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Ergodicity breaking and slow relaxation are intriguing aspects of nonequilibrium dynamics both in
classical and quantum settings. These phenomena are typically associated with phase transitions, e.g., the
emergence of metastable regimes near a first-order transition or scaling dynamics in the vicinity of critical
points. Despite being of fundamental interest the associated divergent timescales are a hindrance when
trying to explore steady-state properties. Here we show that the relaxation dynamics of Markovian open
quantum systems can be accelerated exponentially by devising an optimal unitary transformation that is
applied to the quantum system immediately before the actual dynamics. This initial “rotation” is engineered
in such a way that the state of the quantum system no longer excites the slowest decaying dynamical mode.
We illustrate our idea—which is inspired by the so-called Mpemba effect, i.e., water freezing faster when
initially heated up—by showing how to achieve an exponential speeding-up in the convergence to
stationarity in Dicke models, and how to avoid metastable regimes in an all-to-all interacting spin system.
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Introduction.—A strong focus of current research in
many-body quantum physics is on understanding (non-
equilibrium) phases of matter and transitions between
them. Often associated with that are slow relaxation and
divergent time correlations [1–7], which typically signal the
onset of critical behavior [8–13] or the appearance of
metastable dynamical regimes [14,15] near first-order
phase transitions. In certain instances, the concomitant
very long relaxation timescales become impractical or even
detrimental when a fast approach to stationarity is desired.
This is certainly the case when one is interested in studying
steady-state properties [16] or, for instance, when the
stationary state encodes the result of some computation
[17–19]. It may also find applications in the optimization of
the output of quantum engines [20–23]. In physical terms,
the characteristic time needed for an open dissipative
quantum system to approach stationarity is given by the
lifetime τ of the slowest decaying excitation mode. A
random initial pure state jψi [see Fig. 1(a)] is typically out
of equilibrium and excites all dynamical decaying modes,
including the slowest one. As such, it will ultimately
converge to stationarity in a time proportional to τ.
In this Letter, we show that, if the slowest decaying mode

is unique, one can always find an appropriate unitary
operation which, once applied to the initial state jψi, allows
the open system to reach stationary behavior at a

significantly faster pace. The idea, which is sketched in
Fig. 1(b), is that the unitary operation U removes the
excitation of the slowest decaying mode from the initial

FIG. 1. Mpemba effect in a Markovian open quantum system.
(a) We consider a quantum system, initially prepared in some
pure state jψi and subject to Markovian open quantum dynamics.
Generically, the timescale for the approach to stationarity is
contained in the dynamical generator L and is related to the
slowest decaying excitation mode. Before the time evolution
starts, we apply a unitary operation U to the quantum state jψi,
which deexcites such a slow mode. (b) After applying the unitary
operation the system dynamics is not affected by long-lived
excitation and approaches the stationary state in a “more direct”
way. (c) Sketch of the slow relaxation (blue line), contrasted with
the accelerated one emerging after the applying the unitary (red
line). The y axis is in logarithmic scale.
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state jψi, which achieves an exponential speeding-up [see
Fig. 1(c)]. The basic mechanism underpinning our finding
is reminiscent of the so-called Mpemba effect [24], which
refers to the phenomenon that a hotter liquid cools at a
faster rate than a colder one. Often, this and related
phenomena [25–33] indeed admit a transparent physical
explanation [25,27,29,32]: the state of the hotter system
overlaps less with the slowest decaying modes of the
cooling (dissipative) dynamics—a hypothesis which has
been confirmed experimentally in a trapped colloid particle
[30]. In certain instances, however, such a clear separation
of timescales may not occur. Still, an anomalous relaxation
toward equilibrium can be investigated by monitoring the
evolution of thermodynamic quantities representing inter-
nal degrees of freedom, such as kinetic and rotational
energy, kurtosis, or correlation length [26,28,31,33]. Here,
we explore the analog of the Mpemba effect in Markovian
open quantum systems. Using paradigmatic many-body
systems of both theoretical and experimental interest we
demonstrate the possibility of speeding up the approach to
stationarity and to avoid long prestationary metastable
regimes.
Markovian open quantum dynamics.—We first briefly

discuss the fundamental elements of open quantum systems
subject to Markovian dynamics [34–42]. The evolution
of the density matrix ρt, describing the state of the quantum
system, is governed by the quantum master equation
_ρt ¼ L½ρt� [34,36,37], where L is the Lindblad map

