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We present a new method, exact in «, to explicitly compute string tree-level amplitudes involving one
massive state and any number of massless ones. This construction relies on the so-called twisted heterotic
string, which admits only gauge multiplets, a gravitational multiplet, and a single massive supermultiplet in
its spectrum. In this simplified model, we determine the moduli-space integrand of all amplitudes with one
massive state using Berends-Giele currents of the gauge multiplet. These integrands are then straight-
forwardly mapped to gravitational amplitudes in the twisted heterotic string and to the corresponding
massive amplitudes of the conventional type-I and type-II superstrings.
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Introduction.—The historical origin and the discovery of
key features of string theory can be attributed to the study
of its scattering amplitudes. Computations and structural
properties of string amplitudes rely on exactly solvable
correlation functions of vertex operators in a two-dimen-
sional conformal field theory (CFT). For closed strings, the
CFT approach leads to a factorization of the correlators into
holomorphic and antiholomorphic building blocks, so-
called chiral correlators. This property underlies the
tree-level double-copy relation between perturbative grav-
ity and gauge theories obtainable from string theory [1-3],
and inspired loop-level generalizations [4,5].

While the tree-level CFT prescription has long been
textbook material [6,7], recent discoveries of powerful
double-copy structures within the chiral correlators have
dramatically changed our perspective. Tree-level ampli-
tudes of n massless states of the open superstring [8,9] and
the open bosonic string [10,11] can be factorized into
scalar integrals over moduli spaces of punctured disk
worldsheets and quantum field theory (QFT) building
blocks carrying all the dependence on the external polar-
izations. In hindsight, this striking structure can be traced
back to a decomposition of chiral correlators into a basis of
integrals in the twisted cohomology defined by the moduli-
space integration [12,13]. This cohomology decomposition
is a general feature of string theory, its applicability to
massless closed-string amplitudes was demonstrated in
Refs. [11,14-16].
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In this Letter, we present the first all-multiplicity instance
of double-copy structures and cohomology decompositions
of string amplitudes with massive external states. More
specifically, we describe a simple QFT setup that computes
the necessary building blocks for open and closed super-
string amplitudes with n — 1 massless and a single massive
level-1 state. These are derived from Feynman diagrams of
10D super-Yang-Mills (SYM) theory deformed by a cubic
operator involving two gauge multiplets and one spin-2
multiplet analogous to the first massive level of the open
superstring.

Our QFT construction stems from the heterotic version
of the chiral or twisted string theories [17,18]. They differ
from conventional strings by a relative sign flip of the
inverse string tension o’ between the holomorphic and anti-
holomorphic sectors. The level-matching condition is then
flipped, leading to a finite physical spectrum. Accordingly,
the moduli-space integrals in their amplitudes encode the
exchange of a finite set of internal states. The chiral
correlators and their cohomology decompositions, how-
ever, can be freely translated between twisted and conven-
tional strings [18,19].

Because of the finite spectrum, interactions among
massless and massive states of the heterotic twisted strings
can be exactly described by a Lagrangian, making calcu-
lations simpler. According to Refs. [11,20], the & — o
limit of the theory is related to a four-derivative massless
supergravity that becomes conformal in four dimensions.
A massless 4D Lagrangian was derived in Refs. [21,22],
and this theory is equivalent to Witten’s twistor string,
containing both A =4 SYM and conformal supergrav-
ity [23,24].

Here we will use a subsector of the 10D Lagrangian of
the twisted string to reverse-engineer the chiral correlator
for n-point scattering of gauge multiplets and a single
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massive state. This correlator can then be exported to
conventional string theories to obtain the fully simplified
open- and closed-string tree amplitudes involving a mass-
level-one state, with manifest double-copy structure and
their exact o' dependence. As a by-product, the chiral n-
point correlators also determine the gravitational couplings
of a single massive state in the twisted string. Further
details will appear in a longer paper [25].

Basics of heterotic strings.—We begin by reviewing the
twisted heterotic string, comparing it to the conventional
heterotic string.

