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A central roadblock to analyzing quantum algorithms on quantum states is the lack of a comparable
input model for classical algorithms. Inspired by recent work of the author [E. Tang, STOC 2019.], we
introduce such a model, where we assume we can efficiently perform l2-norm samples of input data, a
natural analog to quantum algorithms that assume efficient state preparation of classical data. Though this
model produces less practical algorithms than the (stronger) standard model of classical computation, it
captures versions of many of the features and nuances of quantum linear algebra algorithms. With this
model, we describe classical analogs to Lloyd, Mohseni, and Rebentrost’s quantum algorithms for principal
component analysis [S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014).] and nearest-
centroid clustering [S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised
and unsupervised machine learning]. Since they are only polynomially slower, these algorithms suggest
that the exponential speedups of their quantum counterparts are simply an artifact of state preparation
assumptions.
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Introduction.—Quantum machine learning (QML) has
shown great promise toward yielding new exponential qua-
ntum speedups in machine learning ever since the pioneer-
ing linear systems algorithm of Harrow, Hassidim, and
Lloyd [1]. Since machine-learning (ML) routines often
push real-world limits of computing power, an exponential
improvement to algorithm speed would allow for ML
systems with vastly greater capabilities. While we have
found many fast QML subroutines for ML problems since
Harrow, Hassidim, and Lloyd [2–6], researchers have not
been able to prove that these subroutines can be used to
achieve an exponentially faster algorithm for a classical ML
problem, even in the strongest input and output models
[7,8]. A recent work of the author [9] suggests a surprising
reason why: even our best QML algorithms, with issues
with input and output models resolved, fail to achieve
exponential speedups. This previous work constructs a
classical algorithm matching, up to polynomial slowdown,
a corresponding quantum algorithm for recommendation
systems [10], which was previously believed to be one of
the best candidates for an exponential speedup in machine
learning [11]. In light of this result, we need to question our
intuitions and reconsider one of the guiding questions of the
field: when is quantum linear algebra exponentially faster
than classical linear algebra?
The main challenge in answering this question is not in

finding fast classical algorithms, as one might expect.
Rather, it is that most QML algorithms are incomparable
to classical algorithms since they take quantum states as
input and output quantum states: we do not even know an
analogous classical model of computation where we can

search for similar classical algorithms [7]. The quantum
recommendation system is unique in that it has a classical
input, a data structure implementing quantum random
access memory (QRAM), and classical output, a sample
from a vector in the computational basis, allowing for
rigorous comparisons to classical algorithms.
In our previous work, we suggest an idea for developing

classical analogs to QML algorithms beyond this excep-
tional case [9]:

When QML algorithms are compared to classical ML
algorithms in the context of finding speedups, any state
preparation assumptions in the QML model should be
matched with l2-norm sampling assumptions in the
classical ML model.

In this Letter, we implement this idea by introducing a new
input model, “sample and query access” (SQ access),
which is an l2-norm sampling assumption. We can get
SQ access to data under typical state preparation assump-
tions, so fast classical algorithms in this model are strong
barriers to their QML counterparts admitting exponential
speedups. To support our contention that the resulting
model is the right notion to consider, we use it to dequantize
two seminal and well-known QML algorithms: quantum
principal component analysis [12] and quantum supervised
clustering [13]. That is, we give classical algorithms that,
with classical SQ access assumptions replacing quantum
state preparation assumptions, match the bounds and run-
time of the corresponding quantum algorithms up to
polynomial slowdown. Surprisingly, we do so using only
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the classical toolkit originally applied to the recommenda-
tion systems problem, demonstrating the power of this
model in analyzing QML algorithms.
From this work, we conclude that the exponential

speedups of the quantum algorithms that we consider arise
from strong input assumptions rather than from the “quan-
tumness” of the algorithms since the speedups vanish when
classical algorithms are given analogous assumptions. In
other words, in a wide swath of settings, on classical data,
these algorithms do not give exponential speedups. QML
algorithms can still be useful for quantum data (say, states
generated from a quantum system), though a priori it is not
clear if they give a speedup in that case since the analogous
“classical algorithm on quantum data” is not well-defined.
Our dequantized algorithms in the SQ access model

