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Device-independent quantum key distribution is a secure quantum cryptographic paradigm that allows
two honest users to establish a secret key, while putting minimal trust in their devices. Most of the existing
protocols have the following structure: first, a bipartite nonlocal quantum state is distributed between the
honest users, who perform local projective measurements to establish nonlocal correlations. Then, they
announce the implemented measurements and extract a secure key by postprocessing their measurement
outcomes. We show that no protocol of this form allows for establishing a secret key when implemented on
any correlation obtained by measuring local projective measurements on certain entangled nonlocal states,
namely, on a range of entangled two-qubit Werner states. To prove this result, we introduce a technique for
upper bounding the asymptotic key rate of device-independent quantum key distribution protocols, based
on a simple eavesdropping attack. Our results imply that either different reconciliation techniques are
needed for device-independent quantum key distribution in the large-noise regime, or Bell nonlocality is
not sufficient for this task.
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Introduction.—Device-independent quantum key distri-
bution (DIQKD) is the strongest form of quantum crypto-
graphic protocols [1,2]. DIQKD security proofs are based
on the assumption that quantum theory is correct, and on
physically observable quantities. Most importantly, the
honest users do not need to make any assumptions about
the inner workings of their devices and, hence, they do not
need to trust the preparation by the manufacturer. These
facts make DIQKD a promising paradigm for providing
complete security, in that DIQKD protocols are not
vulnerable to implementation flaws that may be exploited
in hacking attacks [3–5].
In DIQKD protocols, two distant honest parties aim at

sharing a cryptographic key, while assuring it to be
unknown to any eavesdropper limited by quantum theory.
To achieve this, a quantum state is distributed between them
in each round of the protocol, and in each of these rounds
they measure the part of the state that is available to them.
The resulting set of measurement outcomes is the raw data
from which they extract the secure key. This data is

characterized by the set of measurement outcome proba-
bilities, called the correlation. If the observed correlation
violates a Bell inequality, the information of any quantum
eavesdropper about the outcomes is limited, which opens
up the possibility of extracting a secure key.
The first quantitative security proofs were achieved

based on the violation of the Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality [6], using one-way public
communication for key extraction [1,2]. The original
proofs, valid under collective attacks, were later extended
to the most powerful coherent attacks [7–9]. Furthermore,
moderate improvements on key rates were recently
achieved using the more general biased CHSH inequalities
[10], and applying noisy preprocessing [11–13]. Similarly,
advantage distillation—a protocol for key distillation using
two-way public communication—has been shown to be
useful under the assumption of collective attacks [14].
While nonlocality of the observed correlations is neces-

sary for DIQKD, it remains an open question whether it is
also sufficient. Recently, methods have been proposed for
upper bounding secure key rates in DIQKD, even if two-
way communication is allowed [15–17]. However, all the
bounds constructed thus far remain strictly positive for
nonlocal correlations, suggesting that nonlocality may be
sufficient for DIQKD.
In this work, we show this not to be the case for DIQKD

protocols consisting of the following two steps: (i) nonlocal
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correlations are established by applying local measure-
ments on an entangled quantum state; (ii) the implemented
measurements are announced and the key is constructed by
classically postprocessing the outcomes. Most of the
existing DIQKD protocols have this form and, hence, in
what follows we refer to such protocols as standard
protocols. To prove the result, we provide a generic tool
for upper bounding key rates in DIQKD. We then apply our
tool to standard protocols implemented on a two-qubit
Werner state [18] using an arbitrary number of projective
measurements. We show that for a range of visibilities for
which the Werner state is known to be nonlocal, the upper
bound on the key rate is zero, and therefore no standard
DIQKD protocol can be secure. This means that there exist
nonlocal correlations that cannot be used for standard
DIQKD, and, furthermore, that there exist nonlocal quan-
tum states that cannot be used for standard DIQKD with
projective measurements. We also show how the provable
region of insecurity can be enlarged when fixing the
number of measurements in the protocol. In particular,
we compute visibilities for which the commonly used
protocols based on the (biased) CHSH inequality
[1,2,9,11–14] all become insecure despite the correlations
still being nonlocal.
Methods.—Formally, in a DIQKD protocol two parties,