L½X� ¼ −i½H;X� þ
XNJ

μ¼1

�
LμXL

†
μ −

1

2
fL†

μLμ; Xg
�
: ð1Þ

Here,H ¼ H† is the Hamiltonian of the system, and the NJ
jump operators Lμ describe the dissipative effects due
to the presence of an environment. The Lindblad map
L preserves the trace fTrðL½X�Þ ¼ 0g and Hermiticity
fðL½X�Þ† ¼ L½X†�; ∀ Xg and generates completely pos-
itive (physical) dynamics of the quantum state ρt.
The formal solution to the quantum master equation is

given by ρt ¼ etL½ρ0�, where the exponential of the map L
must be interpreted as the power series. Assuming the
generator to be diagonalizable, one can find the right
eigenmatrices rk such that

L½rk� ¼ λkrk: ð2Þ

The complex numbers λk are the eigenvalues of the
Lindblad map. Note that, due to the Hermiticity preserva-
tion ofL, if λk is a complex eigenvalue, then λ�k must also be
an eigenvalue. For the same reason, one can also show that
if λk is real, then rk can be chosen to be Hermitian.
Associated with the map defined in Eq. (1), there is a dual
map, also called the adjoint Lindblad map, which imple-
ments the evolution of observables:

Lþ½O� ¼ i½H;O� þ
XNJ

μ¼1

�
L†
μOLμ −

1

2
fO;L†

μLμg
�
:

This dual map Lþ is diagonalized by the left eigen-
matrices lk:

Lþ½lk� ¼ λklk: ð3Þ

The matrices lk are in principle different from the matrices
rk in Eq. (2). However, lk and rk still form a basis for the
space of matrices and can always be defined with the
property TrðlkrhÞ ¼ δkh.
Since the dynamics generated by L are completely

positive, the eigenvalues of the Lindblad map all have a
nonpositive real part, ReðλkÞ ≤ 0. Furthermore, trace pre-
servation enforces that at least one eigenvalue is zero,
λ1 ¼ 0. If such an eigenvalue is nondegenerate—we will
work under this assumption—the (asymptotic) stationary
state of the open quantum system,

ρSS ¼ lim
t→∞

ρt; ð4Þ

is unique and given by the right eigenmatrix r1. Since the
left eigenmatrix associated with λ1 is the identity l1 ¼ 1,
one has Trðr1Þ ¼ 1. Finally, the matrix r1 is guaranteed to
be positive due to the complete positivity of etL.
The spectral decomposition of L allows us to write the

dynamics of any initial density matrix as

etL½ρ0� ¼ r1 þ
Xd2

k¼2

etλkTrðlkρ0Þrk; ð5Þ

where d is the dimension of the Hilbert space of the system.
This decomposition shows that the matrices rk are nothing
but the excitation modes of the system, each one charac-
terized by its decay rate jReðλkÞj. For long times, the
relevant terms are those related to the λk with the smallest
real part in modulus. We order the eigenvalues λk in such a
way that jReðλ2Þj ≤ jReðλ3Þj ≤ … ≤ jReðλd2Þj, and we
further assume that the eigenvalue λ2 is real and unique.
In this case, the timescale for relaxation is given by