provide the first formal evidence supporting the crucial
concern about strong input and output assumptions in
QML. Based on these results, we recommend exercising
care when analyzing quantum linear algebra algorithms
since some algorithms with polylogarithmic run-times only
admit polynomial speedups. QML problems that are
bounded-error quantum polynomial time complete (BQP-
complete), such as sparse matrix inversion [1] and quantum
Boltzmann machine training [14], still cannot be dequan-
tized in full unless the equality of complexity classes
BQP ¼ BPP holds. However, many QML problems that
are not BQP-complete have strong input model assump-
tions (like QRAM) and low-rank-type assumptions (which
makes sense for machine learning, where high-dimensional
data often exhibits low-dimensional trends). This regime is
precisely when the classical approaches we outline here
work, so such problems are highly susceptible to dequan-
tization. We believe continuing to explore the capabilities
and limitations of this model is a fruitful direction for QML
research.
Notation:—½n� ≔ f1;…; ng. Consider a vector

x ∈ Cn and matrix A ∈ Cm×n. Ai;� and A�;i will refer
to A’s ith row and column, respectively. kxk, kAkF,
and kAk will refer to l2, Frobenius, and spectral
norm, respectively. jxi ≔ ð1=kxkÞPn

i¼1 xijii and jAi≔
ð1=kAkFÞ

P
m
i¼1kAi;�kjiijAi;�i (where, by the previous defi-

nition, jAi;�i¼ð1=kAi;�kÞ
P

n
j¼1Ai;jjji). A¼

Pminm;n
i¼1 σiuiv

†
i

is A’s singular value decomposition, where ui ∈ Cm,
vi ∈ Cn, and σi ∈ R, fuig and fvig are sets of ortho-
normal vectors, and σ1 ≥ σ2 ≥ � � � ≥ σminm;n ≥ 0. Aσ ≔P

σi≥σ σiuiv
†
i and Ak ≔

P
k
i¼1 σiuiv

†
i denote low-rank

approximations to A. We assume basic arithmetic oper-
ations take unit time, and ÕðfÞ ≔ Oðf log fÞ.
Dequantization model.—A typicalQMLalgorithmworks

in the model where state preparation of input is efficient and
a quantum state is output for measurement and postprocess-
ing. (Here, we assume an ideal and fault-tolerant quantum
computer.) In particular, given a data point x ∈ Cn as input,
we assume we can prepare copies of jxi. For m input data

points as a matrix A ∈ Cm×n, we additionally assume
efficient preparation of jAi to preserve relative scale. We
wish to compare QML and classicalML on classical data, so
state preparation usually requires access to this data and its
normalization factors. This informs the classical inputmodel
for our quantum-inspired algorithms,wherewe assume such
access, and instead of preparing states, we can prepare
measurements of these states.
Definition:—We have OðTÞ-time sample and query

access to x ∈ Cn [notated SQðxÞ] if, in OðTÞ time, we
can query an index i ∈ ½n� for its entry xi, produce an
independent measurement of jxi in the computational basis,
and query for kxk. If we can only query for an estimate of
the squared norm x̄ ∈ ð1� νÞkxk2, then we denote this by
SQνðxÞ. For A ∈ Cm×n, sample and query access to A
[notated SQðAÞ] is SQðA1;�;…; An;�Þ along with SQðÃÞ,
where Ã is the vector of row norms, i.e., Ãi ≔ kAi;�k.
SQ access will be our classical analog to quantum state

preparation. As we noted previously [9], we should be able
to assume that classical analogs can efficiently measure
input states: QML algorithms should not rely on fast state
preparation as the “source” of an exponential speedup. The
algorithm itself should create the speedup.
For typical instantiations of state preparation oracles on

classical input, we can get efficient SQ access to input. For
example, given input in QRAM [15], a strong proposed
generalization of classical RAM that supports state prepa-
ration, we can get log-dimension-time SQ access to input
[[9], Proposition 3.2]. Similarly, sparse and close-to-uni-
form vectors can be prepared efficiently and correspond-
ingly admit efficient SQ access [16]. So, in usual QML
settings, SQ assumptions are easier to satisfy than state
preparation assumptions.
This leads to a model based on SQ access that we codify

