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A general property of relaxation rates in open quantum systems is discussed. We find an interesting
constraint for relaxation rates that universally holds in fairly large classes of quantum dynamics, e.g., weak
coupling regimes, as well as for entropy nondecreasing evolutions. We conjecture that this constraint is
universal, i.e., it is valid for all quantum dynamical semigroups. The conjecture is supported by numerical
analysis. Moreover, we show that the conjectured constraint is tight by providing a concrete model that
saturates the bound. This universality marks an essential step toward the physical characterization of
complete positivity as the constraint is directly verifiable in experiments. It provides, therefore, a physical
manifestation of complete positivity. Our conjecture also has two important implications: it provides (i) a
universal constraint for the spectra of quantum channels and (ii) a necessary condition to decide whether a
given channel is consistent with Markovian evolution.
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Introduction.—An understanding of the general aspects
of the dynamics of open quantum systems is of funda-
mental importance in the study of the interaction between a
quantum system and its environment that causes dissipa-
tion, decay, and decoherence [1]. This understanding is
important for such fundamental issues as the measurement
problem (see, e.g., [2,3]) and for applications in modern
quantum technologies such as quantum communication,
cryptography, and computation [4]. Very often one infers
information about the quantum system by measuring a
spectrum of some operator representing physical objects
(quantum observables, quantum maps, etc.). In this Letter,
we analyze the spectral properties of the celebrated Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) generator of
the quantum Markovian semigroup [5,6]

_ρ ¼ LðρÞ; ð1Þ

where L has the following well-known form:

LðρÞ ¼ −i½H; ρ� þ
X

k

γk

�
LkρL

†
k −

1

2
fL†

kLk; ρg
�

ð2Þ

with arbitrary noise operators Lk and positive rates γk (we
put ℏ ¼ 1). This is the most general structure of the
generator that guaranties that the dynamical map Λt ¼ etL

is completely positive and trace-preserving (CPTP) [1,
5–7]. Solutions of Eq. (1) define very good approxima-
tions of a real system’s evolution, provided the system-
environment interaction is sufficiently weak and there is
separation of timescales for the system and environment
[1,8–10]. It is well known that eigenvalues of L provide

information about the rate of relaxation and the dissipation
and decoherence processes and hence define key physical
properties of the physical process. In this Letter, we ask
about the physical meaning of complete positivity. In
particular, we analyze how this mathematical requirement
affects physical quantities measured in the laboratory.
Surprisingly, apart from the fact that all relaxation rates
are non-negative, not much more is known about the
structure of the spectrum of a GKLS generator except for
the qubit case (2-level system) [11]. In this Letter, we find
an interesting constraint for relaxation rates that univer-
sally holds in fairly large and physically important classes
of any d-level quantum dynamics, e.g., in general dynam-
ics derived in the weak coupling limit from the proper
microscopic model and the general entropy nondecreasing
dynamics (which corresponds to the unital semigroup).
We conjecture that this constraint is universally valid in all
completely positive Markovian evolutions. Moreover, we
find a concrete model that saturates the bound, proving
that (provided that the conjecture is true) this constraint is
tight and cannot be improved.
Let lα be the corresponding (complex) eigenvalues of L,

that is, LðXαÞ ¼ lαXα for α ¼ 0;…; d2 − 1, where
d ¼ dimH. Since L does preserve Hermiticity, one has
LðX†

αÞ ¼ l�
αX

†
α, that is, if lα is complex, then l�

α is also an
eigenvalue. It is well known [7] that l0 ¼ 0 and the
corresponding eigenvector (zero mode of L) X0 give rise
to the invariant state of the evolution ω ¼ X0=TrX0, that is,
ΛtðωÞ ¼ ω. The corresponding eigenvalues λαðtÞ of the
dynamical map Λt ¼ etL read λαðtÞ ¼ etlα , and hence
necessarily the relaxation rates Γα defined by
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Γα ¼ −Relα ð3Þ

are non-negative Γα ≥ 0 for all α ¼ 1;…; d2 − 1.
Eigenvalues λαðtÞ of Λt ¼ etL belong to the unit disk on
the complex plane, that is, jλαðtÞj ≤ 1. This is a quantum
analog of the celebrated Frobenius-Perron theorem for
stochastic matrices. Complete positivity provides addi-
tional constraint for the spectrum of L and in particular
for the relaxation rates Γα. The relaxation properties of
GKLS generators were further studied in [7,12] and more
recently in, e.g., [13,14]. Some constraints for relaxation
rates for 3- and 4-level systems were presented in [15–17].
Interestingly, the authors of a seminal paper [5] already
observed that, for a qubit evolution governed by the
following well-studied generator

