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It was recently proposed that there is a phase in thermal QCD (IR phase) at temperatures well above the
chiral crossover, featuring elements of scale invariance in the infrared (IR). Here, we study the effective
spatial dimensions dIR of Dirac low-energy modes in this phase, in the context of pure-glue QCD. Our dIR
is based on the scaling of mode support toward thermodynamic limit, and hence is an IR probe. Ordinary
extended modes, such as those at high energy, have dIR ¼ 3. We find dIR < 3 in the spectral range whose
lower edge coincides with λIR ¼ 0, the singularity of spectral density defining the IR phase, and the upper
edge with λA, the previously identified Anderson-like nonanalyticity. Details near λIR are unexpected in that
only exact zero modes are dIR ¼ 3, while a thin spectral layer near zero is dIR ¼ 2, followed by an extended
layer of dIR ¼ 1 modes. With only integer values appearing, dIR may have a topological origin. We find
similar structure at λA, and associate its adjacent thin layer (dIR⪆2) with Anderson-like criticality. Our
analysis reveals the manner in which nonanalyticities at λIR and λA, originally identified in other quantities,
appear in dIRðλÞ. This dimension structure may be important for understanding the near-perfect fluidity of
the quark-gluon medium seen in accelerator experiments. The role of λA in previously conjectured
decoupling of IR component is explained.
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Introduction.—The interest in Dirac eigenmodes of
Euclidean quantum chromodynamics (QCD) has a long
history, sparked in part by the role of zero modes in
topology of gauge fields (η0 problem [1]) and by that of
near-zero modes in spontaneous chiral symmetry breaking
(Banks-Casher relation [2]). While modeling of low-energy
QCD based on instantons could qualitatively accommodate
these features [3], the birth of numerical lattice QCD [4]
allowed for computation of Dirac eigenmodes from first
principles [5,6]. This provided access to details of their true
structure and thus an important window into the inner
workings of QCD dynamics (see, e.g., [7–12]).
Recently, Dirac eigenmodes were used to infer the

existence of a new phase in thermal QCD (IR phase)
[13], showing certain signs of scale invariance at energies
below temperature T. It was proposed that, past a crossover
region (chiral Tc ≈ 155 MeV), a true QCD phase transition
may occur at temperature TIR (200–250 MeV), marking
the restoration of scale invariance in the infrared (IR).
The reasoning was based on the proposition that the
observed power law behavior of Dirac spectral density
in IR [ρðλÞ ≈ 1=λ] arises due to the underlying IR scale

invariance of glue fields. This is corroborated by the finding
that such a Dirac spectral feature also occurs near SU(3)
conformal window at zero temperature [11,14], placing
both corners of the theory parameter space into one
contiguous dynamical regime, the IR phase.
Given the relevance of the above to the physics of quark-

gluon plasma studied at RHIC and LHC, as well as to the
physics of the early Universe (see, e.g., [15] for review), our
aim in this work is to describe the IR phase in a manner that
sheds more light on the mechanism of its conjectured scale
invariance. Owing to their proposed common origin, the
new insight would also be valuable for understanding the
mechanism of scale invariance in the strongly coupled part
of the conformal window.
To work with a concrete problem, consider pure-glue

QCD at T > TIR. Reference [13] proposes the existence of
a physical energy scale ΛIR ¼ ΛIRðTÞ ⪅ T, such that the
theory is scale invariant at energies E ⪅ ΛIR. In this
scenario, gauge coupling stops running below ΛIR, leading
to nonanalyticity at this point. How could such a feature
arise in QCD? Motivated by clean bimodality of ρðλÞ,
Ref. [13] suggested that IR gauge fields decouple and
fluctuate independently of the bulk in the IR phase. The
ensuing mismatch between the two independent compo-
nents of the system can then produce such nonanalyticity.
In what follows we make this proposal more precise and

concrete by focusing on nonanalyticities of Dirac spectra.
After all, a true nonanalyticity of running coupling would
be reflected in all dynamical elements of the theory,
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especially in a Dirac eigensystem where the singularity of
ρðλÞ at λIR ¼ 0 first suggested the existence of IR phase.
Hence, we aim to identify these nonanalyticities and to
determine their role in the above dynamical scenario.
In addition to λIR ¼ 0 (ρ ≈ 1=λ), there is a well-known

singularity of ρðλÞ at λUV ¼ ∞ (ρ ≈ λ3). Moreover, a
different type of spectral nonanalyticity, namely the
Anderson-like localization point λA > T, has been advo-
cated for and studied for some time [10,16,17]. While the
singularity at λUV is expected at all temperatures (asymp-
totic freedom), λA appears to be a companion of IR phase. If
so, then λIR and λA should be associated in some manner.
To identify such possible connection, as well as to search

for additional nonanalyticities of Dirac spectra, we study
the dimension dIR ¼ dIRðλÞ of spatial region effectively
occupied by modes. We emphasize that we use the infrared
concept of dimension which probes the response of
effective volume to the release of IR cutoff. This approach
has its roots in Ref. [18] and will be discussed in Sec. 2.
(The full account of dimension theory will be given in
Ref. [19].) In Sec. 3 we describe our numerical results.
Their proposed implications are elaborated upon in Sec. 4.
This work is concerned with results in pure-glue QCD.

