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We present a new method, exact in α0, to explicitly compute string tree-level amplitudes involving one
massive state and any number of massless ones. This construction relies on the so-called twisted heterotic
string, which admits only gauge multiplets, a gravitational multiplet, and a single massive supermultiplet in
its spectrum. In this simplified model, we determine the moduli-space integrand of all amplitudes with one
massive state using Berends-Giele currents of the gauge multiplet. These integrands are then straight-
forwardly mapped to gravitational amplitudes in the twisted heterotic string and to the corresponding
massive amplitudes of the conventional type-I and type-II superstrings.
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Introduction.—The historical origin and the discovery of
key features of string theory can be attributed to the study
of its scattering amplitudes. Computations and structural
properties of string amplitudes rely on exactly solvable
correlation functions of vertex operators in a two-dimen-
sional conformal field theory (CFT). For closed strings, the
CFTapproach leads to a factorization of the correlators into
holomorphic and antiholomorphic building blocks, so-
called chiral correlators. This property underlies the
tree-level double-copy relation between perturbative grav-
ity and gauge theories obtainable from string theory [1–3],
and inspired loop-level generalizations [4,5].
While the tree-level CFT prescription has long been

textbook material [6,7], recent discoveries of powerful
double-copy structures within the chiral correlators have
dramatically changed our perspective. Tree-level ampli-
tudes of n massless states of the open superstring [8,9] and
the open bosonic string [10,11] can be factorized into
scalar integrals over moduli spaces of punctured disk
worldsheets and quantum field theory (QFT) building
blocks carrying all the dependence on the external polar-
izations. In hindsight, this striking structure can be traced
back to a decomposition of chiral correlators into a basis of
integrals in the twisted cohomology defined by the moduli-
space integration [12,13]. This cohomology decomposition
is a general feature of string theory, its applicability to
massless closed-string amplitudes was demonstrated in
Refs. [11,14–16].

In this Letter, we present the first all-multiplicity instance
of double-copy structures and cohomology decompositions
of string amplitudes with massive external states. More
specifically, we describe a simple QFT setup that computes
the necessary building blocks for open and closed super-
string amplitudes with n − 1 massless and a single massive
level-1 state. These are derived from Feynman diagrams of
10D super-Yang-Mills (SYM) theory deformed by a cubic
operator involving two gauge multiplets and one spin-2
multiplet analogous to the first massive level of the open
superstring.
Our QFT construction stems from the heterotic version

of the chiral or twisted string theories [17,18]. They differ
from conventional strings by a relative sign flip of the
inverse string tension α0 between the holomorphic and anti-
holomorphic sectors. The level-matching condition is then
flipped, leading to a finite physical spectrum. Accordingly,
the moduli-space integrals in their amplitudes encode the
exchange of a finite set of internal states. The chiral
correlators and their cohomology decompositions, how-
ever, can be freely translated between twisted and conven-
tional strings [18,19].
Because of the finite spectrum, interactions among

massless and massive states of the heterotic twisted strings
can be exactly described by a Lagrangian, making calcu-
lations simpler. According to Refs. [11,20], the α0 → ∞
limit of the theory is related to a four-derivative massless
supergravity that becomes conformal in four dimensions.
A massless 4D Lagrangian was derived in Refs. [21,22],
and this theory is equivalent to Witten’s twistor string,
containing both N ¼ 4 SYM and conformal supergrav-
ity [23,24].
Here we will use a subsector of the 10D Lagrangian of

the twisted string to reverse-engineer the chiral correlator
for n-point scattering of gauge multiplets and a single
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massive state. This correlator can then be exported to
conventional string theories to obtain the fully simplified
open- and closed-string tree amplitudes involving a mass-
level-one state, with manifest double-copy structure and
their exact α0 dependence. As a by-product, the chiral n-
point correlators also determine the gravitational couplings
of a single massive state in the twisted string. Further
details will appear in a longer paper [25].
Basics of heterotic strings.—We begin by reviewing the

twisted heterotic string, comparing it to the conventional
heterotic string.
A. Vertex operators: Physical states of both twisted and

conventional closed strings are represented via vertex
operators of the form

VL⊗R ¼ V̄L ⊗ VReik·X; ð1Þ

where the polarization data factorizes into holomorphic and
antiholomorphic pieces, respectively, VR and V̄L. The plane
waves involve spacetime momenta km (with vector indices
m; n; p;… ¼ 0; 1;…; 9) subject to the mass-shell condi-
tion k2 þM2 ¼ 0. We leave implicit the normal ordering
with respect to the Wick contractions

