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Generating Spin Polarization from Vorticity through Nonlocal Collisions
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We derive the collision term in the Boltzmann equation using the equation of motion for the Wigner
function of massive spin-1/2 particles. To next-to-lowest order in 7, it contains a nonlocal contribution,
which is responsible for the conversion of orbital into spin angular momentum. In a proper choice of
pseudogauge, the antisymmetric part of the energy-momentum tensor arises solely from this nonlocal
contribution. We show that the collision term vanishes in global equilibrium and that the spin potential is,
then, equal to the thermal vorticity. In the nonrelativistic limit, the equations of motion for the energy-
momentum and spin tensors reduce to the well-known form for hydrodynamics for micropolar fluids.
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Introduction.—The study of polarization phenomena in
heavy-ion collisions has attracted significant attention in the
past [1-4]. Experimental studies show that the spin of
hadrons emitted in noncentral collisions is aligned with
the direction of the global angular momentum [5-7]. The
magnitude of the global polarization of A baryons can be
very well described by models based on relativistic hydro-
dynamics and assuming local thermodynamic equilibrium
of the spin degrees of freedom [4,8-14]. Particles get
polarized through the rotation of the medium in a way
which resembles the Barnett effect [15]. Unfortunately, the
same models [16,17] are not able to describe the exper-
imentally measured longitudinal A polarization [18]. This
problem is currently the focus of intense work [19-26],
however, a convincing solution does not yet exist.

In order to address this problem, one needs to understand
how the orbital angular momentum of the strongly inter-
acting matter created in noncentral heavy-ion collisions is
converted into the spin angular momentum of its constitu-
ents. In order to account for the nontrivial dynamics of the
spin degrees of freedom, it has been proposed to introduce
the rank-three spin tensor as an additional dynamical
variable, promoting relativistic hydrodynamics to a theory
of spin hydrodynamics [27-33] (for a different approach
based on the Lagrangian formalism, see Refs. [34-37]).
Since spin is inherently a quantum feature, any rigorous
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derivation of spin hydrodynamics must be based on
quantum field theory. However, in order to see how orbital
angular momentum can be converted into spin and vice
versa on a microscopic level, it is advantageous to, first,
derive a Boltzmann equation from quantum field theory,
and then obtain hydrodynamics from the former, for
instance, by applying the method of moments [38].

In the nonrelativistic case, this direction was pursued in a
seminal paper [39], where it was already pointed out that a
local collision term in the Boltzmann equation will not be
able to describe polarization through rotation. Only if one
accounts for the nonlocality of the microscopic collision
process, can orbital angular momentum be converted into
spin. A nonrelativistic nonlocal collision term was derived in
Ref. [40] and for spinless particles, e.g., in Refs. [41-43]. In
Ref. [21], a microscopic model based on collisions of
partons as wave packets was proposed to link the spin
polarization to the vorticity, but without considering spin
equilibration. A first attempt to systematically incorporate
nonlocal collisions in a kinetic framework based on quantum
field theory was recently made in Ref. [44], however,
without giving an explicit expression for the nonlocal
collision term. The aim of this Letter is to present the main
steps of a systematic, explicit derivation of such a term, and a
discussion of its impact on spin hydrodynamics. For details
of the calculation we refer to Ref. [45].

Our notation and conventions are a - b = a”bu, awby]s
Cl#by - al,bﬂ, gﬂ’/ = dlag(+, -, —), 60123 = —€p123 = 1.

Quantum transport.—The Wigner-function formalism
provides a first-principle formulation of kinetic theory
and is a very powerful tool for the description of anomalous
transport in heavy-ion collisions (see, e.g., Refs. [46-53]).
The Wigner function for spin-1/2 particles reads [54-56]
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Waplsop) = [ e Calautoa):). (1)

with x;, = x 4+ y/2 and the spinor field y(x). Extending
our previous work [57] (see, also, Refs. [58—63]), which
was valid in the free-streaming limit, now, we include
interactions and, thus, account for the effect of collisions.
Using the Dirac equation in the presence of a general
interaction term

(ify -0 - m)y(x) = hp(x). 2)

where p = —(1/h)0L,; /0w, with L; being the interaction
Lagrangian, the transport equation for the Wigner function
reads [54]

