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Strong nonlinear coupling of superconducting qubits and/or photons is a critical building block for
quantum information processing. Because of the perturbative nature of the Josephson nonlinearity, linear
coupling is often used in the dispersive regime to approximate nonlinear coupling. However, this dispersive
coupling is weak and the underlying linear coupling mixes the local modes, which, for example, distributes
unwanted self-Kerr nonlinearity to photon modes. Here, we use the quarton to yield purely nonlinear
coupling between two linearly decoupled transmon qubits. The quarton’s zero ϕ2 potential enables an
ultrastrong gigahertz-level cross-Kerr coupling, which is an order of magnitude stronger compared to
existing schemes, and the quarton’s positive ϕ4 potential can cancel the negative self-Kerr nonlinearity of
qubits to linearize them into resonators. This ultrastrong cross-Kerr coupling between bare modes of qubit-
qubit, qubit-photon, and even photon-photon is ideal for applications such as single microwave photon
detection, ultrafast two-qubit gates, and readout.
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Introduction.—Circuit quantum electrodynamics
(cQED) uses strong light-matter coupling in microwave
superconducting circuits for quantum information
processing [1,2]. In the ultrastrong regime [3], linear or
field-field [4] coupling gðâ − â†Þðσ̂− − σ̂þÞ between
artificial atoms and resonator photons can be of the same
order of magnitude as the frequency of the modes
(g ∼ 2π × 1 GHz≳ 0.1ω). However, to implement essen-
tial quantum operations such as qubit readout [4], gates
[5,6], single photon detection [7,8], and bosonic qubit
control [9], nonlinear or energy-energy [4] coupling χâ†âσ̂z
is often required. Unfortunately, nonlinear coupling in
cQED is much weaker than linear coupling (χ ≪ g), which
limits the speed of many nonlinear coupling dependent
operations.
Nonlinear coupling is typically realized in the

dispersive regime, where the linear coupling g is chosen
to be small vs the detuning: g ≪ Δ ¼ jωa − ωbj, so the
Jaynes-Cummings Hamiltonian can be approximated (ℏ ¼ 1
hereafter),

HJC ¼ ωaâ†âþ ωb

2
σ̂z þ gðâ − â†Þðσ̂− − σ̂þÞ

≈ ðω̃a
ˆ̃a† ˆ̃a − Ka

ˆ̃a†2 ˆ̃a2Þ þ ω̃b

2
ˆ̃σz − χ ˆ̃a† ˆ̃a ˆ̃σz: ð1Þ

However, the nonlinear coupling χ is only a perturbation to
the underlying linear coupling g, which creates the dressed

normal modes f ˆ̃a; ˆ̃bg from a linear combination of the
uncoupled bare modes fâ; b̂g [10]. This linear mixing
causes detrimental effects like Purcell decay [11] in the
atomic mode and induced self-Kerr coefficient Ka in the
photonic mode [12–19]. These effects are usually suppressed
by keeping χ=2π ∼ 101 MHz. Furthermore, the high detun-
ing Δ requirement leads to frequency crowding [20] and
difficulty in scaling [21].
Recently, a number of devices [4,22–28] have been used

as couplers to facilitate a purely nonlinear coupling
between bare modes,

H¼ ðωaâ†â−Kaâ†2â2Þþ ðωbb̂
†b̂−Kbb̂

†2b̂2Þþ χâ†âb̂†b̂

≈
ωa

2
σ̂z;aþ

ωb

2
σ̂z;bþ χσ̂z;aσ̂z;b; ð2Þ

where the modes fâ; b̂g refer to distinct superconducting
LC oscillators [29]. The resulting nonlinear coupling of
linearly decoupled [30] qubits is free from Purcell decay
and requires no qubit frequency detuning. However,
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existing purely nonlinear couplers are limited to χ ≤ Ka;b