with the informal definition of “dequantization.”We say we
“dequantize” a quantum protocol S∶OðTÞ-time state prepa-
ration of jϕ1i;…; jϕci → jψi if we describe a classical
algorithm of the form CS∶OðTÞ-time SQðϕ1;…;ϕcÞ →
SQνðψÞ with similar guarantees to S up to polynomial
slowdown. This is the sense in which we dequantized the
quantum recommendation system in prior work [10]. In the
rest of this Letter, we will dequantize two quantum
algorithms, giving detailed sketches of the classical algo-
rithms and leaving proofs of correctness to the
Supplemental Material [16]. These algorithms are appli-
cations of three protocols from our previous work [9]
rephrased in our access model.
Nearest-centroid classification.—Lloyd, Mohseni, and

Rebentrost’s quantum algorithm for clustering estimates
the distance of a data point to the centroid of a cluster of
points [13]. The paper claims [28] that this quantum
algorithm gives an exponential speedup over classical
algorithms. We dequantize Lloyd et al.’s quantum super-
vised clustering algorithm [13] with only quadratic slow-
down. Though classical algorithms by Aaronson [7] and
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Wiebe et al. [[29], Sec. 7] dequantize this algorithm for
close-to-uniform and sparse input data, respectively, we are
the first to give a general classical algorithm for this
problem.
Problem 1 (Centroid distance):—Suppose we are given

access to V ∈ Cn×d and u ∈ Cd. Estimate ku − ð1=nÞ1⃗Vk2
to ε additive error with probability ≥ 1 − δ.
Note that we are treating vectors as rows, with 1⃗ the

vector of ones. Let ū ≔ ðu=kukÞ and let V̄ be V, normal-
ized so all rows have unit norm. Both classical and quantum
algorithms argue about M ∈ Rðnþ1Þ×d and w ∈ Rnþ1

instead of u and V, where

M ≔

"
ū
1ffiffi
n

p V̄

#
and w ≔

h
kuk − 1ffiffi

n
p Ṽ

i
:

Because wM¼u−½ð1=nÞ1⃗V�, we wish to estimate kwMk2¼
wMM†w†. Let Z ≔ kwk2 ¼ kuk2 þ ð1=nÞkVk2F be an
“average norm” parameter appearing in our algorithms.
Theorem 1 (Quantum nearest centroid): Suppose that,

in OðTÞ time, we can (1) determine kuk and kVkF or (2)
prepare a state jui; jV1i;…; jVni, or jṼi. Then we can solve
Problem 1 in O(TðZ=εÞ logð1=δÞ) time.
The quantum algorithm proceeds by constructing the

states jMi and jwi and then performing a swap test to get
jwMi. The swap test succeeds with probability
ð1=ZÞwMM†w†, so we can run amplitude amplification
to get an estimate up to ε error with O(ð1=εÞ logð1=δÞ)
overhead.
Dequantizing this algorithm is simply a matter of

dequantizing the swap test, which is done in
Algorithm 1. Here, QðyÞ is “query access” to y, which
supports querying y’s entries inOð1Þ time but not querying
samples or norms.

From a simple analysis of the random variable zi’s, we
get the following result.
Proposition 1:—For x; y ∈ Cn, given SQνðxÞ and QðyÞ,

Algorithm 1 outputs an estimate of hxjyi to ðεþ νþ
ενÞkxkkyk error with probability ≥ 1 − δ in time
O(ðT=ε2Þ logð1=δÞ).
For this protocol, quantum algorithms can achieve a

quadratic speedup via amplitude estimation (but no more,
by unstructured search lower bounds [30]). To apply this to

nearest centroid, we write wMM†w† as an inner product of
tensors hajbi, where

a ≔
Xd
i¼1

Xnþ1

j¼1

Xnþ1

k¼1

MjikMk;�kjiijjijki ¼ M ⊗ M̃;

b ≔
Xd
i¼1

Xnþ1

j¼1

Xnþ1

k¼1

w†
jwkMki

kMk;�k
jiijjijki:

Then, we show we have SQ access to one of the tensors (a).
With this, we see that the quadratic speedup from amplitude
amplification is the only speedup that quantum nearest
centroid achieves.
Theorem 2 (Classical nearest centroid): Suppose we

are given OðTÞ-time SQðVÞ ∈ Cn×d and SQðuÞ ∈ Cd.
Then one can output a solution to Problem 1 in
O(TðZ2=ε2Þ logð1=δÞ) time.
Principal component analysis.—We now dequantize

Lloyd, Mohseni, and Rebentrost’s quantum principal com-
ponent analysis (QPCA) algorithm [12], an influential early
example of QML [31,32]. While the paper describes a more
general strategy for Hamiltonian simulation of density
matrices, their central claim is an exponential speedup in
an immediate application: producing quantum states cor-
responding to the top principal components of a low-rank
dataset [12].
The setup for the problem is as follows: suppose we are

given a matrix A ∈ Rn×d whose rows correspond to data in
a dataset. We will find the principal eigenvectors and
eigenvalues of A†A; when A is a mean zero dataset, this
corresponds to the top principal components.
Problem 2 (Principal component analysis):—Suppose

we are given access to A ∈ Cn×d with singular values σi and
right singular vectors vi. Further suppose we are given σ, k,
and η with the guarantee that, for all i ∈ ½k�, σi ≥ σ and
σ2i − σ2iþ1 ≥ ηkAk2F. With probability ≥ 1 − δ, output esti-
mates σ̂21;…; σ̂2k and v̂1;…; v̂k satisfying jσ̂2i − σ2i j ≤
εσkAk2F and kv̂i − vik ≤ εv for all i ∈ ½k�.
Denote kAk2F=σ2 by K. Lloyd et al. get the following.
Theorem 3: Given kAkF and the ability to prepare

copies of jAi inOðTÞ time, a quantum algorithm can output
the desired estimates for Problem 2 σ̂21;…; σ̂2k and
jv̂1i;…; jv̂ki in ÕðTKminðεσ; δÞ−3Þ time.
Later results [[10,33], Theorems 5.2, 27 ] improve the

run-time here to ÕðTKε−1σ polylogðnd=δÞÞ when A is given
in QRAM. We will compare to the original QPCA result.
To dequantize QPCA, we use a similar high-level idea to

that of the quantum-inspired recommendation system [9].
We begin by using a low-rank approximation algorithm,
Algorithm 2, to output a description of approximate top
singular values and vectors.
Algorithm 2 finds the large singular vectors of A by

reducing its dimension down to W, whose singular value
decomposition we can compute quickly. Then, S, Û, Σ̂

Algorithm 1. Inner product estimation.

Input: OðTÞ-time SQνðxÞ ∈ Cn, QðyÞ ∈ Cn

Output: an estimate of hxjyi
1: Let s ¼ 54ð1=ε2Þ logð2=δÞ.
2: Collect measurements i1;…; is from jxi.
3: Let zj ¼ x†ijyijðkxk2=jxij j2Þ for all j ∈ ½s�. ▹E½zj� ¼ hxjyi
4: Separate the zj’s into 6 logð2=δÞ buckets of size 9=ε2,

and take the mean of each bucket.
5: Output the (component-wise) median of the means.

PHYSICAL REVIEW LETTERS 127, 060503 (2021)

060503-3



define approximate large singular vectors V̂ ≔ S†ÛΣ̂−1.
The full set of guarantees on the output of Algorithm 2 are
in the Supplemental Material [16], but in brief, for the right
setting of parameters, the columns of V̂ and the diagonal
entries of Σ̂ satisfy the desired constraints for our v̂i’s and
σ̂i’s in Problem 2. The σ̂i’s are output explicitly, but the v̂i’s
are described implicitly: v̂i ¼ S†Û�;i=σ̂i. We have OðTÞ-
time SQðSÞ because all rows are normalized, and rows of S
are simply rows of A. Thus, sampling from S̃ is a uniform
sample from ½q� and sampling from Si;� is sampling from a
row of A. Û�;i is an explicit vector, so in essence, we need
SQ access to a linear combination of vectors, each of which
we have SQ access to.