[7- <p—|—i§8> —m}W:hC[W], (3)
where
4 .
ColW) = [ Gz e Calan)ip(a)). (@

We decompose the Wigner function in terms of a basis of
the generators of the Clifford algebra

| 1
W:Z<J—‘+iy5P+7-V+75}’-«4+§0””5w>’ (5)

and substitute it into Eq. (3) to obtain equations of motion
for the coefficient functions

h
58-A+m73: —hDp, (6)
H h o qu / H
p 7—"—56,,8 —mV* = hDy, (7)
h v vaf v HY
58 W — ¥ p, Ay — mS* = hDy, (8)
no -V =2nCyg, 9)
p-A=hCp, (10)
h
pa + Eeﬂmﬂaa,zlﬁ = —nCl, (11)

where we defined D; =ReTr(I',C), C;=ImTr(I',C),
i:F,P,V,S, fy: = 1, fp = —i}/S, fV :}/ﬂ, l:‘S = o,

Following Refs. [57,60,61], we employ an expansion in
powers of # for the functions F, P, V¥, A*, S, and the
collision terms D;, C; in Egs. (6)—(11), e.g., for the scalar
part

F=FO 4 nFx0) + 0(n?). (12)

Since gradients are always accompanied by factors of 7,
this is effectively a gradient expansion.

In order to simplify the following discussion, now, we
make the assumption that all effects arising from spin are at
least of first order in 7. Therefore, since A* is the spin
density in phase space [57], its zeroth-order contribution
vanishes, A% =0, and consequently, from Eq. (8),
SO — 0. From Eq. (6), we also immediately conclude
that P(© = 0. Thus, at zeroth order, all pseudoscalar
quantities vanish, which also implies that the collision
terms which carry pseudoscalar quantum numbers must
vanish at zeroth order, D;B) = Cg) ) —o. Using Egs. (6) and
(10), this, in turn, implies that

P = O(n?), p- A= 0(n?). (13)
For the vector part, the only vector at our disposal at zeroth
order is p*, i.e.,

DY, = psV + O(n), (14)

with a scalar function V. Thus, from Eq. (7), we obtain
L 2 2
Vi= i F 4 O(R2), (15)

where we defined F = F — A6V. From Egs. (9) and (11),
we then derive

p-OF = mCp, p - OA* = mC, (16)

with Cp = 2Cr and Cy = — L e p Cs,;. Equations (13)

and (16) form a closed system of equations for F and A*.

The next step is to introduce spin as an additional

variable in phase space [31,33,64-66]. We define the
distribution function

1 -
f(x.p.8) =5 [F(x.p)=8-Alx.p)l.  (17)
Now, we employ the quasiparticle approximation, i.e., we
assume that f is of the form

f(x. p.8) = md(p* — M?)f(x. p.8), (18)

where f(x,p,8) is a function without singularity at
p* = M?* = m? + hém?, and 5m?(x, p, 8) is an interaction
contribution to the mass-shell condition for free particles
[where the 8 dependence enters at O(#)]. We introduce the
integration measure

/dS(p) _ L/d‘*,e,(s(g ‘8+3)5(p-8), (19)

«(p)

where k(p) = v/37/+/p? is determined by requiring
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F= [aswitxp. A= [asp@ir.s).

(20)

The kinetic equation which we want to solve is now given
by combining Eq. (17) with Eq. (16),

p - Of(x, p,8) = mC, (21)

where € =1 (Cr—8-C,). In the next section, we will
compute this kernel up to first order in 7. This implies that
we assume that f varies slowly in space and time on the
microscopic scale corresponding to the interaction range.
We will also restrict ourselves to the contribution from
particles; the extension to include antiparticles is
straightforward.

Collisions.—Up to first order in 7, € has the following
structure:

c=6"+n{c) +6V=6+nc). (22)

nl *

Here, local and nonlocal contributions are denoted by
subscripts [ and nl, respectively. The zeroth-order contri-
bution is purely local [67], while the first-order contribution
has both local and nonlocal parts, the latter arising from
gradients.

