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The no-hair theorem of general relativity states that isolated black holes are characterized by three
parameters: mass, spin, and charge. In this Letter we consider Kerr black holes endowed with highly
magnetized plasma-filled magnetospheres. Using general relativistic kinetic plasma and resistive
magnetohydrodynamics simulations, we show that a dipole magnetic field on the event horizon opens
into a split monopole and reconnects in a plasmoid-unstable current sheet. The no-hair theorem is satisfied,
in the sense that all components of the stress-energy tensor decay exponentially in time. We measure the
decay time of magnetic flux on the event horizon for plasmoid-dominated reconnection in collisionless and
collisional plasma. The reconnecting magnetosphere should be a powerful source of hard x-ray emission
when the magnetic field is strong.
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Black holes (BHs) formed by the collapse of a magnet-
ized progenitor are born with magnetic fields penetrating
the event horizon. There are several possible scenarios,
such as the spin-down of a rotationally supported hyper-
massive neutron star (NS) [1], or gravitational collapse
induced by the accretion of dark matter onto the NS core
[2]. BHs can also acquire magnetic flux later in life by
merging with a magnetized NS [3], or in accretion flows.
The fate of the magnetic flux (hair) on the event horizon
should be in accordance with the no-hair theorem of
general relativity.
The original no-hair conjecture [4] states that all sta-

tionary, asymptotically flat BH spacetimes should be com-
pletely described by the mass, angular momentum, and
electric charge. It was later proved formally that any field
with zero rest mass and arbitrary integer spin is radiated
away on a light-crossing timescale [5]. In particular, the
multipole component l of a magnetic field in vacuum decays
as t−ð2lþ2Þ. However, magnetized BHs are unlikely to exist in
vacuum. If a BH is formed by the collapse of a magnetized
star, plasma will inevitably exist in the magnetosphere
around the newly formed event horizon. Furthermore,
BHs can generate a self-regulated plasma supply through
electron-positron discharges near the event horizon [6–8].
The discharges can fill the magnetosphere with plasma in a
light-crossing time.
The presence of highly conducting plasma, and thus a

nonzero stress-energy tensor of matter, dramatically changes
the vacuum dynamics assumed in the classical no-hair
theorem. Essentially, in the limit of vanishing resistivity a
topological constraint is imposed which prevents the mag-
netic field from sliding off the event horizon [9]. The only

way for the BH to lose its magnetic field is for the field to
change its topology (reconnect). Fast magnetic reconnection
occurs through the tearing instability [10]. A chain of
plasmoids (magnetic loops containing plasma) forms along
the reconnection layer which are ejected at relativistic
velocities. For highly magnetized collisionless plasma (as
expected in a BH magnetosphere), the reconnection rate
vrec ∼ 0.1c is independent of the magnetization [11–13]. The
lifetime of the magnetic flux on the event horizon should be
determined in part by this universal reconnection rate.
Previous work in an ideal fluid approximation correctly

established the qualitative evolution of a dipole magnetic
field on the event horizon opening into a split monopole [9].
However, it neglected collisionless physics, and was per-
formed at low numerical resolution such that the reconnec-
tion was not in the high Lundquist number regime [9,14].
This lead to the conclusion of an extremely long lifetime
of the magnetic flux on the event horizon, dictated by the
resistive timescale of the plasma [9]. In this Letter we
describe for the first time GRPIC (general-relativistic par-
ticle-in-cell) and GRRMHD (general-relativistic resistive
magnetohydrodynamics) simulations which are converged
and produce the correct reconnection physics.
The system is solved numerically in Kerr spacetime.

Kerr-schild coordinates (t; r; θ;ϕ) are used so that all
quantities are regular at the event horizon. The dimension-
less BH spin is set to a ¼ 0.99 to maximize the ergosphere
volume. We define “fiducial observers” (FIDOs), whose
worldlines are normal to spatial hypersurfaces. We assume
that the neutron star was already surrounded by plasma, and
that it collapsed into a BH before the simulation begins.
This setup is sufficient to test the no-hair theorem because
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when plasma is present, the magnetic field cannot escape
before the event horizon has formed [9]. The initial
condition for all simulations is a magnetic dipole described
by the vector potential Aϕ ¼ B0 sin2 θ=r, where B0 is the
dimensionless magnetic field strength at the horizon as
measured by the FIDO. The magnetic field components are
obtained from Bi ¼ ϵijk∂jAk=