[26]. Couplers like the C-shunt superconducting quantum
interference device (SQUID) [22–24] and the Josephson
ring modulator (JRM) [26,27] induce significant self-Kerr
coefficient in both modes fâ; b̂g, which limits their
applications to only χσ̂zσ̂z qubit-qubit coupling [24,27].
Furthermore, since transmon qubits have limited self-Kerr
coefficient Ka;b=2π ∼ 102 MHz [31], these qubit-qubit
couplers have limited χ=2π ∼ 102 MHz as well. See
Supplemental Material [32] for clarifications of photon
and qubit mode definitions.
In this Letter, we propose a scheme to achieve ultrastrong

purely nonlinear coupling, which we define, in analogy
with ultrastrong linear coupling, to be χ ∼ 2π × 1 GHz≳
0.1ωa;b without linear coupling (g ¼ 0). In addition, the
scheme can cancel the self-Kerr coefficient Ka;b such that
the χ couples any combination of light and matter modes—
in stark contrast with the light-matter only coupling in
the dispersive regime and matter-matter only coupling by
the C-shunt SQUID or JRM. The scheme can thus enable
the first light-light purely nonlinear coupling (χâ†âb̂†b̂),
which is ideal for applications like high fidelity single
microwave photon detection [8]. The 2 orders of magnitude
improvement for light-matter coupling and 1 order of
magnitude improvement for matter-matter coupling could
enable ultrafast qubit readout [4] and two-qubit gates [5,6],
Ising interaction dominated quantum annealing architec-
tures [26], as well as self-Kerr free bosonic qubit control
[9,17,41,42].
The quarton.—The proposed purely nonlinear couplers

are based on a superconducting qubit dubbed the “quarton”
[43]. The quarton was recently demonstrated as a flux qubit
with high anharmonicity and long coherence times [43];
devices with similar quartic potentials were proposed
previously as a highly anharmonic phase qubit with
efficient readout [44] and demonstrated as part of a
superinductor [45].
We introduce the quarton here by first categorizing

superconducting circuit elements by their nonlinearities,
which are usually derived from the cosine potential of the
Josephson junction (JJ) [46],

UJJðϕÞ ¼ −EJ cosϕ ≈
EJ

2
ϕ2 −

EJ

24
ϕ4 ≈

ϕ2
0

2LJ
ϕ2 − Kϕ4;

ð3Þ

where EJ is the Josephson energy. Physically, JJs with
superconducting phase ϕ exhibit both a positive linear
inductance LJ given by the quadratic ϕ2 component of the
potential and a negative nonlinear inductance given by the
quartic ϕ4 (and higher-order) component of the potential.
For the remainder of the Letter, we assume ϕ ≪ 1 and keep
up to the quartic ϕ4 term, which is characterized by the
nonlinear Kerr coefficient K.

We repeat this for a wide range of inductive super-
conducting elements, which leads to a schematic plot of
their nonlinear (d4U=dϕ4) vs linear (d2U=dϕ2) energy
coefficient in Fig. 1(a) [47]. For ease of comparison, the
slope jðd4U=dϕ4Þ=ðd2U=dϕ2Þj is plotted in Fig. 1(b) with
the potential diagrams UðϕÞ illustrated at the bottom.
Following Eq. (3), we place the JJ as a vector in quadrant
IV of Fig. 1(a) with a length proportional to EJ. However,
the slope or direction of the JJ vector that characterizes its
relative nonlinearity is invariant with EJ. We can thus think
of the linear-nonlinear plane [Fig. 1(a)] as a two-dimen-
sional vector space, with different circuit elements as
vectors having EJ-dependent length but unique
directionality.
We consider three techniques that change the relative

nonlinearity: (i) add more JJs in series to decrease the
relative nonlinearity [48,49], (ii) thread half a flux quantum
(Φ0=2) of external magnetic flux through a loop of
elements, and (iii) connect inductive elements in parallel
to add their vectors on Fig. 1(a). For (i) with n identical JJs
in series (all with EJ ≫ EC, EC being capacitive energy
[46]), the phase ϕ across the chain of JJs is divided evenly
across each JJ (ϕ → ϕ=n) [48]. By Eq. (3), this implies that:
ð1=LÞ → ðn=LÞð1=n2Þ, K → nKð1=n4Þ, so more JJs in
series lowers jðd4U=dϕ4Þ=ðd2U=dϕ2Þj. In the limit

