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For the certification and benchmarking of medium-size quantum devices, efficient methods to
characterize entanglement are needed. In this context, it has been shown that locally randomized
measurements on a multiparticle quantum system can be used to obtain valuable information on the so-
called moments of the partially transposed quantum state. This allows one to infer some separability
properties of a state, but how to use the given information in an optimal and systematic manner has yet to be
determined. We propose two general entanglement detection methods based on the moments of the
partially transposed density matrix. The first method is based on the Hankel matrices and provides a family
of entanglement criteria, of which the lowest order reduces to the known p3-positive-partial-transpose
criterion proposed in A. Elben et al. [Phys. Rev. Lett. 125, 200501 (2020)]. The second method is optimal
and gives necessary and sufficient conditions for entanglement based on some moments of the partially
transposed density matrix.
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Introduction.—Intermediate-scale quantum devices
involving a few dozen qubits are considered a stepping
stone toward the ultimate goal of achieving fault-tolerant
quantum computation [1]. For such devices, the standard
method of tomography is no longer feasible for gauging the
performance in actual experiments [2]. As a result, efficient
and reliable characterization methods of such multiparticle
systems are indispensable for current quantum information
research [3,4]. As entanglement is a key ingredient in
quantum computation and other quantum information
processing tasks, many efforts have been devoted to its
characterization and quantification [5–7].
If an experiment aims at producing a specific quantum

state with few particles, entanglement witnesses or Bell
inequalities provide mature tools for entanglement detec-
tion. For larger and noisy systems, however, these meth-
ods require significant measurement efforts; moreover,
some of the standard constructions of witnesses are not
very powerful. To overcome this, methods using locally
randomized measurements have been put forward. In
these schemes, one performs on the particles measure-
ments in random bases and determines the moments from
the resulting probability distribution. It was noted early
that this approach allows one to detect entanglement [8,9]
or evaluate the moments of the density matrix [10].
Recently, this approach has become the center of attention
and found experimental applications. For instance, it was
shown that, with these methods, entropies can be esti-
mated [11,12], different forms of multiparticle entangle-
ment can be characterized [13–16], and bound
entanglement as a weak form of entanglement can be
detected [17]. Many efforts have been devoted to verify
the positive partial transpose (PPT) condition [18]

from the moments of the randomized measurements
[19–21].
To explain this approach, let ρAB be a quantum state in a

bipartite quantum systemHA ⊗ HB; the PPT criterion then
states that for any separable state ρTA

AB ≥ 0, where TA

denotes the partial transposition on subsystem HA. For a
given quantum state ρAB, it is straightforward to check
whether the PPT criterion is violated, and if so, the state
must be entangled. However, in actual experiments, the
quantum state is unknown unless resource-inefficient
quantum state tomography is performed. Recently,
researchers found that the PPT condition can also be
studied by considering the so-called partial transpose
moments (PT moments)

pk ≔ Tr½ðρTA
ABÞk�; ð1Þ

which can be efficiently measured from randomized
measurements [20,22]. To see the basic idea behind the
PT-moment-based entanglement detection, suppose that we
know all the PT moments p ¼ ðp0; p1; p2;…; pdÞ, where
d ¼ dAdB is the dimension of the global systemHA ⊗ HB.
Then, all the eigenvalues of ρTA

AB can be directly calculated
[23], from which we can verify whether the PPT criterion is
violated. Hereafter, we always assume that p0 ¼ d and
p1 ¼ 1, which are trivial but included for convenience.
In practice, however, it is difficult, if not impossible, to

measure all the moments of a quantum state. Hence, the
problem turns to whether we can detect the entanglement
from the moments of limited order. The question of whether
knowledge of some moments allows one to draw con-
clusions about the underlying probability distribution is
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indeed fundamental and has appeared in quantum infor-
mation theory before [24–26]. For the case of PT moments,
we formulate the PT-moment problem as follows: Given
the PT moments of order n, is there a separable state
compatible with the data? More technically formulated,
given the numbers pðnÞ ¼ ðp0; p1; p2;…; pnÞ, is there a
separable state ρAB such that pk ¼ Tr½ðρTA

ABÞk�
for k ¼ 0; 1;…; n?
In Ref. [20] the PT-moment problem for n ¼ 3 was

studied and a necessary (but not sufficient) condition was
proposed, called the p3-PPT criterion:

ρAB ∈ SEP ⇒ p3 ≥ p2
2; ð2Þ

where SEP denotes the set of separable states.
In this Letter, we propose two systematic methods for

solving the general PT-moment problem. First, we build a
connection between the PT-moment problem and the
known moment problems in the mathematical literature.
This gives a relaxation of the PT-moment problem, result-
ing in a family of entanglement criteria in which the p3-
PPT criterion is the lowest order. Second, we show that the
p3-PPT criterion is not sufficient for the PT-moment
problem of order 3. By reformulating the PT-moment
problem as an optimization problem, we derive an explicit
necessary and sufficient criterion for n ¼ 3 and further
generalize it to the case that n > 3. Finally, we illustrate the
efficiency of our criteria with physically relevant examples,
e.g., thermal states of condensed matter systems.
Relaxation to the classical moment problems.—We start

by relaxing the PT-moment problem and establishing a
connection to the classical moment problems. Here, instead
of defining the classical moment problems with respect to
the Borel measure on the real line [27–29], we rewrite them
with quantum states and observables.
Given a quantum state σ and an observable (Hermitian

operator) X, the kth moment is defined as mk ≔ TrðσXkÞ.
The moment problems ask the converse: given a sequence
of moments, does there exist a quantum state σ and an
observable X (with some restrictions) giving the
desired moments? Albeit formulated in a quantum lan-
guage, this scenario is essentially classical since σ can be
taken in diagonal form in the eigenbasis of X. The
(truncated) Hamburger and Stieltjes moment problems
are defined as follows.
Hamburger moment problem: Given the moments of

order n, more precisely, mðnÞ ¼ ðm0; m1; m2;…; mnÞ, is
there a quantum state σ and an observable X such thatmk ¼
TrðσXkÞ for k ¼ 0; 1;…; n?
Stieltjes moment problem: Given the moments of order n,

more precisely, mðnÞ ¼ ðm0; m1; m2;…; mnÞ, is there a
quantum state σ and a positive semidefinite observable
X such that mk ¼ TrðσXkÞ for k ¼ 0; 1;…; n?
Clearly, the only difference between these problems is

that in the Stieltjes moment problem X has to be positive

semidefinite. We define the corresponding two sets of
moments as

Mn ¼ fmðnÞjTrðσXkÞ ¼ mk; σ ≥ 0; X† ¼ Xg; ð3Þ

Mþ
n ¼ fmðnÞjTrðσXkÞ ¼ mk; σ ≥ 0; X ≥ 0g: ð4Þ

Note that in the above definitions there is no restriction on
the dimension of σ and X. Also, since there is no bound on
the eigenvalues of X, the sets Mn and Mþ

n are not closed.
If we set σ ¼ 1 and X ¼ ρTA

AB, the PT moments pðnÞ ¼
ðp0; p1;…; pnÞ defined by Eq. (1) always satisfy that
pðnÞ ∈ Mn; furthermore, the PT moments given by the
PPT states satisfy that pðnÞ ∈ Mþ

n . Hence, if we can
characterize the set Mþ

n , or the difference between Mþ
n

and MnnMþ
n , we get a family of necessary conditions for

the PT-moment problem. This is a relaxation, as in the
definition of Mn and Mþ

n more general σ are allowed.
To proceed, we introduce the notion of Hankel matrices.

The Hankel matrices HkðmÞ and BkðmÞ are ðkþ 1Þ × ðkþ
1Þ matrices defined by

½HkðmÞ�ij ¼ miþj; ½BkðmÞ�ij ¼ miþjþ1 ð5Þ

for i; j ¼ 0; 1;…; k. Hereafter, we will often suppress the
argument (m or p) in the notation when there is no risk of
confusion. For example,

H1 ¼
�
m0 m1

m1 m2

�
; B1 ¼

�
m1 m2

m2 m3

�
; ð6Þ

H2 ¼

2
64
m0 m1 m2

m1 m2 m3

m2 m3 m4

3
75; B2 ¼

2
64
m1 m2 m3

m2 m3 m4

m3 m4 m5

3
75:

ð7Þ

From the definition of the Hankel matrices, one can prove
the following result on the relations betweenMn,Mþ

n and
Hk, Bk; see Appendix A in the Supplemental Material for
details [30].
Lemma 1.—(a) A necessary condition for mðnÞ ¼

ðm0; m1;…; mnÞ ∈ Mn is that Hbn=2c ≥ 0. (b) A necessary
condition for mðnÞ ¼ ðm0; m1;…; mnÞ ∈ Mþ

n is that
Hbn=2c ≥ 0 and Bbðn−1Þ=2c ≥ 0.
By applying Lemma 1 to the PT-moment problem, we

obtain a family of criteria for entanglement detection.
Theorem 1.—Let pk ¼ Tr½ðρTA