ffiffiffi
γ

p
, where

ffiffiffi
γ

p
is the spatial

metric determinant. In vacuum nonzero ∇ × ðαBÞ is
quickly radiated away or swallowed by the BH (α is the
lapse). However, when plasma is present nonzero∇ × ðαBÞ
drives currents which slow down the balding process.
The kinetic plasma simulations are performed using the

general-relativistic particle-in-cell (PIC) code Zeltron [7]. We
solve the equations of motion for pair plasma particles,
together with Maxwell’s equations for electromagnetic
fields. All lengths are given in units of rg ¼ GM=c2 with
M the BH mass, and times in units of rg=c. The particles
have mass m, and charge �e. The GRPIC simulations
begin with vacuum, and plasma particles are injected with
density proportional to the local parallel electric field as a
proxy for the electron-positron discharge (see [7] for details
of the injection scheme).
We set the dimensionless magnetic field strength at

the event horizon B0 ¼ rg=rL, with rL the Larmor radius.
For the gravitational collapse of a neutron star it implies
B0 ∼ 1014ðM=M⊙ÞðB=1012 GÞ. In this work we scale it
down, and consider B0 ∼ 104; 3 × 104; 105 (Table I). We
show that our results are independent of B0, as long as the
plasma is highly magnetized. The characteristic minimum
plasma density required to support the rotating magneto-
sphere is the Goldreich-Julian number density [15],
n0 ¼ ΩHB0=ð2πceÞ, where ΩH ¼ acrg=½r2H þ ðrgaÞ2�
is the angular velocity of the event horizon radius
rH ¼ rgð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ. It implies the characteristic

magnetization σ0 ¼ B2
0=ð4πn0mc2Þ ¼ ð1=2ÞðωB=ΩHÞ ¼

ð1=4Þðωp=ΩHÞ2 ≫ 1, where ωp ¼ ð4πn0e2=mÞ1=2 is the
plasma frequency and ωB ¼ c=rL the Larmor frequency.

We have preserved the astrophysically relevant hierarchy of
scales rL ≪ λp ≪ rg, and ΩH ≪ ωp ≪ ωB, where λp ¼
c=ωp is the plasma skin depth.
The computational domain of the axisymmetric GRPIC

simulations covers 0.99 ≤ r ≤ 75, and 0 ≤ θ ≤ π.
Simulations for each of the (three) magnetic field strengths
were performed at two resolutions to check for numerical
convergence (a total of six kinetic plasma simulations):
(i) Nr×Nθ¼1440×1080, and (ii) Nr×Nθ¼2880×2160.
The grid is uniformly spaced in log r and cos θ, so that the
resolution is concentrated near the BH horizon, and the
equator. We check that the plasma skin depth is well
resolved a posteriori, since the plasma density is deter-
mined self-consistently. Electromagnetic fields are damped
and particles are absorbed at the outer boundary in order to
mimic an outflow boundary condition. For r ≤ rH all
characteristics are inward, and causality prevents waves
and plasma from escaping. Therefore, the equations are
solved without modification at the event horizon, and no
boundary condition is imposed there.
The GRRMHD simulations are performed using the

Black Hole Accretion Code [16–18]. A minimum density is
set throughout the domain such that the magnetization
σ ≫ 1, and the plasma is nearly force-free. We set a
constant and uniform diffusivity η ¼ 10−5, so that the
Lundquist number S ¼ vAL=η ≈ η−1 ¼ 105 is above the
plasmoid instability limit S > 104 [10], where vA ≈ c is
the Alfvén speed and L ≈ re − rg ≈ 1 is the characteristic
length of the current sheet inside the ergosphere.
The computational domain of the GRRMHD simulations

covers 0.99 ≤ r ≤ 200, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. By
adding AMR, we increase the resolution at the current sheet
to assure convergence. The base grid, and additional AMR
blocks are uniformly spaced in log r, and ϕ, while the θ grid
is concentrated near the equator.
The evolution of all simulations is qualitatively similar.