Algorithm 3 does exactly this: it uses rejection sampling
to dequantize the swap test over a subset of qubits [getting
jVwi via hVjðjwi ⊗ IÞ].

Proposition 2:—For V ∈ Cn×k, w ∈ Ck, given SQðV†Þ
and QðwÞ, Algorithm 3 simulates SQνðVwÞ where the time

to query is OðTkÞ, sample is O(Tk2CðV;wÞ logð1=δÞ),
and query norm is O(Tk2CðV;wÞð1=ν2Þlogð1=δÞ). Here, δ
is the desired failure probability and CðV;wÞ¼PkwiV�;ik2=kVwk2.
In general, CðV;wÞ may be arbitrarily large, but in this

application it is OðKÞ. Quantum algorithms achieve a
speedup here when k is large and CðV;wÞ is small, such
as when V is a high-dimensional unitary, confirming our
intuition that unitary operations are hard to simulate
classically.
Altogether, we get our desired result.
Theorem 4: Given OðTÞ-time SQðAÞ ∈ Cn×d,

with εσ; εv; δ ∈ ð0; 0.01Þ, there is an algorithm that
output the desired estimates for Problem 2 σ̂1;…; σ̂k
and O½TðK9=ε4Þlog3ðk=δÞ�-time SQ0.01ðv̂1;…; v̂kÞ in
O(ðK12=ε6Þlog3ðk=δÞ þ TðK8=ε4Þlog2ðk=δÞ) time, where
ε ¼ minð0.1εσK1.5; ε2vη;

1
4
K−1=2Þ.

Under the nondegeneracy condition η ≤ 1
4
K−1=2, this

run-time is Õ(TðK12=ε6σε12v Þlog3ð1=δÞ). While the classical
run-time depends on εv, note that a quantum algorithm
must also incur this error term to learn about vi from copies
of jvii. For example, computing entries or expectations of
observables of vi given copies of jvii requires polyð1=εvÞ
or polyðnÞ time.
Discussion.—We have introduced the SQ access

assumption as a classical analog to the QML state prepa-
ration assumption and demonstrated two examples where,
in this classical model, we can dequantize QML algorithms
with ease. We now discuss the implications of this work
with respect to the related literature.
A natural question is of this work’s relation to classical

literature: does this work improve on classical algorithms
for linear algebra in any regime? The answer may be no for
a subtle but fundamental reason: recall that our main idea is
to introduce an input model strong enough to give classical
versions of QML while being weak enough to extend to
settings like QRAM, where classical computers can only
access the input in very limited ways. In particular, the SQ
access model that we study is weaker than the typical input
model used for classical sketching algorithms [36–38].
OðTÞ-time algorithms in the quantum-inspired access
model are Õðnnzþ TÞ-time algorithms in the usual
RAMmodel (where “nnz” is the number of nonzero entries
of the input), but not vice versa: typical sketching algo-
rithms can exploit better data structures provided they only
take OðnnzÞ time (e.g., oblivious sketches), whereas the
quantum-inspired model can only use the QRAM data
structure. The crucial insight of this work is that some
algorithms (such as Algorithm 2 of Frieze et al. [35])
generalize to the weaker quantum-inspired model. Our
algorithms give exponential speedups in the quantum-
inspired setting, but since the model is weaker, one might
expect that they perform worse in typical settings for
classical computation (see [34]). These model consider-
ations also explain why we use Frieze et al. [35]: to our

Algorithm 2. Low-rank approximation [35].

Input: OðTÞ-time SQðAÞ ∈ Rm×n, σ, ε, δ
Output: SQðSÞ ∈ Cl×n, QðÛÞ ∈ Cq×l, QðΣ̂Þ ∈ Cl×l

1: Set K ¼ kAk2F=σ2 and q ¼ Θ(ðK4=ε2Þ logð1=δÞ).
2: Sample rows i1;…; iq from Ã and define S ∈ Rq×n

such that Sr;� ≔ Air;�ðkAkF=
ffiffiffi
q

p kAir;�kÞ.
3: Sample columns j1;…; jq from F , where F denotes

the distribution given by sampling a uniform r ∼ ½q�, then
sampling c from Sr.