ABÞk� for k ¼ 1; 2;…; n,
then a necessary condition for ρAB being a separable state
is that Bbðn−1Þ=2cðpÞ ≥ 0.
Before preceding, we have a few remarks on Lemma 1

and Theorem 1. First, the conditions are almost sufficient in
Lemma 1. If we consider the momentsmðnÞ in the closure of
Mn or Mþ

n , then the conditions of the positivity of the
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Hankel matrices are also sufficient in Lemma 1; see
Appendix A in the Supplemental Material for details
[30]. Because of the finite precision in actual experiments,
this also means that Theorem 1 is the best criterion when
relaxing the PT-moment problem to the classical moment
problems.
Second, although the condition Hbn=2c ≥ 0 is also

necessary for ρAB being separable, it does not give an
entanglement criterion as this condition is satisfied by any
(separable or entangled) state, according to Lemma 1(a).
Third, by noting that p1 ¼ 1, the lowest-order criterion

from Theorem 1, B1 ≥ 0, gives that p3 ≥ p2
2, which is

exactly the p3-PPT condition in Eq. (2) from Ref. [20].
When k > 1, Bk gives stronger criteria for entanglement
detection. Accordingly, we call the condition

ρAB ∈ SEP ⇒ Bbðn−1Þ=2cðpÞ ≥ 0 ð8Þ

the pn-PPT criterion for n ¼ 3; 5; 7;…. The power of the
pn-PPT criteria will be illustrated with examples after we
describe the optimal method for the PT-moment problem.
Last, we would like to point out that although higher-

order criteria pn−2
n ≥ pn−1

n−1 were also proposed in Ref. [20],
they usually cannot detect more entangled states than the
p3-PPT criterion. In Appendix B in the Supplemental
Material [30], we show that these inequalities are strictly
weaker than the pn-PPT criteria from Theorem 1 and
explain why these inequalities are usually much weaker.
Optimal solution to the PT-moment problem.—Theorem

1 already provides a family of strong entanglement criteria,
but they are not optimal. This is because in Eqs. (3), (4) σ
can be arbitrary, but in the PT-moment problem σ is always
1. In the following, we give an optimal solution to the PT-
moment problem.
By writing the spectrum of ρTA

AB as ðx1; x2;…; xdÞ, one
can easily see that the PT-moment problem is equivalent to
characterizing the set

T þ
n ¼

�
pðnÞj

Xd
i¼1

xki ¼ pk; xi ≥ 0

�
: ð9Þ

Indeed, for any pðnÞ ∈ T þ
n , a compatible separable state can

be constructed as follows: Relabel xi for i ¼ 1; 2;…; d as
xαβ for α ¼ 1; 2;…; dA and β ¼ 1; 2;…; dB; then construct
a separable state ρAB ¼ P

α;β xαβjαihαj ⊗ jβihβj, where
jαi, jβi are states in the computational basis. This state
has pk ¼ Tr½ðρTA

ABÞk� for k ¼ 0; 1;…; n. For convenience,
we also define the more general set

T n ¼
�
pðnÞj

Xd
i¼1

xki ¼ pk; xi ∈ R

�
: ð10Þ

Hereafter, the eigenvalues ðx1; x2;…; xdÞ are assumed to be
sorted in descending order unless otherwise stated. In

Eqs. (9), (10), the dimension d ¼ dimðHA ⊗ HBÞ is
considered as fixed, but actually the optimal entanglement
criteria in the following, e.g., Eq. (17), do not depend on d
anymore.
The key idea of the optimal criteria is to consider the

following optimization:

min
xi

=max
xi

p̂n ≔
Xd
i¼1

xni

subject to
Xd
i¼1

xki ¼ pk for k ¼ 1; 2;…; n − 1;

xi ≥ 0 for i ¼ 1; 2;…; d: ð11Þ

Note that this may also be viewed as a minimization or
maximization of the Rényi or Tsallis entropy of order n
under the constraint that the entropies for lower integer
orders are fixed. Suppose that the solutions are given by
p̂min
n and p̂max

n , respectively; then pn ∈ ½p̂min
n ; p̂max

n � pro-
vides a necessary condition for ρAB being separable. If one
can further show that all pn ∈ ½p̂min

n ; p̂max
n � are attainable by

some ðx1; x2;…; xdÞ from a separable state, this will imply
the sufficiency of the condition. As Eq. (11) is a polynomial
optimization, the sum-of-squares hierarchy can, in princi-
ple, be used for approximating the bounds [35,36].
Remarkably, an alternative sum-of-squares method was
used in Ref. [37] for bounding the negative eigenvalues
from moments. Here, instead of using these approximation
methods, we propose an exact method for solving Eq. (11)
analytically.
We start from the simplest case n ¼ 3. As shown in

