the constraints

m2 ¼ 21Λ > 0; ð32Þ

and the cosmological constant is positive, as
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l2 ¼ 1

2Λ
: ð33Þ

Unlike the Lorentzian Nil geometries, there are
Lorentzian left-invariant Sol metrics which cannot be
obtained by (obvious) Wick rotations of Eq. (17).
However, it has been proven that only seven such metrics
exist [34]. The Lorentz-Sol metric is the only one among
them which is conformally flat (“Petrov” typeO). We write
the metric as

g ¼ l2ð2e−zdx ⊗s dzþ e2zdy ⊗ dyÞ; ð34Þ

where A ⊗s B ¼ 1=2ðA ⊗ Bþ B ⊗ AÞ. This metric is not
a solution of Eq. (1) since

RicðgÞ ¼ −2dz ⊗ dz; ð35Þ

and the NMG tensor K defined in Eq. (2) vanishes.
However, this means it is actually a solution of pure
new massive gravity, where we have used the same
nomenclature as in Pure Lovelock Gravity [41,42].
Hence, the configuration requires Λ ¼ 0 and leaves m2

unspecified.
Although other left-invariant Sol metrics have been

studied in NMG [15], the metric in Eq. (34) is a new
solution. This motivated us to inspect the other Lorentzian
Sol metrics. It was found that there are only three other
metrics which satisfy the NMG equations of motion and we
discuss them below.
New Sol geometries.—We start with metric

gI ¼ l2ðe−2zdx ⊗ dxþ e2zdy ⊗ dy − dz ⊗ dzÞ ð36Þ

whose Cotton-York tensor in Jordan form is given by
Eq. (20) which makes it algebraically general. The theory
fixes the characteristic length scale l by

l2 ¼ 1

2Λ
: ð37Þ

Moreover, the theory’s coupling constants are constrained
by

m2 ¼ 5Λ > 0; ð38Þ

which should be compared to Eqs. (18) and (19).
Similarly, another algebraically general Sol geometry is

given by

gI0 ¼ l2ð−e−2zdx ⊗ dxþ e2zdy ⊗ dyþ dz ⊗ dzÞ: ð39Þ

This time, the Jordan form of the Cotton-York tensor has
the form

Y ¼ 2l3

0
B@

0 1 0

−1 0 0

0 0 0

1
CA: ð40Þ

Note that the difference between Eqs. (36) and (39) is that
the corresponding eigenvalues of Eqs. (20) and (40) are real
and purely imaginary, respectively. Much like Minkowski
and AdS spacetimes, this Lorentzian geometry obeys NMG
dynamics under the same conditions as its Euclidean
counterpart, i.e., Eqs. (18) and (19).
The third Sol geometry under consideration is

gN ¼ l2ð−e2zdy ⊗ dy − 2dx ⊗s dyþ dz ⊗ dzÞ; ð41Þ

for which

Y ¼

0
B@

0 1 0

0 0 0

0 0 0

1
CA; ð42Þ

indicating that it is algebraically type N. At a first glance,
the metric in Eq. (41) can be seen to admit a null vector
field

V ¼ ∂
∂x : ð43Þ

This field is covariantly constant, hence, the metric
describes a pp-wave spacetime. The NMG tensor is

KðgNÞ ¼
8

l2
RicðgNÞ ¼

16

l2
e2zdy ⊗ dy; ð44Þ

so for this pp wave to be a vacuum solution it requires

Λ ¼ 0 and m2 > 0; ð45Þ

as

l2 ¼ 4

m2
: ð46Þ

Since this solution is type N, it must belong the general
family found in [16]. However, as a specific geometry, it
represents a new solution of NMG. Moreover, it is the only
pp-wave vacuum solution which has Sol isometry.
To close this section, let us remark that Eqs. (34), (39),

and (41), which are new, together with Eq. (36) which was
discussed in [15,17], all have different Petrov type.
Closing remarks.—We conclude by mentioning that

early work on Thurston geometries as Euclidean gravita-
tional configurations came from string theory [43]. A
stringy 3D gravity theory was constructed as a way to
shed light on to the Thurston conjecture [44]. A key feature
of that work is that the gravity sector is given by general
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relativity. Since most of the Thurston geometries are not
Einstein manifolds, then in previous analyses a unifying
dynamics required matter content. In this Letter, unifying
dynamics comes from modifying Einstein gravity. In other
words, we do not consider matter fields. This establishes
that all eight Thurston geometries are NMG vacua. To the
best of our knowledge, NMG is the only 3D gravity theory
where this happens.
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