XmðzÞXnðwÞ ∼ −
α0

2
ηmn½logðz − wÞ � logðz̄ − w̄Þ�; ð2Þ

with signature ηmn ¼ diagð−1; 1; 1;…; 1Þ. The relative �
sign is positive for conventional and negative for twisted
strings, and it propagates to the Koba-Nielsen factors

KN� ¼
�Yn

j¼1

eikj·XðzjÞ
�

�
¼

Yn
1≤i<j

ðzijÞsijðz̄ijÞ�sij ; ð3Þ

with zij ¼ zi − zj and sij denoting the two-particle case of
the (generalized) dimensionless Mandelstam varia-
bles: sij…p ¼ ðα0=4Þðki þ kj þ � � � þ kpÞ2.
The physical spectrum of twisted heterotic strings is

described by Eq. (1) with the following chiral halves in
canonical superghost pictures depending on φ:

lv. Bosonic V̄L Supersymmetric VR

0 V̄a
J ∼ J̄a Vϵ ∼ ϵmλ

me−φ

V̄ ϵ̄ ∼ ϵ̄mi∂̄Xm
� Vχ ∼ χαSαe−

φ
2

1 J̄aJ̄b Vϕ ∼ ϕmni∂Xm
�λ

ne−φ

i∂̄Xm
�J̄

a Ve ∼ emnpλ
mλnλpe−φ

i∂̄Xm
�i∂̄Xn

� Vψ ∼ ψα
mði∂Xm

�Sα − ðα0=4Þ=kαβSmβÞe−φ
2 :

The bosonic side involves Kac-Moody currents J̄a with
adjoint indices a; b;… ¼ 1; 2;…; dimðGÞ of an unspecified
gauge group G with generators Ta satisfying
½Ta; Tb� ¼ cabcTc. The supersymmetric side contains the
matter variables λm, Sα, S

β
m of the Ramond-Neveu-Schwarz

(RNS) superstring [26–29], with Weyl-spinor indices

α; β;… ¼ 1; 2;…; 16. The SO(1,9) Pauli matrices satisfy
fγm; γng ¼ 2ηmn, and we are using =kαβ ≡ kmγmαβ.
The massless states depend on the transverse polariza-

tion vectors ϵm, ϵ̄m and a chiral spinor satisfying =kαβχβ ¼ 0.
The massive states are given by a symmetric traceless
tensor ϕmn, a 3-form emnp and a γ-traceless vector-spinor
ψα
m subject to kmemnp ¼ kmϕmn ¼ kmψα

m ¼ 0.
The physical vertex operators are organized into three

multiplets of 10D N ¼ 1 supersymmetry: (i) a gauge
multiplet involving gluon (A) and gluino (XÞ,

Va
A ¼ V̄a

J̄ ⊗ Vϵeik·X; Va
X ¼ V̄a

J̄ ⊗ Vχeik·X; ð4Þ

(ii) a supergravity multiplet involving graviton, B-field and
dilaton (V̄ ϵ̄ ⊗ Vϵ) as well as gravitino and dilatino
(V̄ ϵ̄ ⊗ Vχ), (iii) a massive multiplet with k2 ¼ −4=α0
comprising a spin-2 field Φmn, a 3-form Emnp and a
spin-3

2
field Ψα

m,

VfΦ;E;Ψg ¼ V̄T ⊗ Vfϕ;e;ψgeik·X: ð5Þ
The massive states can be viewed as a double copy of a
tachyon, V̄T ¼ 1, with the first mass level of the open
superstring [30]. This construction hinges on the twisted
level-matching condition.
B. Tree-level amplitudes: n-point tree-level string

amplitudes are given by an integral over the moduli space
M0;n of n-punctured Riemann spheres. The integrand is the
CFT correlator of n string vertices, with the freedom
to fix any triplet of punctures via SL2ðCÞ. The conventional
and twisted string amplitudes, respectively, Mþ and M−,
only differ in the Koba-Nielsen factor (3) and can be
cast as