Appendix C of the Supplemental Material [30], the
maximum and minimization are achieved by

xmax
3 ¼ ðx1; x2; x2;…; x2Þ; ð12Þ

xmin
3 ¼ ðx1; x1;…; x1; xαþ1; 0; 0;…; 0Þ; ð13Þ

respectively, where x1 appears α ¼ b1=p2c times in
Eq. (13). Thus, we obtain the following necessary and
sufficient condition for the PT-moment problem of order 3.
Theorem 2.—(a) There exists a d-dimensional separable

state ρAB satisfying that pk ¼ Tr½ðρTA
ABÞk� for k ¼ 1; 2; 3, if

and only if

p1 ¼ 1;
1

d
≤ p2 ≤ 1; ð14Þ

p3 ≤ ½1 − ðd − 1Þy�3 þ ðd − 1Þy3; ð15Þ

p3 ≥ αx3 þ ð1 − αxÞ3; ð16Þ

where α¼b1=p2c, x ¼ ½αþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α½p2ðαþ 1Þ − 1�p �=

½αðαþ 1Þ�, and y ¼ ½d − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðp2d − 1Þp �=
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½dðd − 1Þ�. (b) More importantly, suppose that the pk for
k ¼ 1; 2; 3 are PT moments from a quantum state.
Then, they are compatible with a separable state if and
only if

p3 ≥ αx3 þ ð1 − αxÞ3; ð17Þ

where α and x are as above.
Mathematically speaking, Theorem 2(a) fully character-

izes the set T þ
3 , while Theorem 2(b) characterizes the

difference between T þ
3 and T 3nT þ

3 . In other words,
Eqs. (14), (15) are satisfied by any (separable or entangled)
state. In practice, pk are usually obtained from experiments;
hence, Eq. (17) should be used for entanglement detection.
Thus, we will refer to Eq. (17) as the p3-OPPT (optimal
PPT) criterion. Again, we emphasize that the p3-OPPT
criterion is dimension independent.
According to Eq. (11), this method is not restricted to the

case n ¼ 3. For example, when n ¼ 4, the maximum and
minimum are achieved by

xmax
4 ¼ ðx1; x2; x2;…; x2; xβþ2; 0; 0;…; 0Þ; ð18Þ

xmin
4 ¼ðx1; x1 � � � ; x1; xγþ1; xγþ2; xγþ2;…; xγþ2Þ; ð19Þ

respectively, where β and γ are some fixed integers.
However, an important difference to the case n ¼ 3 is that,
although solving the problem analytically is still possible,
writing down the optimal values is no longer straightfor-
ward. This is because the roots of higher-order polynomials
are much more complicated [38]. In Appendix C in the
Supplemental Material [30], we describe the general
procedure for solving the optimization problems in
Eq. (11). We also provide the computer code for n ¼
3; 4; 5 [30].
Examples.—Before discussing the examples, we show

how to quantify the violation of the pn-PPT and pn-OPPT
criteria. Analogous to the PPT criterion, we use the
negativity [39,40] to quantify the violation of pn-PPT
criteria. For n ¼ 3; 5; 7;…, we define

N nðρABÞ ¼
1

2
kBbðn−1Þ=2cðpÞk −

1

2
Tr½Bbðn−1Þ=2cðpÞ�; ð20Þ

i.e., the absolute sum of the negative eigenvalues of
Bbðn−1Þ=2c, where k · k denotes the trace norm. For the
pn-OPPT, we quantify the violation via

OnðρABÞ ¼ max fpmin
n − pn; pn − pmax

n ; 0g ð21Þ

for n ¼ 3; 4; 5;…. Remarkably, although both the pn-PPT
and pn-OPPT criteria can be viewed as hierarchical
entanglement criteria based on PT moments, there are
two important distinctions. First, the pn-PPT criteria only
work when n is odd, while the pn-OPPT criteria work
whenever n ≥ 3. Second, N nðρABÞ in Eq. (20) is well-
defined for any ρAB, while OnðρABÞ only exists when
On−1ðρABÞ ¼ 0, i.e., the optimization problems in Eq. (11)
are feasible.
To show the power of our criteria, we first investigate the