(a)

(b)

FIG. 1. The quarton as a purely nonlinear element. (a) Sche-
matic plot of the nonlinear (K) vs linear (1=2L) landscape of
inductive superconducting elements with centrosymmetric po-
tentials (U). The flux qubit has a negative and a positive
inductance branch with strength dependent on ratio α. The
quarton (red) is a special flux qubit with α ¼ 0.5 that has no
linear potential. The gray region is energetically unstable (see
Supplemental Material [32]). (b) Schematic line scale of the
relative nonlinearity of the elements in (a). The quarton (red
spider symbol) is at infinity. The respective potentials UðϕÞ’s are
plotted below. The tilted quarton (light red spider symbol with
apostrophe) is a quarton with small linear inductive potential.
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n → ∞, we get a superinductor [48], which is purely linear.
We can also (ii) add a Φ0=2 flux bias: for a multibranch
element like a SQUID, the external flux acts on one JJ
branch [50] and shifts its cosine potential UJJðϕÞ →
−UJJðϕÞ via ϕ → ϕþ π. This flips one branch [50] JJ
vector to the quadrant II of Fig. 1(a). We can further use
(iii) to add vectors to produce devices such as flux qubits
that live in the space between the flux-biased and unbiased
SQUIDs and/or JJs. This is valid because flux qubits, in
general, have two parallel branches with the same ϕ, so the
overall potential UðϕÞ is a sum of the two branch U’s.
The top right corner of Fig. 1(a) shows a conventional

flux qubit [43] with two identical JJs with EJ in series in
one branch, and a smaller area JJ with αEJ in the other
branch. Without loss of generality [50], we choose the
gauge such that the αEJ branch is flux biased [quadrant II
of Fig. 1(a)] and the series JJ branch is unchanged
[quadrant IV of Fig. 1(a)]. Because the two branches have
different jðd4U=dϕ4Þ=ðd2U=dϕ2Þj [Fig. 1(b)], the resulting
flux qubit vector from the addition of the two branch
vectors can have different directions depending on α. Flux
qubits with more (n ≥ 2) series JJs follow the same
principle, with potential [51]

UðϕÞ ¼ −nEJ cos

�
ϕ

n

�
− αEJ cosðϕ − πÞ: ð4Þ

The quarton is the special flux qubit with α ¼ 0.5 (¼ 1=n,
in general), for which the negative inductance from the
quadrant II vector exactly cancels the positive inductance
from the quadrant IV vector, while the stronger positive K
of the quadrant II vector survives the addition. The quarton
is named after the resulting leading-order positive quartic
ϕ4 potential and zero ϕ2 potential. Physically, the linearized
current flow in the two branches destructively interfere. In
Fig. 1(b), the quarton (spider symbol [53]) defines the
infinity end of the jðd4U=dϕ4Þ=ðd2U=dϕ2Þj scale opposite
to the linear inductor that defines the zero point.
Graphically, the potential diagrams below Fig. 1(b) show
a completely anharmonic quartic potential for the quarton.
See Supplemental Material [32] for a discussion on a
nonlinear optics analogy and the energetically unstable
gray region in Fig. 1(a).
In practice, JJ-based inductive elements like the quarton

have accompanying junction capacitances that can cause
linear capacitive coupling. To mitigate this, we use a
slightly linear quarton, dubbed the “tilted quarton” for
its position in Fig. 1(a) (light red). The tilted quarton has
some small linear inductive potential, which can cancel the
coupling effects of an equally small amount of accompany-
ing linear capacitance [22,24]. To distinguish it from the
quarton, we give the tilted quarton a lightly shaded spider
symbol with an extra apostrophe [Fig. 1(b)].
Self-Kerr coefficient cancellation.—Consider the canoni-