M�ð1;…; nÞ ¼
Z
M0;n

d2z1…d2zn
πn−3vol SL2ðCÞ

KN�ĪLIR: ð6Þ

Both explicitly factorize the main quantities of interest
here: the chiral correlators IR (ĪL). They are rational
functions of zj (z̄j) and multilinear in the polarizations of
the chiral halves VR (V̄L), therefore a key origin of double-
copy structures.
The integrals (6) can be expressed in terms of the Kawai-

Lewellen-Tye (KLT) formula [1,31,32] as bilinears in disk
integrals, with a sign flip of α0 in one of the factors to
describe M− [18]. The sphere integrals in Mþ feature an
infinite number of poles for integer values of the
Mandelstam variables. In contrast, the sphere integrals
with KN− evaluate to rational functions of Mandelstam
variables and match the pole structure of a QFTwith finite
mass spectrum: M2 ¼ 0 and M2 ¼ 4=α0.
Field-theory perspective.—We here translate the three-

point amplitudes M− of one massive vertex (5) and two
gauge multiplets into the corresponding QFT Feynman
vertices. Their gauge-covariant completion deforms the
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Lagrangian of 10D N ¼ 1 SYM, and the combined
Feynman rules suffice to determine the chiral correlators
IR for one massive state and any number of massless ones.
A. Three-point amplitudes: The prescription above

yields the well-known three-point SYM amplitudes

M−ðA1; A2; A3Þ ¼ 2ca1a2a3ðϵ1 · ϵ2Þðk1 · ϵ3Þ þ cycð1; 2; 3Þ;
M−ðA1;X2;X3Þ ¼ −ca1a2a3ðχ2=ϵ1χ3Þ; ð7Þ

while the amplitudes with one massive state are simply

M−ðA1; A2;Φ3Þ ¼ 2
ffiffiffiffi
α0

p
δa1a2ϕ3mnfm1pf

pn
2 ;

M−ðA1; A2; E3Þ ¼ iδa1a2e3mnpfmn
1 ϵp2 ;

M−ðX1;X2;Φ3Þ ¼ −
ffiffiffiffi
α0

p
δa1a2ϕ3mnðχ1γmχ2Þkn1;

M−ðX1;X2; E3Þ ¼ −
i
12

δa1a2emnp
3 ðχ1γmnpχ2Þ;

M−ðA1;X2;Ψ3Þ ¼ iδa1a2fmn
1 ðχ2γmψ3nÞ; ð8Þ

with fmn
i ¼ kmi ϵ

n
i − kni ϵ

m
i . Their kinematic factors are iden-

tical to those found in the open-superstring amplitudes at
the corresponding mass levels [33–35].
B. Lagrangian: The finite spectrum of the twisted

heterotic string motivates to investigate a Lagrangian
description of the massive amplitudes (8). We will discuss
three kinds of contributions

L−
het ¼ LSYM þ Llinear þ Lquad þ…; ð9Þ

starting with the standard Lagrangian of N ¼ 1 SYM,

LSYM ¼ Tr

�
−
1

4
FmnFmn þ i

2
ðXγm∇mXÞ

�
;

Fmn ¼ ∂mAn − ∂nAm − i½Am; An�;
∇mX ¼ ∂mX − i½Am;X �; ð10Þ

where we set gYM and the gravitational coupling
κ to 1 throughout this Letter. The second term Llinear in
Eq. (9) contains all the gauge interactions linear
in the massive fields, and we will argue that they are
exhausted by the gauge covariantized three-point inter-
actions (8),

Llinear ¼ EmnpTr

�
Am∂nAp −

i
3
Am½An; Ap�

�

−
i
24

EmnpTrðXγmnpXÞ −
ffiffiffiffi
α0

p
Ψα

mTrfFmnðγnXÞαg

þ
ffiffiffiffi
α0

p
ΦmnTr

�
FmpFn

p −
i
2
ðXγm∇nXÞ

�
: ð11Þ

The third term Lquad in Eq. (9) contains the kinetic terms
of the massive fields, which are not explicitly needed here.
They are uniquely specified and can be mapped to a