A. Vertex operators: Physical states of both twisted and
conventional closed strings are represented via vertex
operators of the form

Vier = Vi ® Vie*X, (1)

where the polarization data factorizes into holomorphic and
antiholomorphic pieces, respectively, Vg and V. The plane
waves involve spacetime momenta k,, (with vector indices
m,n,p,...=0,1,...,9) subject to the mass-shell condi-
tion k> + M? = 0. We leave implicit the normal ordering
with respect to the Wick contractions

/

X"(2)X"(w) ~ = 20" flog(z — w) £ log(z = W), (2)

with signature ™" = diag(—1,1,1,...,1). The relative £
sign is positive for conventional and negative for twisted
strings, and it propagates to the Koba-Nielsen factors

KN, = <H e”‘f'x(zf)>
j=1

with z;; = z; — z; and s;; denoting the two-particle case of
the (generalized) dimensionless Mandelstam varia-
bles: s;;. , = (o /4)(k; +k;+ -+ k)%

The physical spectrum of twisted heterotic strings is
described by Eq. (1) with the following chiral halves in
canonical superghost pictures depending on ¢:

n

= H (i) (Zij) 0, (3)

1+ Is<i<)

Iv. Bosonic V; Supersymmetric Vp
0 Ve~ Je Ve ~ep Ale®
Vi~ E,,i0X"" V, ~xSees

I JeJv Vg~ oy iOX A
iéxgja V, ~ em,,pimi"ipe_'”
IOXTIOXL  V,, ~y (10X, — (& [4)pS™)e ™%,

The bosonic side involves Kac-Moody currents J with
adjoint indices a, b, ... = 1,2, ..., dim(G) of an unspecified
gauge group G with generators T7¢ satisfying
(T4, T?] = ¢®“T¢. The supersymmetric side contains the
matter variables 1™, S,,, an of the Ramond-Neveu-Schwarz
(RNS) superstring [26-29], with Weyl-spinor indices

a,p,...=1,2,...,16. The SO(1,9) Pauli matrices satisfy
{r".v"} = 2™, and we are using Ko = k¥l

The massless states depend on the transverse polariza-
tion vectors €,,, €,, and a chiral spinor satisfying ka/,;(ﬂ =0.
The massive states are given by a symmetric traceless
tensor ¢,,,, a 3-form e,,,, and a y-traceless vector-spinor
w5, subject to k"e,,,, = k"¢, = k"y5 = 0.

The physical vertex operators are organized into three
multiplets of 10D N =1 supersymmetry: (i) a gauge
multiplet involving gluon (A) and gluino (X)),

G =ViQ Ve, VL =VI® V.Y, (4)
(ii) a supergravity multiplet involving graviton, B-field and
dilaton (V. ® V,) as well as gravitino and dilatino
(Ve ® V,), (iii) a massive multiplet with k* = —4/d’
comprising a spin-2 field ®,,,, a 3-form E,,, and a
spin—% field W,

V{KI).E,‘I’} = VT ® V{(/),e,l//}eik.x' (5)

The massive states can be viewed as a double copy of a
tachyon, V; =1, with the first mass level of the open
superstring [30]. This construction hinges on the twisted
level-matching condition.

B. Tree-level amplitudes: n-point tree-level string
amplitudes are given by an integral over the moduli space
M., of n-punctured Riemann spheres. The integrand is the
CFT correlator of n string vertices, with the freedom
to fix any triplet of punctures via SL,(C). The conventional
and twisted string amplitudes, respectively, M, and M_,
only differ in the Koba-Nielsen factor (3) and can be
cast as

dzzl...dzz =
Mo(1..on)= [ L5 yN T T, (6
£(1,0m) /gmo Vol SLy(C) LR (6)

Both explicitly factorize the main quantities of interest
here: the chiral correlators Z (Z,). They are rational
functions of z; (z;) and multilinear in the polarizations of
the chiral halves Vg (V), therefore a key origin of double-
copy structures.

The integrals (6) can be expressed in terms of the Kawai-
Lewellen-Tye (KLT) formula [1,31,32] as bilinears in disk
integrals, with a sign flip of o in one of the factors to
describe M_ [18]. The sphere integrals in M__ feature an
infinite number of poles for integer values of the
Mandelstam variables. In contrast, the sphere integrals
with KN_ evaluate to rational functions of Mandelstam
variables and match the pole structure of a QFT with finite
mass spectrum: M> = 0 and M? = 4/d.