cal circuit of two transmon qubits (labeled a and b) coupled
via a quarton, shown in Fig. 2(a). We can construct an exact

spring-mass analogy for the system wherein ϕ and EJ are
analogs of position and spring constant, respectively.
(EQ ≡ EJðn2 − 1=n3Þ is the effective Josephson energy
of the quarton, see Supplemental Material [32] for details.)
Note that because there is no linear coupling potential of the
form ðEQ=2Þðϕa − ϕbÞ2 in the red quarton spring, the
quarton naturally facilitates purely nonlinear coupling
without linear coupling.
Remarkably, by simply adjusting the relative magnitudes

of the qubit spring constants (EJ;a, EJ;b) to the coupling
quarton spring constant (EQ), we can access nonlinear
coupling between all three combinations of light and matter
modes. As shown in Figs. 2(b)–2(d), these combinations are
qubit-qubit (χzzσ̂zσ̂z), qubit-photon (χazâ†âσ̂z), and photon-
photon (χabâ†âb̂

†b̂) cross-Kerr coupling, respectively. In
particular, Fig. 2(d) represents the first system that
exhibits cross-Kerr coupling without self-Kerr nonlinearity
or photon-photon purely nonlinear coupling. This is in stark
contrast with previous purely nonlinear coupling
schemes [22,26,30] that leave modes with nonzero self-
Kerr coefficient [25].
The quarton’s purely nonlinear coupling potential

ðEQ=24Þðϕ̂a − ϕ̂bÞ4 can be expanded into

EQ

24
ðϕ̂a− ϕ̂bÞ4¼

EQ

24
½ϕ̂4

aþ ϕ̂4
bþ6ϕ̂2

aϕ̂
2
b−4ðϕ̂3

aϕ̂bþ ϕ̂aϕ̂
3
bÞ�:
ð5Þ

(a)

(b)

(c)

(d)

FIG. 2. Quarton-mediated purely nonlinear light and/or matter
interactions. (a) Canonical circuit of quarton (red) nonlinearly
coupling two transmons (blue) indexed a, b, and its spring-mass
analog with Josephson energies as nonlinear spring coefficients
EJ;a, EQ, EJ;b. Strong nonlinear coupling between (b) matter-
matter modes when (EJ;a ≠ EQ ≠ EJ;b) quarton induces positive
qubit nonlinearities, (c) light-matter modes when (EJ;a ¼ EQ ≠
EJ;b) quarton cancels qubit a’s self-Kerr nonlinearity, (d) light-
light modes when (EJ;a ¼ EQ ¼ EJ;b) quarton cancels both
qubits’ self-Kerr nonlinearity. Photon annihilation operators, â,
b̂; qubit operators, σ̂z;ab.
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After quantizing ϕ̂a¼ϕZPF;aðâþâ†Þ, ϕ̂b ¼ ϕZPF;bðb̂þ b̂†Þ,
the ϕ̂2

aϕ̂
2
b term leads to the important cross-Kerr

(â†âb̂†b̂)-type nonlinear coupling and the ϕ̂3
a;bϕ̂b;a

terms induce other four wave mixing nonlinear effects,
including correlated photon hopping [24], third harmonic
generation [54], parametric amplification, and squeezing
[55]. Importantly, the positive, noncoupling terms
þðEQ=24Þϕ̂4