In GRPIC simulations, strong electric fields induced by
spacetime rotation near the event horizon trigger particle
injection which rapidly fills the magnetosphere with plasma
up to a density n ∼Mn0, where M∼ few is the multi-
plicity, while GRRMHD simulations begin with a static
low-density plasma throughout the domain. In the ergo-
sphere plasma is dragged into corotation with the BH,
bending field lines in the ϕ direction and inflating the
poloidal magnetic field. As field lines extend in the radial
direction, flux on the horizon moves toward the equator,
and some loops which close inside the ergosphere are
pushed into the BH. After t ≈ 40 rg=c, the dipole has
opened into a split monopole with Ω · Bp > 0 in both
hemispheres, where Ω is the angular velocity vector of the
BH and Bp is the poloidal magnetic field. The field lines
rotate rigidly with angular velocity ΩF ¼ ΩH=2, in agree-
ment with force-free solutions [6]. The toroidal magnetic
field Hϕ has opposite sign to Br in each hemisphere
(Fig. 1, right) indicating swept-back field lines, where

TABLE I. Summary of the simulation parameters. For all
GRRMHD runs the diffusivity is η ¼ 10−5. For MHD runs
Nr × Nθ × Nϕ refers to the effective resolution. Runs with
Nϕ ¼ 1 are axisymmetric, while those with Nϕ > 1 refer to
3D simulations. All models have spin a ¼ 0.99 except VAC0,
which has a ¼ 0.

Model rL λp Nr × Nθ × Nϕ

VAC0 � � � � � � 9600 × 8016 × 1
VAC1 � � � � � � 9600 × 8016 × 1
GRPIC1 1 × 10−5 3 × 10−3 2880 × 2160 × 1

GRPIC2 3 × 10−5 6 × 10−3 2880 × 2160 × 1

GRPIC3 1 × 10−4 1 × 10−2 2880 × 2160 × 1

GRRMHD1 � � � � � � 6144 × 3072 × 1
GRRMHD2 � � � � � � 3072 × 1536 × 1536
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H ¼ αB − β × D, β is the shift, and D the electric field. A
well-defined MHD stagnation surface is established, sepa-
rating regions of inflow hvri < 0, and outflow hvri > 0
(Fig. 1, dashed grey curve). Here h� � �i indicates averaging
over the particles in a single grid cell.
Magnetic reconnection is first triggered near the

stagnation surface in both GRPIC and GRRMHD, and
rapidly spreads along the entire current sheet. The onset
of reconnection occurs later in GRRMHD simulations
t∼70 rg=c, compared to GRPIC simulations t ∼ 30 rg=c.
However, once the current sheet is sufficiently thin the
tearing instability develops and a chain of self-similar
plasmoids forms. Generally plasmoids born inside the
stagnation surface move slowly (v < 0.1c) toward the
event horizon and fall into the BH, while those born
outside are ejected from the magnetosphere and acce-
lerate to relativistic velocities (v ≈ c). Therefore, we
identify the stagnation surface at the equator as a main
site of field-line “pinching,” and a primary X point in
the global magnetosphere. Occasionally plasmoids born
inside the stagnation surface have sufficient kinetic
energy to escape.
We analyzed the reconnection rate for all simulations by

measuring the inflow velocity of flux into the current sheet.
The analysis is performed by transforming the electric and
magnetic field components into the locally Minkowski
reference frame of the FIDO. The inflow velocity is then
calculated using the component of E × B in the direction
perpendicular to the current sheet, and avoiding plasmoids.
We confirm σ ≫ 1 in the upstream plasma, so that
vA=c ¼ ½σ=ðσ þ 1Þ�1=2 ≈ 1, and the reconnection is in
the relativistic regime. All components of the magnetic
field change sign at the current sheet, indicating zero guide-
field reconnection.

The measured reconnection rate in the GRPIC simula-
tions vrec ≈ 0.1c is consistent with studies of magnetic
reconnection in relativistic collisionless plasmas [11–13].
For the GRRMHD simulations the high Lundquist number
S ≈ 105 ≫ 104 ensures that the reconnection occurs deep
in the plasmoid dominated regime [19]. The reconnection
rate in resistive MHD at high Lundquist number is vrec ≈
0.01vA [10], which is confirmed by our measured vrec ≈
0.01c–0.02c and is consistent with other studies in rela-
tivistic MHD [20] where the reconnection dynamics is
modified by vA → c. In GRPIC simulations the plasmoids
grow at a rate ∼0.1c, until they are ejected and the growth is
suppressed as they reach relativistic velocities. Thus the
plasmoids are on average smaller in GRRMHD simulations
(Fig. 2), where the growth rate ∼0.01c is smaller.
Reconnection in collisionless pair plasma occurs due to