τ ¼ 1

jλ2j
; ð6Þ

and r2 is in fact the slowest decaying excitation mode of the
Markovian open quantum dynamics.
Mpemba effect.—A generic initial state will overlap with

all decaying modes of Lindblad dynamics, and thus, in
particular, also with the slowest one. As such, the approach
to the stationary state will take place in a time which is of
the order of the relaxation time (6). However, looking at
Eq. (5), one sees that this timescale becomes completely
irrelevant for the dynamics if Trðl2ρ0Þ ¼ 0. In such a case,
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the state would relax at a faster rate with timescale
1=jReðλ3Þj, which implies an exponential speeding-up of
the convergence to stationarity. In what follows, we show
how such acceleration may always be achieved when
starting from an initial pure state ρ0 ¼ jψihψ j by perform-
ing a unitary rotation to the state before the actual time
evolution takes place. This is in spirit similar to the
Mpemba effect, where an initial thermal state is first heated
up before the cooling dynamics is started.
Given an initial pure state ρ0 ¼ jψihψ j, there always

exists a unitary U—which depends on the state—such
that

Trðl2Uρ0U†Þ ¼ 0; ð7Þ

if the slowest decaying mode is unique. This can be shown
as follows. First of all, we notice that the matrix l2 must be
Hermitian since we have assumed that λ2 is real and
nondegenerate. As such we can write it in its spectral form

l2 ¼
Xd

k¼1

αkjφkihφkj;

where hφkjφhi ¼ δkh. We then note that, since Trðl2r1Þ ¼
0 and r1 is positive, the set of eigenvalues αk must contain
at least two eigenvalues with the opposite sign or one equal
to zero. Introducing an auxiliary orthonormal basis
fjψkigdk¼1 for which jψi ¼ jψ1i (i.e., the initial state is a
basis state) and using the spectral decomposition we find
for the left-hand side of Eq. (7),

Trðl2Uρ0U†Þ ¼
Xd

k¼1

αkhψ1jU†jφkihφkjUjψ1i:

To simplify the construction of the unitary we divide it into
two parts, U ¼ U2U1. The first unitary is chosen such that
it maps the auxiliary basis jψki onto the basis jφki, which is
simply achieved by U1 ¼

P
k jφkihψkj, yielding

Trðl2Uρ0U†Þ ¼
X

k

αkhφ1jU†
2jφkihφkjU2jφ1i:

In the next step we construct U2 such that the right-hand
side of this expression becomes zero. Recalling that αk are
real numbers, two cases need to be considered: in case one
of the αk is zero, it is sufficient that U2 performs a
permutation of the basis fjφkig, mapping jφ1i onto the
eigenstate jφhi for which αh ¼ 0.
In the nontrivial case, in which l2 does not have a zero

eigenvalue, we can make a construction based on the
following observation: the eigenvalue α1 is a real number
and can be either positive or negative. Since l2 cannot
be a positive (or negative) eigenmatrix there must be an
eigenvalue αn such that signðαnÞ ¼ −signðα1Þ. We then

construct the Hermitean operator F¼jφ1ihφnjþjφnihφ1j,
which we use to define the unitary

UðsÞ ≔ e−isF ¼ 1þ ½cosðsÞ − 1�F2 − i sinðsÞF ð8Þ

where F2 ¼ jφ1ihφ1j þ jφnihφnj. Using this unitary oper-
ator we find that

cðsÞ ¼ Tr½l2UðsÞU1ρ0U
†
1U

†ðsÞ� ¼ α1cos2ðsÞ þ αnsin2ðsÞ:
ð9Þ

The quantity cðsÞ has the same sign as α1 for s ¼ 0, but on
the other hand, it has the same sign as αn for s ¼ π=2. In
particular, it vanishes for s̄ ¼ arctanð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijα1=αnj

p Þ, so that if
we take the unitary U ¼ Uðs̄ÞU1, Eq. (7) is satisfied. This
implies that the initial state is rotated into a state which no
longer excites the slowest decaying mode and will thus
relax, in general, with the timescale 1=jReðλ3Þj. In par-
ticular, this means that the approach to stationarity has been
exponentially accelerated by a factor jReðλ3Þj − jReðλ2Þj.
We have shown how to exploit the structure of the matrix