However, we believe that our findings carry over in the
presence of dynamical quarks. This is only a conjecture at
this stage, albeit a reasonable one given the likely topo-
logical nature of the reported features. We plan to investi-
gate this issue in future studies.
Dimensions.—Consider thermal QCD in four-volume

L3=T, regularized on a hypercubic lattice with spacing a.
For questions of thermodynamic (L → ∞) limit, scale 1=L
is the IR cutoff, similarly to 1=a being the UV cutoff. The
eigenmodes DψλðxÞ ¼ iλψλðxÞ of a continuum Dirac
operator D have suitable lattice counterparts, supplied here
by those of the overlap operator [20]. This ensures
continuumlike chiral and topological properties.
Following [18,19], we assign spatial dimensions to Dirac

eigenmodes as follows. Consider the eigenmode ψλ ¼
ψλðxi; L; aÞ at given λ and cutoffs. Although nominally
such a mode extends over all N ¼ ðL=aÞ3=ðTaÞ sites, this
“counting” should be modified if the probabilities
P ¼ ðp1; p2;…; pNÞ, pi ¼ ψþ

λ ψλðxiÞ, are effectively con-
centrated in fewer (N < N) sites. Assume that such
effective counting N ¼ N ½P� is in place. While N ∝ L3

at fixed a, the effective N is governed by N ∝ LdIR for
L → ∞, with 0 ≤ dIR ≤ 3. Dimension dIR ¼ dIRðaÞ is
“infrared” since it probes the removal of IR cutoff.
Similarly, while N ∝ a−4, the power dUV ¼ dUVðLÞ in
N ∝ a−dUV for a → 0 (0 ≤ dUV ≤ 4) is the effective UV
dimension.
Effective number theory [18] specifies all additive

effective counting schemes N , and leads to

N ⋆½P� ¼
XN
i¼1

n⋆ðNpiÞ; n⋆ðcÞ ¼ minfc; 1g ð1Þ

for a scheme that consistently delimits the effective subset
(support) of objects with probabilities [19]. This makes dIR,
dUV well-defined characteristics of the mode’s effective
support. Since N ⋆ is additive, dUV and dIR are stochastic
measure-based constructs analogous to box-counting and
Hausdorff dimensions [19]. (Reference [21] describes a
similar approach based on the participation number.
Because of the lack of additivity, it is not Hausdorff-like.)
In fact, the method can be adapted to define dimensions of
fixed (nonstochastic) fractal sets, and we verified in few
cases that it produces dUV consistent with their Hausdorff
dimensions.
Here, we focus on IR dimensions of Dirac modes. Since

ψλ is a statistical object, dIR is defined by

hN ⋆ia;L;λ ∝ LdIRða;λÞ for L → ∞; ð2Þ

where h� � �ia;L;λ denotes the QCD average at fixed cutoffs,
and the spectral average in the vicinity of λ.
The results.—We computed dIRðλÞ in the IR phase

of pure-glue QCD (T ¼ 1.12TIR) using the setup of
Ref. [13] (Wilson action at β ¼ 6.054, a ¼ 0.085 fm via
r0 ¼ 0.5 fm, overlap operator at ρ ¼ 26=19). Systems with
L=a ¼ 16, 20, 24, 32, 40, 48, 64 and 1=ðTaÞ ¼ 7 were
analyzed. Special care was required to reliably identify the
zero modes, and to implement the overlap operator in a
numerically efficient way [22–24].
Our main results are conveyed by Fig. 1. Dimensions

were obtained from fits to the asymptotic form (2) using
four largest systems (range 2.7–5.4 fm) in the analysis. The
fits had statistically acceptable χ2=d:o:f: in general. The
spectral intervals associated with plotted points are disjoint,
and cover the region shown.
We find the spectral interval ðλ1; λ2Þ of low-dIR modes