kinetic effects resulting from the divergence of the ani-
sotropic electron pressure tensor, which plays the role
of an effective nonuniform diffusivity [21]. Therefore, the
difference in reconnection rates between the two forma-
lisms can be attributed to the use of a uniform diffusi-
vity in GRRMHD simulations as a proxy for kinetic
effects, representing the simplest model of reconnection
and plasmoid formation, while in GRPIC simulations
the dissipation at the current sheet is determined from
first principles.
The reconnection is collisionless when the plasma skin

depth λp is larger than the elementary current sheet width in
the resistive-MHD chain w ∼ 100η=vA ∼ 100η=c [10,22],
where η is the diffusivity due to Coulomb collisions of
pairs. Since our simulations do not include the detailed pair
production and collision physics, we estimate analytically
when this condition is satisfied [23]. The temperature of the

FIG. 1. Reconnecting magnetosphere in the FIDO frame (GRPIC1) at t ¼ 100 rg=c. Green curves show poloidal magnetic flux
surfaces, and white curves show the boundary of the ergosphere. The black circle is the interior of the BH event horizon. Left: color
shows radial and θ components of the bulk plasma three-velocity in the orthonormal tetrad basis. The grey dashed curve indicates the
stagnation surface defined by hvri ¼ 0. Right: azimuthal component of the auxiliary field H.

PHYSICAL REVIEW LETTERS 127, 055101 (2021)

055101-3



reconnection layer is estimated by assuming the combined
pressure of radiation and pairs is comparable to B2=ð8πÞ.
The density of pairs is then given by the annihilation
balance. We find that the reconnection is evidently colli-
sionless when B ≪ 1012 G. However, if the magnetic field
is very strong B≳ 1012 G, or pair production is very
efficient, the separation between the two regimes is less
clear, and a self-consistent calculation is required to
determine the reconnection rate. However, even in this
intermediate case, the GRRMHD simulations described in
this work with uniform η provide a lower limit on the
reconnection rate.
The magnetic flux on the event horizon Φ decays

quasiexponentially with time (Fig. 3). In GRPIC simula-
tions the flux decays with characteristic timescale τ ≈ 100

rg=c, and in GRRMHD simulations τ ≈ 500 rg=c (Fig. 3).
The difference in timescales can be attributed to different
reconnection rates in these formalisms, which differ by a
factor ∼5. Since B and n ∝ B decay exponentially, all
components of the stress-energy tensor become vanishingly
small at late times and the no-hair theorem is satisfied. We
calculate the charge of the BH at the end of the GRPIC
simulation as Q ¼ ð1=4πÞ R Dr ffiffiffi

γ
p

dθdϕ at r ¼ rH and find
that Q ¼ 0, so the final state is a Kerr BH.
The decay timescale converges with decreasing rL=rH in

the GRPIC simulations (Fig. 3), indicating the correct
asymptotic behavior with a sufficient separation of scales.
Therefore, the measured decay timescale is independent of
B, as long as the plasma is highly magnetized, σ ≫ 1,

and finite Larmor radius corrections are negligible,
rL=rg ≪ 1.
The evolution of Φ is estimated analytically using

Faraday’s law, and assuming a constant reconnection rate
on the equator at the stagnation surface [23,27]. In this toy
modelΦ decays exponentially on a timescale τ ≈ 3rg=hvθi,
with hvθi the θ component of the plasma three-velocity
in the orthonormal tetrad basis (Fig. 1). For example, in
GRPIC1 the measured hvθi ≈ 0.02–0.04c at the current
sheet implies τ ∼ 100 rg=c, consistent with Fig. 3. The local

FIG. 2. Different realizations of the reconnecting magnetosphere in the FIDO frame. Color shows the cold plasma magnetization σ.
Top: GRPIC1 at t ¼ 100 rg=c, σ ¼ B2=ð4πmnc2Þ. Bottom: GRRMHD1 at t ¼ 311 rg=c, σ ¼ B2=ð4πρc2Þ. The GRPIC simulation (top)
displays larger plasmoids than GRRMHD (bottom) due to the faster reconnection rate of collisionless plasma.