a;b can be grouped with the qubits’ negative

nonlinear potentials −ðEJ;ab=24Þϕ̂4
a;b to produce effective

qubit nonlinear potentials of ½ðEQ − EJ;abÞ=24�ϕ̂4
a;b. This

can be intuitively represented on the linear-nonlinear
diagram for each case. As shown in Figs. 2(b)–2(d), when
EJa;b ≠ EQ, the vector sum (purple) of the quarton vector
(red) and the JJ vector (blue) is nonzero in the nonlinear
axis; this represents residual resonator self-Kerr nonlinear-
ity in a qubit mode. In contrast, when EJa;b ¼ EQ, the
quarton’s induced positive self-Kerr cancels the JJ’s intrin-
sic negative self-Kerr coefficient and the resulting sum is
zero in the vertical nonlinear axis; this represents a linear
resonator photon mode. We emphasize that in situ tuning of
EJ;a and EJ;b is possible with flux-tunable transmons [31].
Therefore, results here enable flexible superconducting
architectures with modes that can be tuned in situ to
behave either as qubits or resonators, potentially enabling
work like Ref. [56].
Ultrastrong χ.—We contrast potential realizations of the

canonical circuit in Fig. 2(a) with two state-of-the-art
nonlinear couplers: the C-shunt SQUID [22–25], which
cancels inductive and capacitive linear coupling within the
rotating wave approximation (RWA), and the Josephson
ring modulator [26,27], which cancels all linear coupling as
well as asymmetric nonlinear coupling (ϕ3

a;bϕb;a) terms by
symmetry. The two qubits a and b to be coupled are typical
transmons and properties are calculated both analytically
and numerically using QuCAT [57]. See Supplemental
Material [32] for related derivations and calculations.
Analogous to the C-shunt SQUID, we use the tilted

quarton [Fig. 3(a)] to cancel (up to RWA) the linear coupling
due to intrinsic junction capacitancesCJ. Unlike theC-shunt
SQUID [Fig. 3(b)], which needs a large, variable shunt
capacitance CJ to cancel the SQUID inductance, the tilted
quarton has intentionally added inductance to the quarton to
cancel a small, fixed CJ. Henceforth, we use EQ to denote
both the quarton’s and the corresponding C-shunt SQUID
and JRM’s Josephson energy. In Fig. 3(c), we show that, for
largeEQ, quarton-enabled nonlinear coupling strength χ (for
â†âb̂†b̂ in ϕ2

aϕ
2
b) can be an order of magnitude (1 GHz vs

100MHz) higher than theC-shunt SQUID,which limits χ to
much less than the anharmonicities Ec;a and Ec;b of the
transmons. This is because all existing couplers have
linear inductive potentials that increase EJ;ab of the
qubits to an effective EQ þ EJ;ab; or in the spring-
mass analogy [Fig. 2(a)], the a and b masses oscillate

in a stiffer ½ðEJ;ab þ EQÞ=2�ϕ2
a;b spring potential if

ðEQ=2Þðϕa − ϕbÞ2 exists. The stiffer spring reduces
oscillation amplitude, or the zero point fluctuation
ϕ4
ZPF;ab ¼ ð2EC;ab=EJ;abÞ → ½2EC;ab=ðEQ þ EJ;abÞ� quan-

tum mechanically, which directly reduces the
coupling [22,26]

χðnonquartonÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec;aEc;b

p
EQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EQ þ EJ;a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EQ þ EJ;b
p ; ð6Þ

which has limEQ≫EJ;ab
χ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec;aEc;b

p
. Using the quarton

instead, we can avoid the detrimental linear inductance
induced EJ;ab → EQ þ EJ;ab and achieve

χðquartonÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec;aEc;b

p EQffiffiffiffiffiffiffiffi
EJ;a

p ffiffiffiffiffiffiffiffi
EJ;b

p ; ð7Þ

which offers approximately linear scaling χ ∝ EQ. See
Supplemental Material [32] for a detailed derivation of
Eqs. (6) and (7) and the limit to Eq. (7).
In Figs. 3(d) and 3(e), we examine the self-Kerr â†2â2,

b̂†2b̂2 (blue) and cross-Kerr â†âb̂†b̂ (red) magnitudes for
the qubits coupled by tilted quarton and show that all three
regimes in Figs. 2(b)–2(d) can be reached (whereasC-shunt
SQUID can only have χzz). For two identical qubits that
guarantees EJ;a ¼ EJ;b [Fig. 3(d)], we have that the quarton
cancels both qubit self-Kerr coefficients when EQ ¼
EJ;a ¼ EJ;b (black arrow). At that point, there still exists