In order to explicitly calculate the collision term, we
follow Ref. [54]. This calculation is based on an expansion
in particle-scattering states and makes the following
assumptions: (i) low-density approximation, i.e., the inter-
acting Wigner function in the collision term is identified
with the free-streaming Wigner function (also containing
contributions up to order #), and only binary scattering
processes of the form (py,8;),(p2,3,) = (p,8),(p',8)
are considered, and (ii) initial correlations are neglected.

The details of the calculation are shown in Ref. [45].
Here, we only report the most important intermediate steps.
First, it can be shown that the off-shell terms on both sides
of Eq. (21) cancel, and we are left with the on-shell
Boltzmann equation

5(]?2 - m2)p : af(x’ P, §) = 5(172 - m2>($on-she]l [f] (23)

where €, qenlf] is the on-shell contribution of Eq. (22). In
this way, we obtain the local part of the on-shell collision
term

Gon—shell,l[f] = (s:p+s [f] + Gs [f]’ (24)

where

6, lf]= / 4T\ dT,dT"dS) (p)W

X [f(x.p1.81)f (x.p2.82) = f(x.p.81)f (x. p'.8")]
(25a)

describes momentum- and spin-exchange interactions,
while

6.[f] = / dT3dS, (p)TBf (x. p. 31)f (x. p2.3;)  (25b)

describes purely spin exchange without momentum
exchange. Here, we defined the phase-space measure
[dU = [d*ps(p*> —m?) [dS(p) as well as

1

53_2 [hss’l (p’gll)hs’lr(p’g’) +hss’l (p’g)hs’lr(p’gll)]

1

<D

S 81,850,
x(p.p'ir.P|t|p1.paisi.s2) (p1.pair.raltf|p.p'ss,s')
x8*(p+p'=pi—pa). (26)

hs’r’(p/7§,)hs]rl (pl .8 )hszr2 (p2’ §2)

and

V3
;= h@ Z €/‘”aﬂ§”§7panglr(p)hs2r2 (p2v Q’Z)

81,852,117

X (p,pair.ralt + 1 p, pas sy, 82). (27)

where

1

2m ﬁs(p)ysyﬂur(p)v

(28)

hy(p.8)=8,,+8-n,(p), n(p)=

with the standard particle spinors u,(p), it,(p). Moreover,

(p. 5.7 |tlp1. pas sty 52)

(2zh)’
2

w,(P)ou(P 7 1p(0)|[P1. P2s st 82)in (29)

denotes the amplitude for the scattering of two particles
with momenta p;, p, and spin projections s, §, into two
particles with momenta p, p’ and spin projections r, 7.
If the distribution functions do not depend on the spin
variables, i.e., f(x, p,8) = f(x, p), we recover the familiar
Boltzmann collision term, where the spin averaging and
summation is done directly in the cross section [54].
However, if the distribution functions depend on spin,
the two terms on the right-hand side of Eq. (24)
require further discussion. Considering €, ([f], the term
~f(x, p1,81)f(x, p2,8,) has the form of a gain term for
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particles with (p, 8), while ~f(x, p, 8})f(x, p’, 8') does not
have an obvious interpretation as a loss term, because the
spin variable is 8/, not 8.

However, we can modify the definition of distribution
function and collision term such that the standard inter-
pretation of gain and loss terms in the latter is recovered. To
this end, first, we note that the physically relevant quantities
are obtained after integrating over the phase-space spin
variable, see, e.g., Eq. (20). Therefore, if we can replace the
distribution function f(x, p,8) by another distribution
function f(x p,8) and, similarly, the collision term €[f]
by G[f], where

(30a)

/ dS(p)bO(x. p.3) = / dS(p)bQ(x.p.3)  (30b)

is fulfilled for Q € {f.C[f]}, 0 € {F.C[f]}. b € {1,8"},
then, the physically relevant quantities will not be changed.
Equations (30) constitute a kind of “weak equivalence

principle” stating that f and f formally obey the same
equation of motion and give identical results when inte-
grating over the spin variable.

One can show that the choice f = f and

@[H—S[f] E/drldrzclr/w

X [f(X,pl,él)f(x,pz,Q’z) _f(x’p7§)f(x’p/?§/)]’
(31)

with

1
_
W=6(p+p —-p —pz)gghsr(p,é)

X Z
§' 81,850,717

x(p, p'sr, r|t|p1, pas sy, $2)
X (p1. pasr1s "2|1T p.pss.s),

hs’r/(p/’ él)hslrl (pl » 81 )hszrz (p29 é2)

(32)

satisfies the weak equivalence principle (30) up to O(#).