Field-theory perspective.—We here translate the three-
point amplitudes M_ of one massive vertex (5) and two
gauge multiplets into the corresponding QFT Feynman
vertices. Their gauge-covariant completion deforms the
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Lagrangian of 10D AN =1 SYM, and the combined
Feynman rules suffice to determine the chiral correlators
T for one massive state and any number of massless ones.
A. Three-point amplitudes: The prescription above
yields the well-known three-point SYM amplitudes

M_(A), Ay, A3) = 2c12% (e - €2)(ky
M_(A}, Xy, X3) = =125 (rad 13), (7)

while the amplitudes with one massive state are simply

M_(A}, A, ®;
M_(A}, A, E;

) \/_5a1a2¢3mnf1p P

) =
M—(‘XI’XZ’ 3)

)

) =

l5a1a263mnpf1 62,
\/J(Sala2¢3mn()(17 )(2)]{’11’
__6alazemnp()(lymnp)(2)

léalazfmn ()(27/mw3n) (8)

M_(X,, Xy, E5

M (Alv XZ"P?’

with 7" = k'€ — k}'el". Their kinematic factors are iden-
tical to those found in the open-superstring amplitudes at
the corresponding mass levels [33-35].

B. Lagrangian: The finite spectrum of the twisted
heterotic string motivates to investigate a Lagrangian
description of the massive amplitudes (8). We will discuss
three kinds of contributions

‘Ek:et = ESYM + ‘Clinear + ﬁquad + . (9)

starting with the standard Lagrangian of A" =1 SYM,

1 .
‘CSYM - TI'{ mnan + L (Xymva)},
4 2
an = amAn - anAm - Z[Am’AnL
V, X = 9,X — i[A,, A, (10)

where we set gyy and the gravitational coupling
k to 1 throughout this Letter. The second term Ly, in
Eq. (9) contains all the gauge interactions linear
in the massive fields, and we will argue that they are
exhausted by the gauge covariantized three-point inter-
actions (8),

[’Iinear = Eminr{AmanAp - %Am[An, Ap]}
o By TH(Xy0 X))
+ x/&7q>m,,Tr{FmPF7, - % (Xy’"V"X)}. (11)

- \/JT%TI'{an (ynX)a}

The third term L,,q in Eq. (9) contains the kinetic terms
of the massive fields, which are not explicitly needed here.
They are uniquely specified and can be mapped to a

-€3) +cye(1,2,3),

Kaluza-Klein multiplet of 11D supergravity. The ellipsis
in Eq. (9) features also a standard N' = 1 supergravity
sector with couplings to any combination of gauge mul-
tiplets and massive states. Moreover, we are omitting
interaction terms of more than one massive state.

A central claim of our proposal is that £;, has no further
operators involving one massive state and an arbitrary
number of gauge multiplets. As a first consistency check,
we have reproduced all four-point and bosonic five-point
string amplitudes with a single massive state from the
Lagrangian terms given here.

A more general argument can be made to rule out higher-
point interactions of the form /o’ ®Tr{F2(a'F)"}. Based
on previous work [11,20], the tensionless limit & — oo
should be well behaved and result in a four-derivative
supergravity theory that is classically conformal after
dimensional reduction to 4D. In this limit, we may redefine

Vo o, - D, to get a dimensionless and massless field
that recombines with the standard graviton into the gravi-
tational field, see, e.g., Refs. [11,21,36,37]. But the field-
strength factor (&’ F)" cannot absorb o since F,,, must
have dimension two in a conformal theory. Therefore,
interactions of the form ®Tr(F>*) and their supersymmet-
ric completions would obstruct a well-defined tension-
less limit.

On these grounds, the ellipsis in Eq. (9) does not refer to
a higher-derivative expansion of an effective Lagrangian. In
conventional string theories, in turn, the description of
massive spin-two scattering through an effective action is
under investigation [38].

C. All-multiplicity single-trace computation: Next we
describe an efficient recursive procedure to compute tree
amplitudes of (n — 1) gauge multiplets and one massive
state from the Lagrangian of the twisted heterotic string.
The terms given in Eq. (9) grant access to the single-trace
sector in the color decomposition

M_(1,2,....n = Y Te(TaT%e) . T%0)
peSn—Z
x A(1,p(2,3,...,n — 1)|n) + multitrace. (12)
Here 1,2, ..., n — 1 refers to gauge-multiplet states, and the

last leg n is taken to be massive. The color-ordered single-
trace amplitudes A4 are cyclic in 1,2,...,n—1 and only
receive contributions from Feynman diagrams involving
propagating gauge multiplets which are completely deter-
mined by Lsyy + Liinear- The omitted terms in Eq. (9) only
affect multitrace contributions to Eq. (12).