4: Let W ∈ Cq×q be the normalized submatrix
W�;c ≔ (S�;jc=qF ðjcÞ).

5: Compute the left singular vectors of W ûð1Þ;…; ûðlÞ

that correspond to singular values σ̂ð1Þ;…; σ̂ðlÞ
larger than σ.

6: Output SQðSÞ, Û ∈ Rq×l the matrix with columns
ûðiÞ, and Σ̂ ∈ Rl×l the diagonal matrix with entries σ̂ðiÞ.

Algorithm 3. Matrix-vector SQ access.

Input: OðTÞ-time SQðV†Þ ∈ Ck×n, QðwÞ ∈ Ck

Output: SQνðVwÞ
1: function REJECTIONSAMPLE(SQðV†Þ; QðwÞ)
2: Sample i ∈ ½k� proportional to jwij2kV�;ik2 by

manually calculating all k probabilities.
3: Sample s ∈ ½n� from V�;i using SQðV†Þ.
4: Compute rs ¼ ðVwÞ2s=ðk

P
k
j¼1ðVsjwjÞ2Þ (after

querying for wj and Vsj for all j ∈ ½k�).
5: Output s with probability rs (success); otherwise,

output ∅ (failure).
6: end function
7: QUERY: output ðVwÞs.
8: SAMPLE: run REJECTIONSAMPLE until success (outputting s)

or kCðV; wÞ logð1=δÞ failures (outputting ∅).
9: NORM(ν): Let p be the fraction of successes from

running REJECTIONSAMPLE ðk=ν2ÞCðV;wÞ logð1=δÞ times;
output pk

P
k
i¼1 jwij2kV�;ik2.

PHYSICAL REVIEW LETTERS 127, 060503 (2021)

060503-4



knowledge, this algorithm is the only one from the
classical literature that naturally generalizes to the SQ
input model.
The closest analog to these results and techniques is a

work by Van den Nest on probabilistic quantum simulation
[39], which describes a notion of “computationally trac-
table” states that corresponds to our notion of SQ access for
vectors. With this notion, the author describes special types
of circuits on computationally tractable states where weak
simulation is possible, using variants of Propositions 1 and
2. However, Van den Nest’s work does not have a version of
Algorithm 2, since this technique only runs quickly on low-
rank matrices, making it ineffective on generic quantum
circuits. We exploit this low-rank structure for efficient
quantum simulation of a small but practically relevant class
of circuits: quantum linear algebra on data with a low-rank
structure. So, our techniques used for supervised clustering
are within the scope of Van den Nest’s work, whereas our
techniques for principal component analysis are new to this
line of work.
These techniques are not new to quantum simulation in

general. Others have considered applying randomized
numerical linear algebra to quantum simulation [40] but
have not made the connection toward dequantizing quan-
tum algorithms, especially in large generality. Low-rank
approximation is crucial for tensor network simulations of
quantum systems [41,42], where simulation can be done
efficiently provided the input is, say, a matrix product state
with a low tensor rank. In this context, low-rank approxi-
mation is often performed exactly and only on a subset of
the space, instead of approximately done on the full state,
as is done here. This reflects the fact that tensor network
algorithms assume that the system is reasonably approxi-
mated by a tensor network and aims to work well in
practice, whereas our “dequantized” algorithms must work
on a broader class of input and prioritizes provable
guarantees in an abstract computational model over real-
world performance. Nevertheless, some of these dequan-
tized algorithms might be able to be matched by tensor
network contraction techniques, when the input has a low
tensor rank. See the Supplemental Material for further
discussion of this comparison [16].
Since this work, numerous follow-ups have cemented the

significance of the SQ access model introduced here [43–
46]. In particular, a recent work [45] essentially dequantizes
the singular value transformation framework of Gilyen
et al. [47] when input is given in QRAM. These works use
fundamentally the same techniques to dequantize a wide
swath of low-rank quantum machine learning—an exciting
step forward in understanding QML.
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