LðρÞ ¼ −i
ϵ

2
½σz; ρ� þ LDðρÞ ð4Þ

with the dissipative part LD ¼ γþLþ þ γ−L− þ γzLz con-
sisting of pumping LþðρÞ ¼ σþρσ− − 1

2
fσ−σþ; ρg, damp-

ing L−ðρÞ ¼ σ−ρσþ − 1
2
fσþσ−; ρg, and dephasing

LzðρÞ ¼ σzρσz − ρ, complete positivity implies the follow-
ing well-known relation for the relaxation times
Tα ¼ 1=Γα:

2TL ≥ TT; ð5Þ

where the longitudinal rate ΓL ¼ Γ3 ¼ γþ þ γ− and
the transversal rate ΓT ¼ Γ1 ¼ Γ2 ¼ 1

2
ðγþ þ γ−Þ þ 2γz.

Equation (5) has been experimentally demonstrated to be
true [7,18]. Clearly, the very condition [Eq. (5)] provides
only partial information about the corresponding qubit
generator. However, violation of Eq. (5) shows that the
generator does not provide a legitimate CPTP evolution.
The generator [Eq. (4)] is very special and in particular
implies that the transversal rates Γ1 and Γ2 are the same.
Note, that three rates Γk (k ¼ 1; 2; 3) satisfy Γi þ Γj ≥ Γk,
where fi; j; kg are all different. Actually, this relation was
proven in [5] for any qubit generator provided the
Hamiltonian and dissipative parts [Eq. (2)] commute.
Clearly, the Eq. (4) generator belongs to this class.
Finally, Kimura [11] showed that commutativity is not
essential and that this relation is universally satisfied for
any qubit generator.
To go beyond the qubit case, it is instructive to rephrase

the relation Γi þ Γj ≥ Γk as follows:

X3

j¼1

Γj ≥ 2Γi; ði ¼ 1; 2; 3Þ: ð6Þ

The condition shown in Eq. (6) is universal for any qubit
generator [11]. For a purely dissipative generator, Wolf and
Cirac derived the following result (Theorem 6 in [19]):

kLk ≤
2

d

Xd2−1

β¼1

Γβ; ð7Þ

where kLk denotes the operator norm. Note that, due to
kLk ≥ jlαj ≥ Γα, the above condition implies

P
d2−1
β¼1 Γβ ≥

ðd=2ÞΓα for a purely dissipative generator. Recently,
Kimura et al. [20] obtained the following universally valid
constraint for any GKLS generator:

Xd2−1

β¼1

Γβ ≥
dffiffiffi
2

p Γα; α ¼ 1;…; d2 − 1: ð8Þ

In this Letter, we conjecture that the bound [Eq. (8)] can
still be improved and propose the following.
Conjecture 1.—Any GKLS generator [Eq. (2)] for d-

level quantum systems implies the following constraint for
the relaxation rates:

Xd2−1

β¼1

Γβ ≥ dΓα; α ¼ 1;…; d2 − 1: ð9Þ

Equivalently, introducing Γ ¼ P
d2−1
β¼1 Γβ and the rela-

tive relaxation rates Rα ¼ Γα=Γ, we conjecture that
Rα ≤ ð1=dÞ. Moreover, the bound [Eq. (9)] is tight, i.e.,
cannot be improved.
Unfortunately, we still do not have a complete proof for

d ≥ 3. However, in this Letter, we construct a GKLS model
that saturates Eq. (9). We also show in this Letter that this
conjecture holds for several important classes of GKLS
generators. In particular, any generator giving rise to the
unital evolution, that is, Lð1Þ ¼ 0, satisfies Eq. (9). Unital
(often called doubly stochastic) maps characterize
decoherence processes that do not decrease entropy
[21,22] and provide a direct generalization of unitary maps.
A second important class is GKLS generators that display
additional symmetry, that is, they are covariant w.r.t. a
maximal abelian subgroup of the unitary group UðdÞ.
The formula [Eq. (2)] provides the most general math-