Since the Lagrangian L. only features traces over
nested commutators of adjoint fields, the traces in the first
line of Eq. (12) must recombine into color factors that are
products of n — 3 structure constants
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ctlawas...aysla, .y — ~aarb basd

= Tr([[...

. Cyan—SZCZau—Zan—]

[T, T%], T], ...], T%=]T%1).

(13)

As a consequence, permutations of A(1,2,....,n—1|n)
satisfy Kleiss-Kuijf amplitude relations [39], and Eq. (12)
can be more compactly written in a minimal color basis

M_(1,2,...n—=1,n) = Z cailp(as...a,s)lay-
pesn—}
xA(L,p(2,...,n—2),n— 1|n) + multitrace, ~ (14)

in direct analogy with the Dixon-Del Duca—Maltoni
decomposition of gauge-theory amplitudes [40].

D. Perturbiners: We use the perturbiner method [41-49]
to organize the diagrammatic computation of the
color-ordered amplitudes in Eq. (12). To each ordered
word P = 12... in external-particle labels (letters), we
associate multi-particle momenta kp = ky + k, 4+ ... and
multi-particle polarizations such as €, f3", % which are
identified with Berends-Giele currents [50]. The gauge-
multiplet recursions in the Lorenz gauge

€p = k2 Z [ER kg - €g) + €rnfQ"

P P=QR

+5 OKRJ/”’;(Q) - (0« R)} :

= ke — kel — ) (ehek — ehen).
P—OR
o Wp)?
P = ;:2 Z lep(ymrr)s — (Q < R)], (15)
P P=QR

involve sums over all order-preserving deconcatenations of
P = QR into nonempty words Q and R. The recursion ends
with single-particle labels, defined by the on-shell
polarizations.

For the massive fields, Eq. (9) leads to similar recursions
with the following single-trace contributions of gauge
multiplets:

P =Vd Z[ Pyl 5 Ueor” mm)}

P=0R
Va
) ) + cycp,
P=0RS
ep'l = leQ:R {egkRER Yl ()(Q}’mnp)(R)]
2i m n P
3 Z €Q€R€Eg T+ CYCp,
P=0RS
l/_/gla - Z me yp)(R + CyCp. (16)
P=0R

The notation +cycp instructs to add cyclic permutations of
the letters in P. In this way, the n-point amplitudes

A(Lz? T (O 1|q)n) = (¢12‘..11—1)mp<¢n)mp’
A(],zv e, 1 — 1|E ) = (612 n—l)mpq(en)mpq’
A2, on = 1¥,) = (2,017 (Wa ), (17)

are cyclically invariant in 1,2, ...,n — 1.

String amplitudes from QFT.—The introduced QFT
description implies new results for a variety of string
amplitudes that we now describe.

A. Cohomology decomposition: Consider on-shell
momenta k2 = 0 for legs 1,2,....,n—1 and k2 = —4/d
subject to » ! ; k; = 0. For this kinematic configuration
the SL,(C)-fixing (z;.z,-1.2,) = (0,1, 00) yields the
following Koba-Nielsen factors (3) and chiral correlators:

n—1

. + = N4,
KNZ = lim ——= = H (zij)" (Zi;) ™,
Z,—00
Znn 1<i<j
T9 = lim 47, I9 = lim 2297,.  (18)
2,00 Z,—00

The amplitude prescription (6) then specializes to
d*z,...d%z,_ _
Mi(l,...,n):/w%mgngzg. (19)

For n — 1 gauge multiplets, the single-trace contributions to

the antiholomorphic chiral correlators are [51]

jf’ = <ja1 (Zl )jaz (Z2) S (Zn—l )>single trace
= Z Cal\P(“z“3~~an—2)\an—1PT(]’ID(Z’

/)ES,,,3

n—2),n-1),
(20)

where c¢®ila2a3---ai2lami denote color factors (13), and the
open chains

1
n—1)= (21)
212223+ -Zp-3,n-2%n-2,n-1

PT(1,2. ...,

arise from SL,(C)-fixed Parke-Taylor factors. The permu-
tations of PT with p € §,,_3 in Eq. (20) form a basis of
chiral integrands under integration by parts, i.e., they span
the twisted cohomology defined by the Koba-Nielsen factor
(3) [52]. Accordingly, the holomorphic chiral correlator can
be expressed in a Parke-Taylor basis as

Ip = > KWR-n=2lIpT(1, p(2,

/)ESn—3

n—2),n—1).