Alice and Bob, have access to a bipartite quantum state,
ρAB, represented by a positive semidefinite operator with
unit trace on the tensor product Hilbert space, HA ⊗ HB.
The protocol consists of several rounds, in each
of which Alice and Bob choose a particular quantum
measurement to measure their part of a fresh copy of
ρAB. In particular, Alice chooses a measurement labeled by
x ∈ f0; 1;…; nA − 1g≡ ½nA�, and Bob chooses a measure-
ment labeled by y ∈ ½nB�. Without loss of generality, we
assume that each of Alice’s (Bob’s) measurements has kA
(kB) possible outcomes. According to quantum theory, kA-
(kB-)outcome measurements correspond to a set of kA (kB)
positive semidefinite operators on HA (HB), adding up to
the identity operator IA (IB). We denote these measurement
operators by Ax

a and By
b, where x ∈ ½nA�, a ∈ ½kA�, y ∈ ½nB�

and b ∈ ½kB�. Then, the correlation shared by Alice and
Bob reads

pABða; bjx; yÞ ¼ tr½ρABðAx
a ⊗ By

bÞ�; ð1Þ

specifying the probabilities of observing the outcomes a
and b, given that the measurements x and y were selected.
The raw data in the protocol correspond to the pair of

strings held by Alice and Bob containing the measurement
outcomes and the implemented measurements, collected
over all protocol rounds. Since individually Alice and Bob
only have access to their marginal statistics, they publicly
reveal the measurement settings and outcomes for a fraction
of this data to estimate the joint statistics and detect its
nonlocality. This part of the dataset is discarded. The secret

key is distilled by classically postprocessing the remaining
dataset with the help of public communication, so that they
finally hold identical strings that must appear perfectly
random to any third party.
As stated earlier, in this work we consider what we call

standard protocols, in which the measurements imple-
mented by Alice and Bob are announced in the key
distillation part. Apart from this constraint, the rest of
the protocol is arbitrary. This family is quite broad and
covers most DIQKD protocols introduced so far [1,2,9,11–
14], with only a few exceptions proposed to date (see,
e.g., Ref. [19]).
In order to upper bound the key rate for a given DIQKD

protocol, it suffices to consider a particular model of the
eavesdropper, Eve. Here, we restrict the analysis to indi-
vidual attacks that do not require any quantum memory
[20]. In device-independent protocols, Alice and Bob have
no knowledge of the form of the state ρAB and the
measurements fAx

ag, fBy
bg, and it is precisely this lack

of knowledge that Eve makes use of in her attack. In
particular, we assume that she knows the precise form of
the measurement operators and that she is the one distrib-
uting the quantum state (therefore effectively distributing
quantum correlations) to Alice and Bob in each round.
In our convex combination (CC) attack—originally

considered for eavesdroppers limited only by the no-
signalling principle [19,21]—Eve distributes local deter-
ministic correlations with certain probabilities that give rise
to a local correlation pL

ABða; bjx; yÞ with overall probability
qL, and she distributes a nonlocal quantum correlation
pNL
AB ða; bjx; yÞ with probability 1 − qL. While presented in

this form for the sake of simplicity, Eve can equally
implement the attack by fixing the measurements of
Alice and Bob and preparing a unique quantum state
ρABE. Eventually, the observed correlation of Alice and
Bob takes the form

pABða; bjx; yÞ ¼ qLp
L
ABða; bjx; yÞ

þ ð1 − qLÞpNL
AB ða; bjx; yÞ; ð2Þ

and we call qL ∈ ½0; 1� the local weight. Since nonlocality
is necessary for secure DIQKD, in the CC attack Eve
maximizes qL for the given observed correlation
pABða; bjx; yÞ and a judiciously chosen nonlocal quantum
correlation pNL

AB ða; bjx; yÞ.
We apply the CC attack to the standard DIQKD proto-

cols introduced above. Since Alice and Bob announce their
inputs for every round, Eve knows their outcomes in all
rounds in which she distributes a local correlation. We
represent this knowledge by the classical variable e, and we
write e ¼ ða; bÞ for the local rounds. On the other hand, we
assume in what follows that Eve is not correlated to the
nonlocal part of the correlation of Alice and Bob, denoted
by e ¼ ?. Therefore, for any combination of inputs x and y,

PHYSICAL REVIEW LETTERS 127, 050503 (2021)