ematical structure of the generator compatible with the
requirement of complete positivity and trace preservation.
Note, however, that not every generator constructed accord-
ing to Eq. (2) has a clear physical interpretation. There
exists a natural class of generators of Markovian semi-
groups derived in the weak coupling limit (the so-called
Davies generators) [1,7,23] and these do satisfy Conjecture
1. Hence, we may summarize that physically motivated
generators derived from the appropriate microscopic model
always satisfy Eq. (9).
This conjecture is also strongly supported by numerical

analysis (cf. Fig. 1). Interestingly, the numerical analysis is
perfectly consistent with the spectral properties of random
GKLS generators in the large d limit [24].
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Clearly, the conjecture providing a universal constraint
for relaxation rates is interesting by itself since relaxation
rates are experimentally accessible and hence such con-
straints provide a direct method to check the validity of
GKLS generators or the completely positive condition. The
conjecture has, however, further interesting implications. It
allows one to establish a universal constraint for eigenval-
ues of quantum channels (Conjecture 2). Moreover, it
provides the necessary condition for a quantum channel
Φ to be represented via Φ ¼ eL for some GKLS generators
[25]. We found that in this case all eigenvalues are
constrained to a ring r ≤ jzαj ≤ 1, where the inner
radius r is fully characterized by the original channel Φ
(Conjecture 3).
Classical Pauli master equation.—Let us start our

analysis with a classical counterpart of a master equation.
Consider a Pauli rate equation for a classical system with d
states

_pi ¼
Xd

j¼1

Kijpj; ð10Þ

where K is the standard classical generator satisfying the
following Kolmogorov conditions [26]: Kij ≥ 0 (i ≠ j)
and

P
d
i¼1Kij ¼ 0. It is, therefore, clear that Kij can be

represented as Kij ¼ tij − δij
P

d
m¼1 tmj, with tij ≥ 0. Note

that here only tij with i ≠ j are relevant, so in the following
we put tii ¼ 0. Equivalently, Eq. (10) can be formulated as
follows:

_pi ¼
Xd

j¼1

ðtijpj − tjipiÞ: ð11Þ

Do we have a classical analog of Eq. (9)? Spectral
properties of d × d matrix Kij are similar to those of L:

there are d-complex eigenvalues lcl
0 ;…;lcl

d−1 with lcl
0 ¼ 0.

Moreover, Γcl
k ¼ −Relcl

k ≥ 0, and the spectrum is sym-
metric w.r.t. the real axis. Interestingly, in the classical case
there is no bound on the relative classical rates Rcl

k , that is,
given a set of classical rates Γcl

k ≥ 0, one can construct a
classical generator Kij that does display exactly these rates.
In particular, any single relative rate Rcl

k can be arbitrarily
close to “1” [27].
Consider now a quantum evolution t → ρðtÞ such that

the diagonal elements pk ¼ hkjρjki evolve according to the
classical Pauli equation [Eq. (10)]. The evolution is
governed by the following GKLS generator:

LðρÞ ¼
Xd

i;j¼1

tijjiihjjρjjihij −
1

2
fB; ρg; ð12Þ

where B ¼ P
k bkjkihkj with bk ¼

P
d
j¼1 tjk. The spectrum

of L consists of d-classical eigenvalues of the classical
generator represented by the matrix Kij ¼ tij − δijbj:
l0 ¼ 0, lcl

1 ;…;lcl
d−1, and the remaining eigenvalues cor-

respond to eigenvectors jkihlj

LðjkihljÞ ¼ −
1

2
ðbk þ blÞjkihlj; ðk ≠ lÞ: ð13Þ

Summarizing, a set of relaxation rates corresponding to L
consists of classical rates Γcl

1 ;…;Γcl
d−1 and the remaining

quantum rates

Γkl ¼
1

2
ðbk þ blÞ; ðk ≠ lÞ: ð14Þ

Proposition 1.—The generator [Eq. (12)] satisfies
Eq. (9).For the proof, see [27].
The bound is tight.—For any dimension d, one can

construct L such that the Eq. (9) bound is attained. Indeed,
consider the well-studied generator constructed via a
double commutator