Now, let us focus on €[f]. This corresponds to
collisions where the momentum of each particle is con-
served, but the spin can change: (p,3,),(p,, %) —
(p,8),(ps2,8") [54]. Here, the distribution functions
f(x,p,-) and f(x,p’,-) describe the particles before and
after the collision, which means that they contribute to both
the gain and the loss term. We see, from Eq. (27), that the
interchange of 8" and &/ flips the sign of 28. This means
that a net gain of particles with (p, 8) corresponds to a net
loss of particles with (p, 8).

Now, turning to the nonlocal collision term, first, let us
give an intuitive argument. If we assume that particles
scatter with a finite impact parameter, the distribution
functions entering Eq. (25) have to be evaluated at different
space-time points. Hence, the simplest extension of the full
collision term (22), and modified using the weak equiv-
alence principle (30), should have the form

Gornlf] = / AU dTdTWF(x + Ay pr.8)

X f(x + AZ? P2, éZ)
—f(x+A,p.8)f(x+ A 8]

+/dF2dSl(p)QBf(x+ A, p.8))

X f(x+ Ag, p2.8)). (33)
where the position shifts A, A’, A;, A, are of first order in
h. Note that, in the collision term where only spin is
exchanged, p; = p, p’ = p,. We show, in Ref. [45], that
Eq. (33) can, indeed, be derived by an explicit calculation.
The only additional assumption that we need to make is that
the scattering amplitude is constant over scales of order A.
This is consistent with the low-density approximation, see,
e.g., Ref. [68]. The position shifts are functions of
momentum and spin given by

A= P i3y, (34)

2m(p -7+ m)

where 7 = (1,0) is the timelike unit vector in the frame
where p# is measured, for details see Ref. [45].

Equilibrium.—Now, we will consider the conditions
necessary to reach equilibrium. For the sake of simplicity,
we consider uncharged particles, implying zero chemical
potential. The standard form of the local equilibrium
distribution function is [9,27,31]

1 h
feq(x.p.8) = —=sexp | =f(x) - p+7Qu ()X |, (35)

(2zh)? 4"
where p# = u”/T (u" is the fluid velocity and T the
temperature, respectively) and Q" is the spin potential
[27,30]. Note that the exponent of the distribution function
has to be a linear combination of the conserved quantities
momentum and total angular momentum. Here, we
absorbed the orbital part of the angular momentum into
the definition of f#(x) [9], and we defined the dipole-
moment tensor

1
T = -,y (36)

Inserting Eq. (35) into Eq. (33) and expanding to first order
in 7, we obtain
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(gon shell[ eq /dF’dF dT2We B(p1+p2)

{ 0B, (A pt + AL ps — At p? — Al p™)
hQ IR 1S i i

4 ( 3 + - §’)
—/dF2d51(p)dS’(pz)ﬁBe‘/"(”“’z)
) {au/fy[(A” A*)p¥ + (A5 — A ]

~7 m«<2 +Z””—Z””—Zg,”)}, (37)

where the zeroth-order contribution to the collision term
was omitted, as it vanishes for the distribution function
(35). Since L* = Al p”] is the orbital angular momentum
tensor of the particle with (p, 8), the parentheses in the
second and fifth line contain the balance of orbital angular
momentum in the respective collision.

Introducing the total angular momentum J* = L* +
(h/2)Z%" of the particle and assuming that this is conserved
in a collision, J* + J" = Ji* + J5°, the collision term

vanishes for any W, B if
a}tﬂl/ + auﬁu = O’ (38)

Q

1

= Wy = —anﬂy] = const, (39)
which corresponds to the conditions for global (and not just
local) equilibrium. Our calculation derives condition (39)
for the first time in a kinetic-theory approach, confirming a
known result from statistical quantum field theory [69]. In
previous works, condition (39) was found in the massless
case [70], but for massive particles, only in the presence of
an electromagnetic field [57,63].