Kaluza-Klein multiplet of 11D supergravity. The ellipsis
in Eq. (9) features also a standard N ¼ 1 supergravity
sector with couplings to any combination of gauge mul-
tiplets and massive states. Moreover, we are omitting
interaction terms of more than one massive state.
A central claim of our proposal is that L−

het has no further
operators involving one massive state and an arbitrary
number of gauge multiplets. As a first consistency check,
we have reproduced all four-point and bosonic five-point
string amplitudes with a single massive state from the
Lagrangian terms given here.
A more general argument can be made to rule out higher-

point interactions of the form
ffiffiffiffi
α0

p
ΦTrfF2ðα0FÞNg. Based

on previous work [11,20], the tensionless limit α0 → ∞
should be well behaved and result in a four-derivative
supergravity theory that is classically conformal after
dimensional reduction to 4D. In this limit, we may redefineffiffiffiffi
α0

p
Φmn → Φmn to get a dimensionless and massless field

that recombines with the standard graviton into the gravi-
tational field, see, e.g., Refs. [11,21,36,37]. But the field-
strength factor ðα0FÞN cannot absorb α0 since Fmn must
have dimension two in a conformal theory. Therefore,
interactions of the form ΦTrðF≥3Þ and their supersymmet-
ric completions would obstruct a well-defined tension-
less limit.
On these grounds, the ellipsis in Eq. (9) does not refer to

a higher-derivative expansion of an effective Lagrangian. In
conventional string theories, in turn, the description of
massive spin-two scattering through an effective action is
under investigation [38].
C. All-multiplicity single-trace computation: Next we

describe an efficient recursive procedure to compute tree
amplitudes of (n − 1) gauge multiplets and one massive
state from the Lagrangian of the twisted heterotic string.
The terms given in Eq. (9) grant access to the single-trace
sector in the color decomposition

M−ð1; 2;…; n − 1; nÞ ¼
X
ρ∈Sn−2

TrðTa1Taρð2Þ…Taρðn−1Þ Þ

×Að1; ρð2; 3;…; n − 1ÞjnÞ þmultitrace: ð12Þ

Here 1; 2;…; n − 1 refers to gauge-multiplet states, and the
last leg n is taken to be massive. The color-ordered single-
trace amplitudes A are cyclic in 1; 2;…; n − 1 and only
receive contributions from Feynman diagrams involving
propagating gauge multiplets which are completely deter-
mined by LSYM þ Llinear. The omitted terms in Eq. (9) only
affect multitrace contributions to Eq. (12).
Since the Lagrangian L−

het only features traces over
nested commutators of adjoint fields, the traces in the first
line of Eq. (12) must recombine into color factors that are
products of n − 3 structure constants
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ca1ja2a3…an−2jan−1 ¼ ca1a2bcba3d…cyan−3zczan−2an−1

¼ Trð½½…½½Ta1 ; Ta2 �; Ta3 �;…�; Tan−2 �Tan−1Þ:
ð13Þ

As a consequence, permutations of Að1; 2;…; n − 1jnÞ
satisfy Kleiss-Kuijf amplitude relations [39], and Eq. (12)
can be more compactly written in a minimal color basis

M−ð1; 2;…; n − 1; nÞ ¼
X
ρ∈Sn−3

ca1jρða2…an−2Þjan−1

×A(1; ρð2;…; n − 2Þ; n − 1jn)þmultitrace; ð14Þ
in direct analogy with the Dixon–Del Duca–Maltoni
decomposition of gauge-theory amplitudes [40].
D. Perturbiners: We use the perturbiner method [41–49]

to organize the diagrammatic computation of the
color-ordered amplitudes in Eq. (12). To each ordered
word P ¼ 12… in external-particle labels (letters), we
associate multi-particle momenta kP ¼ k1 þ k2 þ… and
multi-particle polarizations such as ϵmP , f

mn
P , χαP which are

identified with Berends-Giele currents [50]. The gauge-
multiplet recursions in the Lorenz gauge

ϵmP ¼ 1

k2P

X
P¼QR

�
ϵmR ðkR · ϵQÞ þ ϵRnfmn

Q

þ 1

2
ðχRγmχQÞ − ðQ ↔ RÞ

�
;

fmn
P ¼ kmPϵ

n
P − knPϵ

m
P −

X
P¼QR

ðϵmQϵnR − ϵnQϵ
m
R Þ;

χαP ¼ ð=kPÞαβ
k2P

X
P¼QR

½ϵmQðγmχRÞβ − ðQ ↔ RÞ�; ð15Þ

involve sums over all order-preserving deconcatenations of
P ¼ QR into nonempty wordsQ and R. The recursion ends
with single-particle labels, defined by the on-shell
polarizations.
For the massive fields, Eq. (9) leads to similar recursions

with the following single-trace contributions of gauge
multiplets:

ϕmn
P ¼

ffiffiffiffi
α0

p X
P¼QR

�
fmQpf

pn
R þ 1

2
ðχQγmknRχRÞ

�

−
ffiffiffiffi
α0

p

2

X
P¼QRS

ðχQγmϵnRχSÞ þ cycP;

emnp
P ¼ i

X
P¼QR

�
ϵmQk

n
Rϵ

p
R −

1

24
ðχQγmnpχRÞ

�

−
2i
3

X
P¼QRS

ϵmQϵ
n
Rϵ

p
S þ cycP;

ψ̄m
Pα ¼ −i

X
P¼QR

fmp
Q ðγpχRÞα þ cycP: ð16Þ

The notation þcycP instructs to add cyclic permutations of
the letters in P. In this way, the n-point amplitudes

Að1; 2;…; n − 1jΦnÞ ¼ ðϕ12…n−1ÞmpðϕnÞmp;

Að1; 2;…; n − 1jEnÞ ¼ ðe12…n−1ÞmpqðenÞmpq;

Að1; 2;…; n − 1jΨnÞ ¼ ðψ̄12…n−1Þmα ðψnÞαm; ð17Þ

are cyclically invariant in 1; 2;…; n − 1.
String amplitudes from QFT.—The introduced QFT

description implies new results for a variety of string
amplitudes that we now describe.
A. Cohomology decomposition: Consider on-shell

momenta k2j ¼ 0 for legs 1; 2;…; n − 1 and k2n ¼ −4=α0
subject to

P
n
i¼1 ki ¼ 0. For this kinematic configuration

the SL2ðCÞ-fixing ðz1; zn−1; znÞ → ð0; 1;∞Þ yields the
following Koba-Nielsen factors (3) and chiral correlators:

KN∞
� ¼ lim

zn→∞

KN�
z2nz̄�2

n
¼

Yn−1
1≤i<j

ðzijÞsijðz̄ijÞ�sij ;

I∞
R ¼ lim

zn→∞
z4nIR; Ī∞

L ¼ lim
z̄n→∞

z̄2�2
n ĪL: ð18Þ

The amplitude prescription (6) then specializes to

M�ð1;…; nÞ ¼
Z
Cn−3

d2z2…d2zn−2
πn−3

KN∞
� Ī

∞
L I

∞
R : ð19Þ

For n − 1 gauge multiplets, the single-trace contributions to
the antiholomorphic chiral correlators are [51]

Ī∞
L ¼ hJ̄a1ðz1ÞJ̄a2ðz2Þ…J̄an−1ðzn−1Þisingle trace

¼
X
ρ∈Sn−3

ca1jρða2a3…an−2Þjan−1PT(1; ρð2;…; n − 2Þ; n − 1);

ð20Þ

where ca1ja2a3…an−2jan−1 denote color factors (13), and the
open chains

PTð1; 2;…; n − 1Þ ¼ 1

z12z23…zn−3;n−2zn−2;n−1
ð21Þ

arise from SL2ðCÞ-fixed Parke-Taylor factors. The permu-
tations of PT with ρ ∈ Sn−3 in Eq. (20) form a basis of
chiral integrands under integration by parts, i.e., they span
the twisted cohomology defined by the Koba-Nielsen factor
(3) [52]. Accordingly, the holomorphic chiral correlator can
be expressed in a Parke-Taylor basis as

I∞
R ¼

X
ρ∈Sn−3

K1jρð2…n−2Þjn−1PT(1; ρð2;…; n − 2Þ; n − 1):

ð22Þ
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The kinematic factors K1jρjn−1 are multilinear in the polar-
izations of n − 1 gauge multiplets and the massive state.
B. The supersymmetric chiral correlator: The kinematic

factors in Eq. (22) can be found via a matching with the
QFT computation described above. This is possible
because the ðn − 3Þ! × ðn − 3Þ! matrix of Parke-Taylor
integrals in Eq. (19) is nondegenerate, i.e., there is a matrix
inverse S0 ¼ m−1 of

mðρjσÞ¼
Z
Cn−3

d2z2…d2zn−2
πn−3

KN∞
−

×PT(1;ρð2;…;n−2Þ;n−1)PT(1;σð2;…;n−2Þ;n−1):