(22)
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The kinematic factors K'I"=! are multilinear in the polar-
izations of n — 1 gauge multiplets and the massive state.

B. The supersymmetric chiral correlator: The kinematic
factors in Eq. (22) can be found via a matching with the
QFT computation described above. This is possible
because the (n—3)!x (n—3)! matrix of Parke-Taylor
integrals in Eq. (19) is nondegenerate, i.e., there is a matrix
inverse S, = m~! of

d*z;...d%z,_
m(p|g)_/ @TSZ”KNSO
Cn—S T

xPT(1,p(2,...,n=2),n—1)PT(1,6(2,....n=2),n—1).
(23)

For instance, Sy(@|)) =1 at n=3 and S,(22) =
512523/ (12 + $23) at n = 4. In fact, m(p|o) and its inverse
So(plo) coincide with the doubly partial amplitudes of bi-
adjoint scalars [53] and the KLT kernel [1,31,32] for
massless external states as long as all expressions are
written in terms of the kinematic variables

Sn:{sij’lSi<jsn_1}\{sl,n—l} (2’4)

that occur in KN, where s, ,,_; drops outby z,,_;; = 1 'in
our SL, fixing. However, the relation ZEII < Sij =
(' /4)k2 to reinstate s;,_, varies with the mass of the
nth leg.

Using the chiral correlator representations (20)—(22), and
the sphere integrals (23), the kinematic factors K'I/"=1 in
Iy are uniquely determined to be

Ig = Y PT(Lp(2....n—2).n—1)

PsOES, 3

x So(plo)A(l,6(2,...,n=2),n—1|n), (25)

by requiring the color-dressed amplitude (14) to be repro-
duced by the twisted heterotic string. This chiral correlator
and the QFT construction of A using perturbiner
|

F/)(S”) =

1<i<j
0<zp<z3<...<2,2<1 J

The rescaling o — 4@’ characteristic to open strings
applies to the entire right-hand side of Eq. (28). In this
case, n is Lie-algebra valued, i.e., Eq. (28) is the coefficient
of the n trace Tr(T“7T%...T%). The open-string
incarnation of the massive spin-2 field has been related
to conformal supergravity in the massless limit [57].

As functions of the (n/2)(n — 3) Mandelstam invariants
S, in (24), the disk integrals F* in Eq. (29) coincide with the

techniques are the main result of this Letter. Their value
will be underlined by the subsequent applications.

C. Implications for other twisted heterotic string ampli-
tudes: Using the above ingredients, it is straightforward to
compute multitrace or gravitational amplitudes. For exam-
ple, the four-point amplitude of two gauge multiplets 1,3, a
gravitational multiplet 2, and a massive multiplet 4 follows
from Eq. (19) along with Z§ in Eq. (25) and

éz-k1+é2~k3>

- (26)
21 223

Iy = —205/5“1“3(

The sphere integrations then yield

2 /5a1a3
M_(1,2,,3,4) = 1“

A(1,2.3

4
+S13 _)

X (82385 - ky — $1265 - k3),  (27)

which exhibits the expected massless poles from gauge-
multiplet exchange in the s1,, $,3 channels and poles in 13
and 1+ 513 from graviton- and massive-state exchange.
The same techniques lead to all-multiplicity results for
multitrace and gravitational amplitudes with a single
massive state: The underlying Z%° are straightforward to
obtain from Wick contractions of J(z;) & €; - 9:X_(z;),
and their Parke-Taylor decompositions are well known
from conventional strings [54-56].

D. Implications for type-I superstrings: We can also
export our method to conventional strings. Tree-level
amplitudes of the open type-I superstring with only one
massive mutiplet n boil down to 7 RKNL_ 2 integrated over a
disk boundary,

Agper(1.2,....n=1,n) = Z F*(s,)

peSn—:&
x A(Lp(2,....n=2),n=1|n)|y_ae>
(28)

where we have fixed zy =0 and z,_; =1 in

n—1
N N N Sy Sp—2.n—
/ dedZ3...dZn_2 H ‘Z,‘j|s'/' Xp{ﬂ <i+£>< 21 ++A>} (29)

221 \Z31 <32 in-2,1 Zn—2,n-3

[

basis in the massless open-string amplitudes of Ref. [8].
However, the relations between s, and s ,_; or s;, with
j=1,2,...,n—1 depend on the external masses, i.e., the
denominator of the four-point example [33,35]

(14 512)0(1 + 553)

Atypel(1,273,é): F(1+S|2+523>

A(1,2,3]4)

(30)
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equals I'(—s3) in the massive case rather than I'(1 — s;3) as
in the massless one. Also the five-point instance of Eq. (28)
for external states @5 [58] or E5 and four gluons has been
verified via explicit integral reduction in the chiral corre-
lator which also crosschecks fermionic component ampli-
tudes via supersymmetry [30,59].