050503-2



Alice, Bob, and Eve share correlated random variables
distributed as

pABEða; b; ejx; yÞ ¼ qLp
L
ABða; bjx; yÞδe;ða;bÞ

þ ð1 − qLÞpNL
AB ða; bjx; yÞδe;?; ð3Þ

where δ is the Kronecker delta.
Well-established results in classical cryptography prove

that the asymptotic key rate r extractable from a dataset of
strings distributed according to pABEða; b; eÞ is upper
bounded by the intrinsic information [22,23],

IðA;B↓EÞ ¼ min
E→F

IðA∶BjFÞ; ð4Þ

where IðA∶BjFÞ ¼ P
f pFðfÞIðA∶BjF ¼ fÞ is the condi-

tional mutual information of pABFða; b; fÞ, and the min-
imization is taken over all stochastic maps E → F that map
the variable E (with values e) to a new variable F (with
values f), such that the alphabet size of F is at most that of
E [24]. While this minimization may be hard, any candidate
stochastic map provides a valid upper bound.
When applying this bound to the CC attack, the key rate

is upper bounded by

r ≤
X

x;y

pxyIxyðA∶B↓EÞ; ð5Þ

where the sum runs over all those settings ðx; yÞ from which
the key is distilled, pxy is the probability of Alice and
Bob choosing the settings x and y, respectively, and
IxyðA∶B↓EÞ is the intrinsic information of the distribution
in Eq. (3). Note that the bound in Eq. (5) is based only on
the observed correlation, without any assumption on the
state or the measurements.
Nonlocality is not sufficient for DIQKD.—In what

follows, we prove that there exist nonlocal correlations
that cannot be used for secure key extraction with standard
DIQKD. We do this by applying the CC attack on any
correlation obtained by performing arbitrary projective
measurements on the two-qubit Werner state [18] with
visibility v ∈ ½0; 1�,

ρvAB ¼ vjψ−ihψ−j þ ð1 − vÞ I
4
; ð6Þ

where jψ−i ¼ ðj01i − j10iÞ= ffiffiffi
2

p
. It is known that for

arbitrary (even infinitely many) projective measurements
fAx

ag and fBy
bg, the correlation pv

ABða; bjx; yÞ ≔
tr½ρvABðAx

a ⊗ By
bÞ� is local whenever the visibility is at most

v ≤ vwL ≔ 999 × 689 × 10−6cos4ðπ=50Þ ≈ 0.6829, see
Ref. [25]. On the other hand, it is also known that there
exist projective measurements that give rise to nonlocal
correlations for v ≥ vwNL∶ ≈ 0.6964, see Ref. [26].

Let us consider all DIQKD protocols that use
correlations obtained by implementing arbitrarily many
projective measurements on the Werner state. The mea-
surements can be written as Ax

a ¼ 1
2
½I þ ð−1Þaα⃗x · σ⃗� and

By
b ¼ 1

2
½I þ ð−1Þbβ⃗y · σ⃗�, where a; b ∈ f0; 1g, α⃗x and β⃗y are

unit vectors in R3, and σ⃗ ¼ ðX; Y; ZÞ is a vector containing
the Pauli matrices. It is easy to verify that

�
pv
ABð0; 0jx; yÞ pv

ABð0; 1jx; yÞ
pv
ABð1; 0jx; yÞ pv

ABð1; 1jx; yÞ
�

¼ 1

2

�
svxy 1 − svxy

1 − svxy svxy

�

;

ð7Þ

where svxy ¼ 1
2
ð1 − vα⃗x · β⃗yÞ ∈ ½0; 1�.

The CC attack we consider is rather intuitive: it uses the
nonlocal correlation pNL

AB ¼ pv¼1
AB , and local deterministic

correlations that sum up to the correlation for the provable

local Werner state, pL
AB ¼ p

v¼vwL
AB . It is easy to verify that in

this case we have that qL ¼ qwL ≔ ð1 − vÞ=ð1 − vwLÞ. For
now, let us assume that s1xy ≡ sv¼1

xy ≥ 1
2
. This implies that in

the ideal (v ¼ 1) case, the outcomes of Alice and Bob are
correlated, i.e., they observe a ¼ b more often than a ≠ b
[see Eq. (7)]. For this reason, in her stochastic relabeling
E → F, Eve will attempt to become as correlated to the
a ¼ b events as possible, that is, she picks f ¼ a whenever
the correlation is local and a ¼ b. In order to reduce the
conditional mutual information of all the other events, she
sets f ¼ ? for all the remaining cases. The resulting
distribution reads