ð23Þ

For instance, S0ð=0j=0Þ ¼ 1 at n ¼ 3 and S0ð2j2Þ ¼
s12s23=ðs12 þ s23Þ at n ¼ 4. In fact, mðρjσÞ and its inverse
S0ðρjσÞ coincide with the doubly partial amplitudes of bi-
adjoint scalars [53] and the KLT kernel [1,31,32] for
massless external states as long as all expressions are
written in terms of the kinematic variables

sn ¼ fsij; 1 ≤ i < j ≤ n − 1gnfs1;n−1g ð24Þ

that occur in KN∞
� , where s1;n−1 drops out by zn−1;1 ¼ 1 in

our SL2 fixing. However, the relation
P

n−1
1≤i<j sij ¼

ðα0=4Þk2n to reinstate s1;n−1 varies with the mass of the
nth leg.
Using the chiral correlator representations (20)–(22), and

the sphere integrals (23), the kinematic factors K1jρjn−1 in
I∞
R are uniquely determined to be

I∞
R ¼

X
ρ;σ∈Sn−3

PT(1; ρð2;…; n − 2Þ; n − 1)

× S0ðρjσÞA(1; σð2;…; n − 2Þ; n − 1jn); ð25Þ

by requiring the color-dressed amplitude (14) to be repro-
duced by the twisted heterotic string. This chiral correlator
and the QFT construction of A using perturbiner

techniques are the main result of this Letter. Their value
will be underlined by the subsequent applications.
C. Implications for other twisted heterotic string ampli-

tudes: Using the above ingredients, it is straightforward to
compute multitrace or gravitational amplitudes. For exam-
ple, the four-point amplitude of two gauge multiplets 1,3, a
gravitational multiplet 2h and a massive multiplet 4 follows
from Eq. (19) along with I∞

R in Eq. (25) and

Ī∞
L ¼ −2α0δa1a3

	
ϵ̄2 · k1
z̄21

þ ϵ̄2 · k3
z̄23



: ð26Þ

The sphere integrations then yield

M−ð1; 2h; 3; 4Þ ¼
2α0δa1a3

1þ s13
Að1; 2; 3j4Þ

× ðs23ϵ̄2 · k1 − s12ϵ̄2 · k3Þ; ð27Þ

which exhibits the expected massless poles from gauge-
multiplet exchange in the s12, s23 channels and poles in s13
and 1þ s13 from graviton- and massive-state exchange.
The same techniques lead to all-multiplicity results for
multitrace and gravitational amplitudes with a single
massive state: The underlying Ī∞

L are straightforward to
obtain from Wick contractions of J̄aiðziÞ & ϵ̄j · ∂ z̄X−ðzjÞ,
and their Parke-Taylor decompositions are well known
from conventional strings [54–56].
D. Implications for type-I superstrings: We can also

export our method to conventional strings. Tree-level
amplitudes of the open type-I superstring with only one
massive mutiplet n boil down to IRKN

1=2
þ integrated over a

disk boundary,

Atype Ið1;2;…;n−1;nÞ¼
X
ρ∈Sn−3

FρðsnÞ

×A(1;ρð2;…;n−2Þ;n−1jn)jα0→4α0 ;

ð28Þ

where we have fixed z1 ¼ 0 and zn−1 ¼ 1 in

FρðsnÞ ¼
Z

0<z2<z3<…<zn−2<1

dz2dz3…dzn−2
Yn−1
1≤i<j

jzijjsij × ρ

�
s21
z21

	
s31
z31

þ s32
z32



…

	
sn−2;1
zn−2;1

þ � � � þ sn−2;n−3
zn−2;n−3


�
: ð29Þ

The rescaling α0 → 4α0 characteristic to open strings
applies to the entire right-hand side of Eq. (28). In this
case, n is Lie-algebra valued, i.e., Eq. (28) is the coefficient
of the n trace TrðTa1Ta2…TanÞ. The open-string
incarnation of the massive spin-2 field has been related
to conformal supergravity in the massless limit [57].
As functions of the ðn=2Þðn − 3Þ Mandelstam invariants

sn in (24), the disk integrals Fρ in Eq. (29) coincide with the

basis in the massless open-string amplitudes of Ref. [8].
However, the relations between sn and s1;n−1 or sjn with
j ¼ 1; 2;…; n − 1 depend on the external masses, i.e., the
denominator of the four-point example [33,35]