entanglement of randomly generated states. Here,
we sample the random D ×D states [dimðHAÞ ¼
dimðHBÞ ¼ D] with the Hilbert-Schmidt distribution
[41]. In Table I, we show the results when D is small
(D ¼ 2, 3, 4, 5, 6); additional results when D is large
(D ¼ 10, 20, 30, 40) are shown in Appendix D in the
Supplemental Material [30].
From the sampling, one can see a few remarkable

advantages of our criteria. First, most of the entangled
states can already be detected by the p5-PPT or the p4-
OPPT criterion. Second, although the p3-PPT and p3-
OPPT criteria are both based on the PT moments p2 and p3,
the optimal criterion p3-OPPT is significantly stronger than
the p3-PPT criterion in Ref. [20]. Furthermore, the optimal
criterion not only detects more entangled states but also the
violation is more significant, as shown in Appendix D in
the Supplemental Material [30]. Third, compared with the
usual entanglement witness method, our criteria have the
advantage that neither common reference frames nor prior
information is needed for the entanglement detection
[13,20]. Also, compared with the widely used fidelity-
based entanglement witness, many more entangled states
can be detected by comparing Table I with the results in
Refs. [42,43].
For the second example, we consider the one-dimen-

sional quantum Ising model in a transverse magnetic field,

TABLE I. Fraction of (small) D ×D states in the Hilbert-Schmidt distribution (1 × 106 samples) that can be detected with various
criteria. Here, NPT denotes the states violating the PPT criterion, NPTn (NPT3, NPT5) denotes the states violating the pn-PPTcriterion
in Eq. (8), and ONPTn (ONPT3, ONPT4, ONPT5) denotes the states violating the pn-OPPT criterion.

D NPT NPT3 ONPT3 ONPT4 NPT5 ONPT5

2 75.68% 25.53% 39.97% 75.68% 64.78% 75.68%
3 99.99% 25.32% 39.46% 91.63% 97.51% 98.97%
4 100% 23.29% 33.69% 98.68% 100.00% 100.00%
5 100% 21.80% 34.54% 99.95% 100% 100%
6 100% 20.93% 31.20% 100.00% 100% 100%
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H ¼ −J
�XN

i¼1

σziσ
z
iþ1 þ g

XN
i¼1

σxi

�
; ð22Þ

with the periodic boundary condition (σzNþ1 ¼ σz1), where J
corresponds to the coupling strength and g is the relative
strength of the external magnetic field. We study the
entanglement of the thermal equilibrium (Gibbs) state
ρðβÞ ¼ e−βH=ZðβÞ, where ZðβÞ ¼ Tr½e−βH� is the partition
function and β is the inverse temperature. The strength of
different PT-moment-based entanglement criteria for this
model is illustrated in Fig. 1.
Finally, we would like to note that the example in Fig. 1

also illustrates an important challenge for testing the PT-
moment-based criteria. That is, the violations can become
very small for higher-order criteria. Indeed, this is not
specific to the PT moments but also the other moment-
based methods. The fundamental reason is that the (PT)
moments decrease exponentially as n goes large. This can
be easily seen from the relation that jTrðXnÞj ≤
½TrðX2Þ�ðn=2Þ for any Hermitian operator X and n ≥ 2

[44]. In the PT-moment problem, Tr½ðρTA
ABÞ2� ¼ Tr½ρ2AB�,

which is the purity of the state. Hence, the violations in
Fig. 1 become small (compared to the PPT criterion) if the
temperature increases. Still, it should be remembered that a
small violation is, in general, not connected to a statistically
insignificant violation [46–48]; see Appendix E in the
Supplemental Material [30] for more discussions. This
difference also means that the numerical values of the
violations in Eqs. (20), (21) should not be directly
compared with each other.
Conclusion.—We have developed two systematic meth-

ods for detecting entanglement from PT moments. The first
method is based on the classical moment problems, whose
lowest order gives the p3-PPT criterion in Ref. [20] and
higher orders provide strictly stronger criteria. The second
method is the optimal method, which gives necessary and

sufficient conditions for entanglement detection based on
PT moments. We demonstrated that our criteria are sig-
nificantly better than existing criteria for physically relevant
states.
For future research, there are several possible directions.

First, one may extend the presented theory by taking,
instead of the transposition, other positive but not com-
pletely positive maps. This may allow one to characterize
entanglement in quantum states that escape the detection by
the PPT criterion. Second, for the analysis of current
experiments, it would be highly desirable to extend the
presented theory to the characterization of multiparticle
entanglement. Indeed, potential generalizations of the PPT
criterion for the multiparticle case exist [49] but how to
evaluate this using randomized measurements remains an
open question.
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Note added.—While finishing this manuscript, we became
aware of a related work by A. Neven et al. [50].
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