Spin hydrodynamics from kinetic theory.—The equation
of motion for the spin tensor $*#* is derived from the
conservation of the total angular momentum tensor J*#* =
XTY — XY TH# + hS** [27-33]. Among all possible pseu-
dogauges [30,71,72], we use the energy-momentum and
spin tensors proposed by Hilgevoord and Wouthuysen
(HW) [54,73,74] which, unlike the canonical currents,
were shown to give a covariant description for the spin
of free fields. Defining dP = d*p(p* — M?), one obtains

Ty = / dPdS(p)p*p* f(x.p.8) + O(2). (40)

v 1 v
Sﬁ*\;vz/deS(p) <2Z" —42p[ﬂ8">f(x,p,§)

+ O(#?). (41)

The equations of motion for these tensors can be written
with the help of the Boltzmann equation (23) and the weak
equivalence principle (30) as

0,Thaw = /d“pdS(p)p”(S =0, (42)

h v
ho,SH = /d“pdS(p)EZ’;”(SZ = TLI”], (43)

where energy-momentum conservation in a binary collision
makes the right-hand side of Eq. (42) vanish. On the other
hand, the right-hand side of Eq. (43) is derived from the
conservation of total angular momentum and shows that
spin is, in general, not conserved in collisions. This is
described by the antisymmetric part of the energy-momen-
tum tensor, which contains terms of at least second order in

h. Moreover, in the HW formulation, T[}';(Q, is nonzero only
in the presence of nonlocal collisions. In local collisions,
the orbital angular momentum vanishes and the dipole-
moment tensor itself is a collision invariant [31], which
makes the right-hand side of Eq. (43) vanish. In general,
however, this happens only in global equilibrium. Away
from global equilibrium, the collision term is nonzero, and
thus, there is always dissipative dynamics. In this sense,
“ideal spin hydrodynamics™ exists only if one neglects the
nonlocality of a microscopic collision.

Nonrelativistic limit.—In the nonrelativistic limit, p* —
m(1,v) with the particle three-velocity v, which implies
¥ — ¢i/kgk. With this, the spatial components of the last
equality in Eq. (43) read

| e g h
T%_/II\]V_meuk60<§§k>+m€ukal<y1§§k>, (44)

where we used the Boltzmann equation (23) to replace the
collision term G[f] and introduced the notation
(o..) = (m?/22V/3) [ dPvd’85(s® —3)(...)f. The above
result agrees with Eq. (12.11) of Ref. [39] (up to a constant
due to a different normalization). We also compare to the
results obtained for micropolar fluids. The equation of
interest, here, is Eq. (2.2.9) of Ref. [75], which in the
absence of external fields reads
p(O° + W = §ICT + eURTIk, (45)
where p is the mass density, #' is the internal angular
momentum, C/' is the so-called couple-stress tensor, and
T7* is the (conventional) stress tensor. Using the continuity
equation 9% + & (pu’) =0 in Eq. (45) and comparing
to Eq. (44), we identify m{(h/2)8") = pt’,
Cit = —((h/2)8'p’) + m((h/2)8')ul, and T/ = —TIK, .
Conclusions.—In this Letter, we computed the collision
term in the Boltzmann equation up to first order in 7,
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accounting for the nonlocality of the microscopic collision
process. Nonlocal collisions are essential to convert orbital
into spin angular momentum. We have shown that the
collision term vanishes in global equilibrium, where the
spin potential is equal to the thermal vorticity. In the
approach to equilibrium, a rotating fluid of particles will
develop a nonvanishing polarization, while a polarized
fluid will develop a nonvanishing vorticity. Furthermore,
we have shown that, in a certain pseudogauge choice [74],
the antisymmetric part of the energy-momentum tensor
arises solely from the nonlocal contribution to the collision
term. The equations of motion for the energy-momentum
and spin tensors show that, away from global equilibrium,
nonlocal collisions always imply dissipative dynamics. In
the nonrelativistic limit, we have obtained well-known
results for hydrodynamics with internal degrees of freedom,
as has been applied to, e.g., micropolar fluids [75],
spintronics [76], and chiral active fluids [77]. An interesting
extension of our work would be to derive the equations of
motion of relativistic dissipative spin hydrodynamics using
the method of moments [38].
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