Atype Ið1; 2; 3; 4Þ ¼
Γð1þ s12ÞΓð1þ s23Þ
Γð1þ s12 þ s23Þ

Að1; 2; 3j4Þ

ð30Þ
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equals Γð−s13Þ in the massive case rather than Γð1 − s13Þ as
in the massless one. Also the five-point instance of Eq. (28)
for external states Φ5 [58] or E5 and four gluons has been
verified via explicit integral reduction in the chiral corre-
lator which also crosschecks fermionic component ampli-
tudes via supersymmetry [30,59].
E. Implications for type-II superstrings: Similarly, the

sphere integral Mþ in Eq. (19) with I∞
L ¼ I∞

R determines
type-II amplitudes with a single mass-level-one multiplet
from two copies of Eq. (25),

Mtype IIð1;2;…;n−1;nÞ¼
X

ρ;σ∈Sn−3

GρjσðsnÞ

×A(1;ρð2;…;n−2Þ;n−1jn)A(1;σð2;…;n−2Þ;n−1jn):
ð31Þ

The double-copy of the states fΦ; E;Ψg in Eq. (9) does not
arise in the twisted heterotic string and involves spins
ranging between 0 and 4. As functions of the Mandelstam
basis in Eq. (24), the sphere integrals GρjσðsnÞ coincide
with those in the expansion of massless type-II amplitudes
in terms of ASYMð1; ρ; n − 1; nÞASYMð1; σ; n − 1; nÞ [14].
In the four-point example

G2j2ðs4Þ ¼
1

π

	
s12s23

s12 þ s23



2
Z
C
d2z2jz2j2s12−2j1 − z2j2s23−2

¼ s12s13s23
Γð1þ s12ÞΓð1þ s13ÞΓð1þ s23Þ
Γð1 − s12ÞΓð1 − s13ÞΓð1 − s23Þ

;

ð32Þ

the prefactor of s12s13s23 cancels the massless double poles
from Að1; 2; 3j4Þ ¯Að1; 2; 3j4Þ. It is striking that the QFT
computation of the kinematic factors A completely fixes
the polarization dependence of the string amplitudes
Eqs. (28) and (31) where the propagation of the complete
massive spectrum is reflected by well-studied scalar inte-
grals Fρ and Gρjσ .
Conclusions and further directions.—We have devel-

oped here a new method combining QFT and string-theory
techniques to obtain all-multiplicity tree amplitudes (exact
in α0) with a massive external state. Our results readily
apply to the gauge and gravity sectors of the twisted
heterotic string as well as type-I and type-II superstrings.
The backbone of our construction is a cohomology

decomposition of the moduli-space integrands, which is
known [52] to directly generalize to string amplitudes with
several massive states, as well as higher mass levels of
conventional string theories. It is remarkable that the
currently known all-multiplicity coefficients have a QFT
interpretation for every type of string theory. For several
massive states, or higher mass-level states (see, for in-
stance, Refs. [60,61] for detailed studies of mass
level 2), one may expect that the coefficients of the

cohomology decompositions continue to exhibit structural
simplicity, which hopefully stems from a QFT perspective.
Since the twisted heterotic string does not admit higher
mass-level states, such a construction goes beyond the
scope of the current treatment.
A more direct generalization is to formulate the obtained

Lagrangian and amplitudes in pure-spinor superspace,
based on massive vertex operators [62–64]. Besides mani-
fest spacetime supersymmetry, this gives access to BRST-
cohomology methods. Similarly, we expect our techniques
to be useful at loop level: The Lagrangian description of
massive states may shed light on the open questions on loop
amplitudes of twisted strings, and feed into conventional-
string amplitudes, for instance, via unitarity cuts.
Potential physics applications of massive string ampli-

tudes include exploring chaos in the scattering of excited
string states [65], motivated by their correspondence with
black-hole microstates [66]. The relevance of excited string
states for black-hole physics, causality and unitarity led to a
regained interest in their scattering amplitudes [67–69].
Moreover, massive strings resonances may become
relevant at colliders in the case of a low string scale
[35,70,71].
An interesting generalization of our work is to consider

amplitudes with two massive modes: Such higher-spin
massive amplitudes were recently used for describing
classical Kerr black-hole scattering [72], needed for binary
inspiral and gravitational wave physics. Similarly, there has
been a revival of string-amplitude methods for black-hole
eikonal scattering [73,74], which can benefit from better
knowledge of massive string amplitudes. Finally, massive
string amplitudes in flat spacetime also carry relevant
information for the AdS=CFT correspondence, as, for
instance, showcased in Refs. [75–77].
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