LðρÞ ¼ −½Σ; ðΣ; ρÞ� ¼ 2ΣρΣ − fΣ2; ρg ð15Þ

for some Hermitian operator Σ. A well-known example
is a qubit dephasing corresponding to Σ ¼ σz. Let
Σ ¼ P

k skjkihkj and assume that s1 ≤ … ≤ sd. Then,
one finds for the relaxation rates Γij ¼ ðsi − sjÞ2 with
the maximal rate Γmax ¼ Γ1d. One shows [27] that

Xd

i;j¼1

Γij ≥ dΓmax; ð16Þ

which supports Conjecture 1 [Eq. (9)]. Moreover, taking
s2¼…¼sd−1¼½ðs1þsdÞ=2�, one finds

P
d
i;j¼1Γij¼dΓmax,

or equivalently Rmax ¼ ð1=dÞ.

FIG. 1. Distributions of eigenvalues of random Lindbladians.
For each d ¼ 2; 3; 4; 5, we randomly generated 100000 GKLS
generators and plotted the normalized eigenvalues l0 ≔ lα=Γ.
Red vertical lines denote the bound “−1=d” corresponding to our
conjecture, while blue ones denote the previously obtained
bound, −

ffiffiffi
2

p
=d [20].
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Universal formula for relaxation rates.—It is more
convenient to proceed in the Heisenberg picture defined
by the dual generator L‡, which is related to the
Schrödinger picture generator L via Tr½XLðYÞ� ¼
Tr½L‡ðXÞY� for any pair of operators X; Y ∈ BðHÞ.
Clearly, both L and L‡ have the same spectrum lα but
in general different eigenvectors. As was shown by
Lindblad [6], any GKLS generator satisfies the dissipativity
condition DðXÞ ≥ 0 for all X ∈ BðHÞ where

DðXÞ ¼ L‡ðX†XÞ − L‡ðX†ÞX − X†L‡ðXÞ: ð17Þ

Inserting Eq. (2) for the generator, one finds [27]

DðXÞ ¼
X

k

γk½Lk; X�†½Lk; X�: ð18Þ

In particular, taking X ¼ Yα, where L‡ðYαÞ ¼ lαYα, one
derives the following formula for relaxation rates [27]:

Γα ¼
1

2kYαk2ω
X

k

γkk½Lk; Yα�k2ω; ð19Þ

where we introduced the inner product ðA;BÞω ¼
TrðωA†BÞ and the corresponding ω norm kAk2ω ¼
ðA; AÞω. This formula is universal, that is, it holds for
any GKLS generator (with faithful invariant state). Clearly,
to compute Γα one has to know the corresponding eigen-
vector Yα and the invariant state ω. In particular, since
Y0 ¼ 1, one recovers Γ0 ¼ 0.
Unital semigroups: Starting from the universal formula,

Eq. (19), we prove Eq. (9) for generators of the unital
semigroup, i.e., semigroups satisfying etLð1Þ ¼ 1. Unital
semigroups enjoy several important properties. One proves
[21,22] that etL is unital if and only if for any initial state ρ

d
dt

S½etLðρÞ� ≥ 0; ð20Þ

where SðρÞ stands for the von-Neumann entropy (actually it
holds for the Rényi and Tsallis entropies as well). The
corresponding generator satisfies Lð1Þ ¼ 0, which is
equivalent to

X

k

γkL
†
kLk ¼

X

k

γkLkL
†
k: ð21Þ

In particular Eq. (21) holds when all Lindblad operators
Lk are normal (LkL

†
k ¼ L†

kLk). Inserting ω ¼ 1=d into
Eq. (19), one obtains

Γα ¼
1

2kYαk2
X

k

γkk½Lk; Yα�k2; ð22Þ

where now kAk2 ¼ TrðA†AÞ. To prove Eq. (9), we use the
following intricate inequality [28]:

k½A;B�k2 ≤ 2kAk2kBk2: ð23Þ

Actually, this inequality was conjectured by Böttcher and
Wenzel [29] in 2005 (see [28] for more details). A simpler
proof can be found in [30]. It should be stressed that the
bound in [20] was shown by the direct use of this inequality
as well. The inequality presented in Eq. (23) immediately
implies