FIG. 3. Flux on the event horizon vs time for vacuum (power
law decay), collisional MHD plasma (exponential decay), and
collisionless plasma (faster exponential decay).
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reconnection rate observed by the FIDO is estimated by
taking into account time dilation at the stagnation surface.
For GRPIC1 it implies hvθi=ðcαÞ ∼ 0.05, with α evaluated
on the equator at the stagnation surface, consistent with the
measured values.
In 3D (GRRMHD2), the balding proceeds similarly to

the axisymmetric simulations (Fig. 3, cyan curve), but
the plasmoid instability leads to nonaxisymmetric (in ϕ)
structures. Therefore, 3D plasmoids, or flux tubes of
tangled field lines with a finite extent in ϕ, generally
display more complex topologies than those in 2D (Fig. 4).
The flux of conserved energy through spherical shells, as

seen by an observer at infinity, is comparable in magnitude
to LBZ ¼ 0.053Ω2

HΦ2=ð4πcÞ [28], indicating successful
activation of the Blandford-Znajek mechanism [6,23].
Large fluctuations up to several LBZ are seen at the
locations of plasmoids. We observe the emission of fast
modes from plasmoid mergers (Fig. 2). In the high-σ limit,
and where B ∼ 106 G, these fast modes correspond to
vacuum electromagnetic waves in the radio band, and could
be observed as coherent radio emission [29]. The escaping
giant plasmoids (Fig. 2) may shock the upstream wind,
resulting in coherent synchrotron maser emission [30,31].
For collisionless plasma, we measure the total dissipative
power as seen by an observer at infinity Ldiss;∞ ≈ 0.4LBZ.
When the magnetic field is strong (B≳ 106 G) as expected
in BH-NS mergers, the reconnection is radiative and most
of the dissipated magnetic energy will go into photons. In
this regime, Ldiss;∞ ≈ 0.4LBZ ∼ 4 × 1045M2

10⊙B
2
12 erg s−1

corresponds to emission in the hard x-ray band [32]. We
also observe a population of negative energy-at-infinity
particles localized in the current sheet inside the ergosphere.
They contribute to J ¼ ðc=4πÞ∇ ×H, and some are
advected into the BH with plasmoids—an instance of the
Penrose process facilitated by magnetic reconnection [7,33].

We considered Kerr BH’s endowed with highly mag-
netized plasma-filled magnetospheres. We find that (i) the
no-hair theorem holds, in the sense that all components
of the stress-energy tensor decay exponentially in time;
(ii) reconnection occurs at the universal rate when mea-
sured in the locally Minkowski frame of the FIDO; (iii) the
lifetime of the magnetic field on the event horizon is
controlled by the local reconnection rate measured by the
FIDO in concert with other global effects; and (iv) the final
state is a Kerr BH with charge Q ¼ 0. Balding BHs
resulting from the merger or collapse of compact objects
should appear as a spectacular source of hard x-ray
emission for a short duration, similar to the flares of
galactic magnetars. Observation of the x-ray emission
requires a clean environment around the BH. It is possible
during the gravitational collapse of a rotationally supported
massive neutron star, and in BH-NS mergers with a high
mass ratio, so that the NS falls through the event horizon
without forming a torus or disk. Gamma-ray bursts and
other collapsars may be different to the scenario described
in this work, depending on how much matter surrounds the
newly formed BH. The decay of magnetic flux on the event
horizon may also explain powerful x-ray and near-infrared
flares and hot spots [34] driven by plasmoid-regulated
reconnection in magnetically dominated supermassive BH
magnetospheres [19,33]. The faster reconnection rate in
collisionless plasma implies that larger plasmoids, power-
ing a flare near the BH, can form in a shorter time and in
this way regulate the typical flare duration.
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FIG. 4. Reconnecting magnetosphere in 3D (GRRMHD2) at t ¼ 118 rg=c. Left: volume rendering shows σ ¼ B2=ð4πρc2Þ, green
tubes are magnetic field lines which penetrate the event horizon, red tubes are magnetic field lines which are reconnecting in the current
sheet. Right: 2D slice of GRRMHD2 in the ϕ ¼ 0 half-plane. Color shows σ, green curves are magnetic field lines in the ϕ ¼ 0 half-
plane. The picture highlights the nonaxisymmetric nature of reconnection in 3D, yet still displays similar fundamental structures—
X points (inset 1), and helical winding of magnetic field lines in plasmoids (flux ropes) (inset 2).
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