pABFða; b; fjx; yÞ ¼ qwLp
v¼vwL
AB ða; bjx; yÞ

× ½δa;bδf;a þ ð1 − δa;bÞδf;?�
þ ð1 − qwLÞpv¼1

AB ða; bjx; yÞδf;?: ð8Þ

Note that a similar distribution can be introduced for the
case of s1xy <

1
2
, in which case Eve becomes correlated with

the a ≠ b events. For the distribution in Eq. (8) we have that
IxyðA∶BjF ¼ aÞ ¼ 0 for all a, so the final bound on the key
rate is given by

r ≤
X

x;y

pxypFð?jx; yÞIxyðA∶BjF ¼ ?Þ; ð9Þ

where IxyðA∶BjF ¼ fÞ is the mutual information
of the distribution pABjFða; bjf; x; yÞ ¼ pABFða; b; fjx; yÞ=
pFðfjx; yÞ.
To compute the upper bound, we need to calculate the

terms IxyðA∶BjF ¼ ?Þ in Eq. (9), that is, the mutual
information of the distribution
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pABjFða; bj?; x; yÞ ¼
1

2ð1 − qwLs
w
xyÞ

� ð1 − qwLÞs1xy ð1 − qwLÞð1 − s1xyÞ þ qwLð1 − swxyÞ
ð1 − qwLÞð1 − s1xyÞ þ qwLð1 − swxyÞ ð1 − qwLÞs1xy

�

; ð10Þ

where swxy ¼ s
v¼vwL
xy and s1xy ¼ sv¼1

xy . The mutual information
is clearly zero whenever ð1−qwLÞs1xy¼ð1−qwLÞð1−s1xyÞþ
qwLð1−swxyÞ, which is equivalent to

v ¼ vwLð2s1xy − 1Þ þ 1

vwLð1 − 2s1xyÞ þ 4s1xy − 1
≕ vxy: ð11Þ

Note that while IxyðA∶BjF ¼ ?Þ is in general positive for
v < vxy, a slight modification of the CC attack leads to
IxyðA∶BjF ¼ ?Þ ¼ 0 for all v ≤ vxy. To see this, note that
for v ≤ vxy, the correlation pv

ABða; bjx; yÞ is a convex
combination of p

vxy
ABða; bjx; yÞ and the uniform correlation

pu
ABða; bjx; yÞ ¼ 1=4. Then, the observed correlation can

be obtained by Eve distributing either p
vxy
AB or pu

AB, both of
which having zero intrinsic information. Therefore, Eve
can clearly keep IxyðA∶BjF ¼ ?Þ ¼ 0 for all v ≤ vxy.
Also note that vxy is monotonically decreasing in s1xy, and

hence, it reaches its lowest possible value at s1xy ¼ 1. This
gives rise to the critical visibility of the Werner state,

vwcrit ¼
vwL þ 1

3 − vwL
≈ 0.7263 > vwNL ≈ 0.6964: ð12Þ

An analogous derivation yields the same critical visibility
for s1xy < 1

2
. From the above arguments, it follows that

whenever the visibility is vwNL ≤ v ≤ vwcrit, Alice and Bob
cannot extract a secure key from correlations obtained from
the Werner state with any (even infinite) number of
projective measurements, even though the state is nonlocal
(i.e., there exist projective measurements that, measured on
the state, give rise to nonlocal correlations) and distillable
[27]. This means that the Bell nonlocality of the observed
correlation is in general not sufficient for DIQKDwhenever
Alice and Bob announce their measurement settings, and,
moreover, that there exist nonlocal states that cannot be
used for standard DIQKD with projective measurements.
CHSH-based protocols.—The most commonly used

DIQKD protocols [1,2,9,11–14] are based on the maximal
violation of the biased CHSH inequality [10]. In these
protocols the shared state is ρAB ¼ jψ−ihψ−j, and Alice’s
measurements are described by α⃗0 ¼ ð0; 0;−1Þ and
α⃗1 ¼ ð−1; 0; 0Þ, while Bob’s measurements are described
by β⃗θ0 ¼ ðsin θ; 0; cos θÞ, β⃗θ1 ¼ ð− cos θ; 0; sin θÞ and
β⃗θ2 ¼ ð0; 0; 1Þ, where 0 < θ < π=2. The protocol based
on the standard CHSH inequality is reproduced by setting
θ ¼ π=4 [1,2]. The noisy versions of these protocols with
visibility v can be described by sharing a Werner state, and
our results from the previous section readily apply. In