Γα ≤
X

k

γkkLkk2: ð24Þ

Assuming the normalization kLkk2 ¼ 1 as well as the
condition TrLk ¼ 0 without loss of generality, one shows
[27] that

P
k γk ¼ ð1=dÞPα Γα, and hence Eq. (24) repro-

duces Eq. (9). Thus, we have shown the following.
Theorem 1.—The GKLS generator of a unital semigroup

satisfies Eq. (9).
A class of covariant generators.—Symmetry plays a key

role in modern physics. In many cases, it enables one to
simplify the problem and often leads to a much
deeper understanding and a more elegant mathematical
formulation. Let us consider a class of generators covariant
w.r.t. the maximal commutative subgroup of the unitary
group UðdÞ:

UxLðXÞU†
x ¼ LðUxXU

†
xÞ; ð25Þ

where Ux ¼ P
d
k¼1 e

−ixk jkihkj, and x ¼ ðx1;…; xdÞ ∈ Rd.
Any generator satisfying Eq. (25) has the following form:

L ¼ L0 þ L1 þ L2; ð26Þ

where L0ðρÞ ¼ −i½H; ρ�, together with

L1ðρÞ ¼
Xd

i≠j
tijjiihjjρjjihij −

1

2
fB; ρg

L2ðρÞ ¼
Xd

i;j¼1

dijjiihijρjjihjj −
1

2
fD; ρg; ð27Þ

where the Hamiltonian H ¼ P
i hijiihij, B ¼ P

j bjjjihjj,
with bj ¼

P
i tij, and D ¼ P

d
i¼1 diijiihij [27]. This is a

GKLS generator iff tij ≥ 0 and the Hermitian matrix
½dij�di;j¼1 is positive definite. Clearly, L1 is a standard
generator considered before and L2 just adds pure
decoherence.
Proposition 2.—The generator, Eq. (26), satisfies Eq. (9).

For the proof, see [27].
Markovian semigroup in the weak coupling limit.—Any

legitimate generator of CPTP semigroup has a GKLS form
[Eq. (2)]. However, not every such generator has a clear
physical interpretation. Davies [23,31] showed that, if the
(open) quantum system is weakly coupled to the
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environment, by performing the so-called weak coupling
limit one eventually derives a Markovian generator of
exactly the GKLS form but with a clear physical
meaning derived from the proper microscopic model
(cf. [1,7,32,33]). Actually, if the invariant state ω has a
nondegenerate spectrum (generic situation), then the cor-
responding generator derived in the weak coupling limit
satisfies Eq. (25), and moreover ½ω; Ux� ¼ 0, that is,
ω ¼ P

k ωkjkihkj. An additional property of such a gen-
erator is a quantum detailed balance condition [7], which in
this case reduces to tikωk ¼ tkiωi, which is, however, not
essential for Eq. (9). Hence, we may conclude that a class of
physically legitimate GKLS generators defined via a weak
coupling limit does satisfy Eq. (9).
Implications.—Provided our conjecture is true, for what

is it useful? In response, we note that it enables one to
characterize the spectra of quantum channels. Indeed, if Φ
is a quantum channel (CPTP map), then LðρÞ ¼ ΦðρÞ − ρ
defines a legitimate GKLS generator [5]. An example of
such a generator is just qubit dephasing ‘σzρσz − ρ’. Now,
let zα ¼ xα þ iyα denote eigenvalues of Φ. Clearly, they
belong to the unit disk jzαj ≤ 1 and z0 ¼ 1. It is therefore
clear that Conjecture 1 implies the following.
Conjecture 2.—The spectrum zα ¼ xα þ iyα of any

quantum channel satisfies
P

d2−1
β¼1 xβ ≤ dðd − 1Þ − 1þ

dxα for α ¼ 1;…; d2 − 1.Since Conjecture 1 holds in the
qubit case, one has the following.
Proposition 3.—The spectrum zα ¼ xα þ iyα of any