l2 to find a unitary U satisfying Eq. (7). If l2 has a zero
eigenvalue, e.g., if it is a “pure” (rank-1) matrix, one can
take a U which maps the initial state onto an eigenstate of
l2 associated with the eigenvalue zero. If l2 does not have
a zero eigenvalue, e.g., it is a nonsingular matrix, then one
can also exploit this property, together with the fact that a
nonsingular l2 cannot be a positive matrix, to find two
eigenvalues of l2 with the opposite sign. It is then sufficient
to take a unitary U mapping the initial state onto an
appropriate superposition of the eigenstates of l2 corre-
sponding to such eigenvalues. Finally, we note that finding
U does not necessarily require a full diagonalization of the
Lindblad generator. One could represent the generator L as
a matrix (see, e.g., Ref. [42]) and then use Krylov methods
just to obtain the eigenmatrix l2.
Application to the dissipative Dicke model.—As a first

application of our result, we consider the single-mode open
quantum Dicke model [43,44], which is paradigmatic for
the understanding of matter-light interactions and variants
of which have been realized in a number of experiments
[45–49]. It consists of an ensemble of two-level quantum
systems, each of which is described by the spin operators

sðkÞα ¼ 1
2
σðkÞα , with σα being the Pauli matrix α. The super-

script k indicates the spin to which the operator belongs.
These spin variables are coupled to a bosonic mode,
described by annihilation and creation operators a; a†.
In the Markovian regime, the open quantum dynamics of

the Dicke model are described by a generator of the form in
Eq. (1), with Hamiltonian [43]

H ¼ ΩSz þ ωa†aþ gffiffiffiffi
N

p ðaþ a†ÞSx
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and a single jump operator (NJ ¼ 1), L1 ¼
ffiffiffi
κ

p
a. This latter

contribution accounts for dissipative losses of excitations
for the bosonic mode. While our method can also be
applied to the above model, in order to simplify the
numerics we make an assumption. We consider the
adiabatic elimination of the bosonic mode. By performing
such an approximation (see Supplemental Material [50]),
the model is described solely in terms of spin degrees of
freedom. The dynamics is governed by a generator of the
form (1), with

H̃ ¼ ΩSz −
4ωg2

4ω2 þ κ2
S2x
N

; L̃1 ¼
2jgj ffiffiffi

κ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2 þ κ2

p Sxffiffiffiffi
N

p : ð10Þ

The above dynamics conserves the total angular momentum
S2 ¼ S2x þ S2y þ S2z . In the following we consider the largest
symmetry sector, for which S2 ¼ NðN þ 2Þ=4. This sub-
space is formed by the N þ 1 eigenstates of the Sz operator
Szjmi ¼mjmi with m ¼ −N=2;−N=2þ 1;…; N=2. As
initial state ρ0 we take a random pure state of the form jψi ∝P

mðam þ ibmÞjmi with am, bm being uniformly distributed
random numbers between 0 and 1. As shown in Fig. 2(a), the
overlap of a randomly selected state jψiwith the matrix l2 is
generically finite. However, by tuning UðsÞ we can find an
appropriate transformation U ¼ Uðs̄ÞU1 such that Eq. (7) is
satisfied. For the rotated state, the overlap with l2 is thus
zero, and we have an approach to stationarity governed by

the decay rate jReðλ3Þj. This is clearly shown in Fig. 2(b),
where we plot the Hilbert-Schmidt distance

Etðρ; ρSSÞ ¼ fTrðetL½ρ� − ρSSÞ2g1=2; ð11Þ

between the stationary state ρSS [cf. Eq. (4)] and the time-
dependent state starting from the state ρ0 as well as from
Uρ0U†, respectively.
Figure 2(b) shows that the rotation U may lead to a

time-evolved state which, for short times, is farther from
the stationary one. This is due to the fact that while U
removes the excitation of the slowest decaying mode, it
also modifies the excitation of the remaining ones.
Nonetheless, the approach to stationarity is always faster
since it is governed by the longest timescale, removed byU,
and not by the other excitation modes.
Application to an all-to-all interacting spin model.—As

a second application, we consider a spin model with
resemblance to laser-driven interacting ensembles of
Rydberg atoms [51–55]. This model allows us to demon-
strate how the Mpemba effect may be used to avoid long-
lasting metastable regimes [15,55,56]. From a theoretical
perspective, we model the N atoms as two-level systems,
exactly through the spin degrees of freedom introduced
previously. The state with spin pointing up in the z direction
corresponds to the atom being in the excited (Rydberg)
state, while the one pointing down refers to the ground state
of the atom. We consider Markovian dynamics such as the
one in Eq. (1) with