E. Implications for type-II superstrings: Similarly, the
sphere integral M, in Eq. (19) with Z¢® = 7{ determines
type-II amplitudes with a single mass-level-one multiplet
from two copies of Eq. (25),

Mypen(1.2....n=1.n)= > G,pls,)

/)556511—3
xA(1,p(2,...,n=2),n—1|n) A(1,6(2,....,n=2),n—1|n).
(31)

The double-copy of the states {®, E, ¥} in Eq. (9) does not

arise in the twisted heterotic string and involves spins

ranging between 0 and 4. As functions of the Mandelstam

basis in Eq. (24), the sphere integrals G,,(s,) coincide

with those in the expansion of massless type-II amplitudes

in terms of Agym(1,p,n — 1, n) Agym(1,0,n— 1,n) [14].
In the four-point example

1/ si»s 2 ‘
Gop(ss) == (7]2 2 > Adzzzkzzs'z_z“ — P2

T S12+523
D1+ 512)0(1 + 513)T(1 + 523)
= 812513523 )
INQE Sl2)F(1 - 513)F(1 —523)
(32)

the prefactor of s1,535,3 cancels the massless double poles
from A(1,2,3]4).A(1,2,3]4). It is striking that the QFT
computation of the kinematic factors A completely fixes
the polarization dependence of the string amplitudes
Egs. (28) and (31) where the propagation of the complete
massive spectrum is reflected by well-studied scalar inte-
grals F” and G,,.

Conclusions and further directions.—We have devel-
oped here a new method combining QFT and string-theory
techniques to obtain all-multiplicity tree amplitudes (exact
in @) with a massive external state. Our results readily
apply to the gauge and gravity sectors of the twisted
heterotic string as well as type-I and type-II superstrings.

The backbone of our construction is a cohomology
decomposition of the moduli-space integrands, which is
known [52] to directly generalize to string amplitudes with
several massive states, as well as higher mass levels of
conventional string theories. It is remarkable that the
currently known all-multiplicity coefficients have a QFT
interpretation for every type of string theory. For several
massive states, or higher mass-level states (see, for in-
stance, Refs. [60,61] for detailed studies of mass
level 2), one may expect that the coefficients of the

cohomology decompositions continue to exhibit structural
simplicity, which hopefully stems from a QFT perspective.
Since the twisted heterotic string does not admit higher
mass-level states, such a construction goes beyond the
scope of the current treatment.

A more direct generalization is to formulate the obtained
Lagrangian and amplitudes in pure-spinor superspace,
based on massive vertex operators [62—64]. Besides mani-
fest spacetime supersymmetry, this gives access to BRST-
cohomology methods. Similarly, we expect our techniques
to be useful at loop level: The Lagrangian description of
massive states may shed light on the open questions on loop
amplitudes of twisted strings, and feed into conventional-
string amplitudes, for instance, via unitarity cuts.

Potential physics applications of massive string ampli-
tudes include exploring chaos in the scattering of excited
string states [65], motivated by their correspondence with
black-hole microstates [66]. The relevance of excited string
states for black-hole physics, causality and unitarity led to a
regained interest in their scattering amplitudes [67-69].
Moreover, massive strings resonances may become
relevant at colliders in the case of a low string scale
[35,70,71].

An interesting generalization of our work is to consider
amplitudes with two massive modes: Such higher-spin
massive amplitudes were recently used for describing
classical Kerr black-hole scattering [72], needed for binary
inspiral and gravitational wave physics. Similarly, there has
been a revival of string-amplitude methods for black-hole
eikonal scattering [73,74], which can benefit from better
knowledge of massive string amplitudes. Finally, massive
string amplitudes in flat spacetime also carry relevant
information for the AdS/CFT correspondence, as, for
instance, showcased in Refs. [75-77].
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