(dIR < 3), featuring three regimes: the constant central
plateau at dIR ≈ 1 and two half-peaks on the sides (“left
rise” and “right rise”). The details are as follows.
Zero modes: The overlap operator supports exact topo-

logical zero modes, separated from the rest of the spectrum

FIG. 1. IR dimension of Dirac modes at T ¼ 1.12TIR.
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in any finite volume. We find that dIRð0Þ ¼ 3 (red point in
Fig. 1), with the behavior of f⋆ ¼ N ⋆=N ∝ LdIR−3 shown
in Fig. 2. Using the Anderson localization terminology, this
means that zero modes are “extended” since they occupy a
finite fraction of volume (≈4%) in L → ∞ limit.
Near-zero modes: Is there a layer of deep IR modes akin

to strict zero modes in terms of dIR? To assess this, we treat
the extent λz of such potential region ð0; λzÞ as a parameter,
and evaluate the average dIR of modes from this interval.
The result is shown in the inset of Fig. 1. It reveals that,
rather than dIR ¼ 3, the deepest IR modes afforded by our
data approach dIR ¼ 2, and hence λ1 ¼ 0. In the absence of
evidence for its finite width, we represent the dIR ¼ 2 layer
by a single (blue) point adjacent to point representing zero
modes. Note that, although dIR < 3 implies that quarks in
these modes occupy a space of measure zero relative to the
entire volume, they are not necessarily localized in terms of
distances involved.
The left rise: Consider now the entire left rise in Fig. 1.

Since its spectral extent ends just above 1=Lmax
(Lmax ¼ 64a), we need to ask whether the onset of the
rise marks a nonzero IR scale or vanishes with IR cutoff. To
assess this, we vary Lmax by using sizes of smaller
simulated systems as IR cutoffs in the dimension analysis.
Fig. 3 (left) shows the dependence of dIR on Lmax for
spectral range 5–15 MeV inside the rise. We observe
lowering of the dimension toward dIR ≈ 1 with increasing
Lmax. The consistency of such trends makes us to suggest
that the width of the left rise vanishes in thermodynamic
limit and a new dynamical scale is not generated.
The upper edge: The low-dIR regime in Fig. 1 ends

abruptly at λ2 ≈ 750 MeV, suggesting a nonanalytic behav-
ior. The position of the edge can be estimated by including
a constant in fits of f⋆ (zeroth power in addition to floating

positive power). Figure 4 (top) shows this constant in the
relevant spectral range. The small negative values below
≈750 MeV indicate that the term is redundant since the
leading contribution has to be positive on geometric
grounds. Hence, dIR < 3 in this region. A statistically
significant positive value, on the other hand, implies
dIR ¼ 3 and the extended modes. The approach to constant
f⋆ > 0 in the extended regime (black horizontal line in
Fig. 1) is exemplified in Fig. 2 (full circles).
The existence of Anderson-like point in QCD Dirac

spectra, defined as λA where the statistics of unfolded level
spacings changes from Poisson (λ < λA) to Dyson-Wigner
(λ > λA), has been concluded in Ref. [10]. To check
whether the low-dIR upper edge λ2 can be identified with
λA, we use their procedure and look for the transition in

Is0ðλÞ ¼
Z

s0

0

dspðs; λÞ; ð3Þ

FIG. 2. The fraction f⋆ of space occupied by modes vs 1=L.

FIG. 3. dIR as a function 1=Lmax in left and right rises.

FIG. 4. The value of constant term in fits of f⋆ð1=LÞ (top) and
the value of I0.508 (bottom) in the vicinity of λ2.
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with pðs; λÞ the distribution of level spacings in the vicinity
of λ. The value s0 ≈ 0.508 maximizes the difference in Is0
for Poisson (I0.508 ≈ 0.398) and Dyson-Wigner unitary
class (I0.508 ≈ 0.117) statistics. Figure 4 (bottom) shows
I0.508ðλÞ for our two largest lattices. The approach to
constant Dyson-Wigner value on the right is clear and
the volume trend on the left is in the expected direction
toward the Poisson value. The transition region is rather
wide but approximately centered around 750 MeV. These
results suggest that λ2 and λA represent the same spectral
point in thermodynamic limit.
The right rise: The example of f⋆ð1=LÞ inside the right

rise is shown in Fig. 2. Like for the left rise, we need to
inquire whether the spectral width of this feature remains
finite in thermodynamic limit. Figure 3 (middle) shows dIR
versus floating 1=Lmax for the spectral range 500–700 MeV
extending almost across the rise. A clear decrease of dIR
with increasing Lmax is seen. The observed change is well
described by quadratic polynomial, leading to Lmax → ∞
value consistent with that of the plateau (dIR ≈ 1). On the
other hand, very close to the edge (735–745) MeV, the
same fitting suggests dIR⪆2. This leads us to propose that
the left and right rises are similar in that the spectral widths
of these features vanish in thermodynamic limit, each
morphing into a pointlike layer of well-defined lower
dimension.
The synthesis and discussion.—The analytic structure of