H ¼ ΩSx − ΔSz þ
V
N
S2z ; L1 ¼

ffiffiffiffiffiffiffiffiffi
κ=N

p
S−;

where S− ¼ Sx − iSy is a spin ladder operator. For this
model,Ω is the Rabi frequency,Δ is the laser detuning with
respect to the atomic transition frequency ωat while V
parametrizes here the strength of the all-to-all interactions.
For certain parameter regimes, e.g., the one considered

in Fig. 3, the model features a so-called metastable regime,
which emerges since jReðλ2Þj ≪ jReðλ3Þj. This means that,
over a long time window during which all other decaying
excitation modes have already relaxed, the mode related to
jReðλ2Þj is still relevant and keeps the system away from
stationarity. In such a scenario, the accelerated relaxation
achieved by applying the transformation U is even more
striking since the exponential gain is by a factor of
etðjReðλ3Þj−jReðλ2ÞjÞ. This can be appreciated from the curves
displayed in Fig. 3.
Discussion.—We have presented a general method to

control the timescale for the approach to stationarity in
Markovian open quantum systems, which can be consid-
ered a quantum variant of the so-called Mpemba effect. Our
results show how a dramatically accelerated approach to
stationarity can be achieved by applying a suitable unitary
transformation to the initial state, which removes its

FIG. 2. Dissipative Dicke model. (a) Overlap cðsÞ of a rotated
initial random state as a function of s. According to Eq. (9), cðsÞ
can interpolate between the eigenvalue α1 of l2—which we take
here to be the largest one—and the eigenvalue αn—which we
take to be the smallest. For the choice of parameters in this figure,
ω ¼ 1, g ¼ 1, κ ¼ 1 (all in units of Ω), and N ¼ 40 spins,
α1 ≈ 1.00, and αn ≈ −0.70. The optimal value for which the
overlap cðsÞ is zero is given by s̄ ¼ arctanð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijα1=αnj

p Þ ≈ 0.87.
The dashed line shows the overlap hψ jl2jψi of the initial random
state with the decaying mode r2. (b) Distance between the time-
evolved state and the stationary state ρSS. We compare the case of
an initial random state (black line) with the time evolution
ensuing after the application of the rotation U (see main text
for discussion). While in the original case, the approach to
stationarity is governed by the eigenvalue λ2, the application of U
leads to an exponentially faster convergence to the steady state
with the rate given by jReðλ3Þj.
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overlap with the slowest decaying mode. We note that the
unitary operation U introduced in this work is “optimal” in
the sense that it completely depopulates the slowest
decaying mode. However, as discussed for instance in
Ref. [27], in order to observe a Mpemba effect it would be
sufficient to engineer a rotation which simply diminishes
the excitation of such a slow mode. As shown in Figs. 2 and
3, this is also achieved by “nonoptimal” values of the
parameter s for which the transformed overlap is smaller, in
modulus, than the initial one. Considering specific many-
body quantum models, it would be interesting to explore
the possibility to reduce the population of the slowest
decaying mode by means of a less involved unitary, for
instance by implementing local and independent rotation of
the different system constituents. This would not lead to an
“optimal” speeding-up but would facilitate the implemen-
tation and observation of the Mpemba effect in actual
experiments with open quantum many-body systems.
Finally, the method presented here can also be applied to

accelerate the convergence to stationarity in periodic
(Floquet) dissipative quantum dynamics. In addition, even
if for non-Markovian dynamics a stationary state is, in
general, not well defined, our procedure may still be
applied to decrease the distance of the time-evolved
quantum state from a “target” state encoded in the
dissipative dynamics. We briefly discuss both applications
in the Supplemental Material [50].
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