particular, vwcrit in Eq. (12) is a lower bound on the critical
visibility for CHSH-based protocols.
However, for a fixed protocol, the bound on the critical

visibility can be improved. This is because in the setting of
the CHSH-based protocols, the polytope of local correla-
tions is completely characterized [28]. One can verify that
in the CHSH-based protocols, if Alice and Bob observe a
correlation that corresponds to the Werner state with
visibility v, then this correlation is local if and only if
v ≤ vθL ≔ 1=ðcos θ þ sin θÞ [29]. Therefore, an improved
bound on the critical visibility for the CHSH-based pro-
tocols is given by

vθcrit ¼
vθL þ 1

3 − vθL
> vθL ∀ θ ∈ ð0; π=2Þ: ð13Þ

That is, for a range of visibilities for which the observed
correlation is nonlocal, Alice and Bob cannot extract a
secure key. Note that the same critical visibility holds for
the recently introduced modification of the standard
CHSH-based protocol in Ref. [30], where the authors
add a fourth setting for Bob. Indeed, since the local
polytope is completely characterized in this case as well
[28], one can verify that the correlation becomes local at the
same visibility vθL [29].
Last, we note that in the CHSH-based protocols, Alice

and Bob usually extract their key from the setting pair
x ¼ 0 and y ¼ 2, by setting p02 in Eq. (5) arbitrarily close

FIG. 1. Upper bounds on the two-way key rate for the standard
CHSH protocol in terms of the visibility. The dotted line is the
upper bound from [15], the dashed line is the upper bound from
[17], and the solid line is the bound in Eq. (14). Note that the
visibility can be converted into the CHSH violation S via
S ¼ 2

ffiffiffi
2

p
v. The shaded area represents the lower bound from [1].
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to 1. In this case, it is possible to compute the upper bound
in Eq. (9) for any visibility v ≥ vθcrit, and we get

rθðvÞ ≤ 2ð1 − sθqθLÞ þ ð1 − qθLÞlog2
�

1 − qθL
2ð1 − sθqθLÞ

�

þ qθLð1 − sθÞlog2
�
qθLð1 − sθÞ
2ð1 − sθqθLÞ

�

ð14Þ

where sθ ¼ 1
2
ð1þ vθLÞ and qθL ¼ ð1 − vÞ=ð1 − vθLÞ. In

Fig. 1 we plot the bound for the standard CHSH protocol
(θ ¼ π=4), and show that it outperforms the recently
derived upper bounds [15,17] near the critical visibility.
In the Supplemental Material we also describe a two-
dimensional region in the set of quantum correlations
corresponding to correlations from the biased CHSH
protocol that are nonlocal but cannot be used to extract
a key using standard DIQKD [29].
Discussion.—We introduced a generic tool for upper-

bounding DIQKD key rates using a simple eavesdropping
attack. Using our tool, we showed that Bell nonlocality is
not sufficient for secure DIQKD when the honest parties
announce their measurement settings. Our results also
imply that all the commonly used DIQKD protocols
become insecure in the noisy case already in the nonlocal
regime, even when assisted by arbitrary two-way commu-
nication. Our analysis does not prove that the considered
nonlocal correlations are useless for secure key distribution,
but it shows that the standard reconciliation—where the
settings are announced by both parties—does not work for
all nonlocal correlations.
Given the above, one possibility to lower the stringent

requirements on noise parameters is to employ protocols
such as that of Ref. [19], in which only one party announces
their settings. Indeed, for this protocol we were not able to
find an upper bound that vanishes in the nonlocal regime.
Whether a secure key can be distilled from all nonlocal
correlations using these protocols is an open question that
deserves further investigation. Another possibility for
improving the key rates extractable from a given quantum
state is to employ measurements that are not projective.
However, we note that no state is known thus far that is
local for all arrangements of projective measurements,
while exhibiting nonlocality for some arrangement of
nonprojective measurements. Hence, the critical visibilities
of the Werner state derived in this work also hold for all the
hitherto studied arrangements of nonprojective measure-
ments. Another question worth investigating is whether
tighter upper bounds can be derived using collective or
coherent attacks. Nonetheless, let us note that our (indi-
vidual) CC attack can be applied to a broad class of DIQKD
protocols, and gives rise to bounds on the critical visibility
in experimentally relevant scenarios. We elaborate on these
findings in [31].
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