the Dirac eigensystem can be useful for detecting the
phases of QCD. For example, entering the IR phase by
crossing TIR is characterized by adding the IR power
singularity of mode density ρðλÞ to its already present
UV singularity [13]. The λ3 divergence at λUV ¼ ∞ reflects
the strict power law ρðλÞ ¼ cλ3 directly at the Gaussian UV
fixed point. Similarly, we associate the 1=λ singularity at
λIR ¼ 0 with the power law at the strongly coupled IR fixed
point governing the IR component of the system [13].
Here, we extended this analyticity angle by studying the

spatial dimension dIRðλÞ of Dirac modes. The results lead
us to propose that the IR phase of QCD is characterized by
the existence of a spectral range 0 ≤ λ1 < λ < λ2 of low-dIR
modes. The edges λ1, λ2 are nonanalyticities of dIRðλÞ.
Our data are consistent with the following infinite-volume
predictions. Prediction 1: dIR ¼ 3 for zero modes.
Prediction 2: there is a pointlike layer of dIR ¼ 2 near-
zero modes and hence λ1 ¼ λIR ¼ 0. We are not aware of
any model that predicts this. Prediction 3: a plateau of dIR ≈
1modes spans the interior of low-dIR interval. Prediction 4:
λ2 ¼ λA, where λA is the Anderson-like transition point.
Prediction 5: a pointlike layer of dIR⪆2modes exists on the
inner side of λ2. The resulting dIRðλÞ is shown in Fig. 5.
The study of ρðλÞ and dIRðλÞ thus offers at least three

Dirac nonanalyticities λIR ¼ λ1, λA ¼ λ2, λUV in IR phase,
with scales T and ΛIRðTÞ inside the low-dIR range

0 ¼ λIR < ΛIR < T < λA < λUV ¼ ∞: ð4Þ

While the presence of λIR as a singularity in ρðλÞ is natural
(see above), the purpose of λA may seem puzzling. What is
the role of a “phase transition” in the internal parameter λ of
the theory? Treating a QCD-induced Dirac dynamics near
λA as a model description of some system, the phase
transition at λA means that its “states” at λ < λA are
unrelated to those at λ > λA, which is further underlined
here by the former being low dIR. We ascribe this mutual
independence, realized by nonanalyticity at λA, to the
decoupling of IR glue fields from the bulk. Hence, λA is
connected to the proposed mechanism of strongly coupled
IR scale invariance [13], naturally tying with the non-
analyticity of running coupling at ΛIR.
We wish to make the following additional remarks.

(a) The structure of dIRðλÞ is the same at λIR and λA,
involving a two-step nonanalytic transition from nominal
dIR ¼ 3 to low-dIR regime. (b) The existence of the “middle
point” at λA is natural upon accepting its Anderson nature.
Indeed, we associate it with the critical region in Anderson
models [25], which shrink to zero width in thermodynamic
limit. The observed 2 ⪅ dIRðλAÞ < 3 describes the system
at strict criticality. (c) However, dIR ≈ 1 below λA is at odds
with exponential localization in Anderson models.
Clarifying this discrepancy is an interesting issue to
resolve. (d) Despite dIR being Hausdorff-like, only near-
integer dimensions appear around λIR. Hence, IR dimen-
sion may have topological meaning for IR modes. The
structure near λIR is interesting in that all “topological
dimensions” occur. (e) The appearance of dIR ¼ 2, 1 near
λIR is unexpected in light of simple instanton-based models
[3]. Adding this feature to model descriptions of IR
component could be valuable since the latter may capture
the near-perfect fluidity properties of the strongly interact-
ing medium seen at accelerator experiments [13]. (f) The
proposal for decoupling of IR component used the UV-IR
bimodality of Dirac spectral density as its corroborating
feature [13]. Since the position 0 < λmin < T of minimal
ρðλÞ plays a special role here, it is desirable to clarify its
status regarding analyticity. (g) Albeit indirectly and from
different angles, recent works involving thermal Dirac
modes [26–28] provide an additional information on IR

FIG. 5. Dimension dIR of Dirac modes in the IR phase. The
abscissa is common to physical energy scale E and the Dirac λ.
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phase. (h) We are not aware of a theoretical argument or
lattice evidence at this time, suggesting that dUVðλ; TÞ < 4
for any λ, T in QCD.
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