(a) (b)

(d)

(e)
(c)

FIG. 3. Purely nonlinear coupling (both ϕ2
aϕ

2
b and ϕ3

a;bϕb;a)
between qubits with tunable frequencies less than 9 GHz,
mediated by (a) tilted quarton (red) with CJ ¼ 5 fF vs (b) C-
shunt SQUID [22] (green). (c) Nonlinear coupling χ (for â†âb̂†b̂
in ϕ2

aϕ
2
b and similar for ϕ3

a;bϕb;a) scales linearly with EQ for tilted
quarton, allowing for order of magnitude improvement over C-
shunt SQUID at large EQ. C-shunt SQUID’s linear coupling
cancellation relies on RWA, which is invalid for large
EQ (light green). For tilted quarton, (d) simultaneous self-Kerr
ðâ†2â2; b̂†2b̂2Þ cancellation is possible with EJ;a ¼ EJ;b, which is
also used in (c). (e) Same qubits flux tuned to EJ;a ≠ EJ;b leads to
self-Kerr cancellation of only one mode at a time.
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a relatively large χab, enabling strong single photon-photon
interactions. With the same qubits flux tuned to
different EJ;a ≠ EJ;b [Fig. 3(e)], we can have qubit-photon
nonlinear couplings χaz, χzb at EQ ¼ EJ;a ≠ EJ;b and EQ ¼
EJ;b ≠ EJ;a (black arrows), respectively. In general, when
EQ ≠ EJ;a ≠ EJ;b, we have qubit-qubit χzz nonlinear
coupling.
We draw a similar comparison in Fig. 4 by constructing a

quarton ring modulator (QRM) in Fig. 4(a) with the same
symmetry as the JRM. The symmetry guarantees that only
cross-Kerr-type (ϕ2

aϕ
2
b) nonlinear coupling terms exist, and

junction capacitances CJ do not cause any linear coupling
[58]. In Fig. 4(c), we find a similar giant (> 1 GHz) χ
reachable via the QRM, which is an order of magnitude
improvement over the JRM. Although the JRM can operate
with higher EQ compared to the C-shunt SQUID [22,26],
its linear inductive potential still limits its χ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec;aEc;b

p
by Eq. (6). Unlike the JRM, self-Kerr cancellation by the
QRM [Figs. 4(d) and 4(e)] can lead to purely cross-Kerr-
type coupling between any combination of light and
matter modes.
Discussion.—The proposed circuits are experimentally

feasible (see Supplemental Material [32] for details) and
lead to important applications such as ultrafast readout and
two-qubit gates. Qubit readout uses resonator-qubit cross-
Kerr coupling χâ†âσ̂z, which leads to readout times that
scale roughly as 1=χ [33]. Similarly, two-qubit gates
such as the resonator-induced phase gate [5,6] uses
cross-Kerr between two qubits and a shared resonator
χâ†âðσ̂z;1 þ σ̂z;2Þ, which leads to gate times that scale as
1=χ2. These readout and gate procedures are all currently
implemented with the small dispersive χ coupling; if

instead, our proposed ultrastrong quarton-based χ is used,
the readout and gate times could be reduced by orders of
magnitude.
Conclusion.—We showed that quarton-based couplers

(tilted quarton and QRM) can facilitate ultrastrong
(∼1 GHz) purely nonlinear coupling between any combi-
nation of qubit and photon modes: qubit-qubit, qubit-
photon, and, uniquely, photon-photon. Unlike previous
nonlinear couplers, the ability to couple to photon modes
enables applications in ultrafast readout, gates, bosonic
qubit control, and single photon detection.
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aϕ
2
b) scales linearly

with EQ for QRM, allowing for order of magnitude improvement
over JRM at large EQ. For QRM, (d) simultaneous self-Kerr
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