qubit channel satisfies

jx1 � x2j ≤ 1� x3: ð28Þ

In particular, for the Pauli channel ΦðρÞ ¼ P
3
α¼0 pασαρσα,

one has zk ¼ xk and Eq. (28) is equivalent to the celebrated
Fujiwara-Algoet conditions [34]. Clearly, Conjecture 2
holds for all unital channels.
A second immediate implication of Conjecture 1 relates

to the problem of deciding whether a given quantum
channel Φ can be represented as Φ ¼ eL for some
GKLS generator L [19,25]. Our original Conjecture 1
implies the following.
Conjecture 3.—If Φ ¼ eL, then the spectrum zα of Φ

satisfies

detΦ ¼ z1…zd2−1 ≤ jzαjd; ð29Þ

for α ¼ 1;…; d2 − 1.Interestingly, Conjecture 3 shows that
all zα are not only constrained to the unit Frobenius disk but
belong to the ring

ffiffiffiffiffiffi
detd

p
Φ ≤ jzαj ≤ 1: ð30Þ

Clearly, Conjecture 3 is satisfied for all qubit channels and
all unital channels. In particular, for a qubit Pauli channel,
all eigenvalues zα are real, and hence Eq. (29) reduces to the

following simple condition: zizj ≤ zk, where i; j; k ∈
f1; 2; 3g are all different. This condition was recently
derived in [35,36].
Conclusions.—In this Letter, we propose a conjecture for

the universal constraint for relaxation rates Γα of a quantum
dynamical semigroup. It is shown that the conjecture is
supported by several well-studied examples of quantum
semigroups, including unital (doubly stochastic) evolution
and semigroups derived in the weak coupling limit.
Moreover, the conjecture is strongly supported by numeri-
cal analysis (cf. Fig. 1). We would like to emphasize that
the universality, i.e., the model-independent property, and
its experimental accessibility are of particular importance.
Any violation of the conjectured constraint in the experi-
ment immediately implies the impossibility of realizing the
evolution via a completely positive Markovian semigroup
(in the same spirit as a violation of Bell inequalities forbids
the explanation in terms of a local realistic model). In this
sense, the presented conjecture provides a physical mani-
festation of complete positivity.
Note that our analysis may be immediately generalized

for the time-dependent case where the dynamics is gov-
erned by a time-dependent generator Lt. In particular, one
may analyze the issue of non-Markovian evolutions
(cf. recent reviews [37–40]) having access to local relax-
ation rates ΓαðtÞ. A violation of Eq. (9) demonstrates the
non-Markovianity of the corresponding evolution, that is, it
shows that the corresponding dynamical map Λt cannot be
represented via Λt ¼ Vt;sΛs with completely positive and
trace-preserving propagators Vt;s for t > s [41–43].
Finally, our conjecture also has two important implica-

tions: it provides (i) a universal constraint for the spectra of
quantum channels and (ii) a necessary condition for
deciding whether a given channel Φ is consistent with
the Markovian evolution Φ ¼ eL.

We would like to thank Y. Shikano and S. Ajisaka for
their comments and discussion. We also thank K.
Życzkowski and S. Denisov for valuable discussions on
random Lindblad generators. D. C. was supported by the
Polish National Science Centre Project No. 2018/30/A/
ST2/00837. G. K. is supported in part by JSPS KAKENHI
Grant No. 17K18107.

*Deceased.
†Corresponding author.
darch@fizyka.umk.pl

‡Corresponding author.
gen@shibaura-it.ac.jp

[1] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford, 2007).

[2] J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, New Jersey, 1955).

[3] B. d’Espagnat, Conceptual Foundations of Quantum
Mechanics (Benjamin, Reading, MA, 1976).

PHYSICAL REVIEW LETTERS 127, 050401 (2021)

050401-5



[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[5] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.
Phys. (N.Y.) 17, 821 (1976).

[6] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[7] R. Alicki and K. Lendi, Quantum Dynamical Semigroups

and Applications (Springer, Berlin, 1987).
[8] C. W. Gardiner and P. Zoller, Quantum Noice (Springer-

Verlag, Berlin, 1999).
[9] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101

(1998).
[10] H. J. Carmichael, Statistical Methods in Quantum Optics I:

Master Equations and Fokker-Plack Equations (Springer,
Berlin, 1999).

[11] G. Kimura, Phys. Rev. A 66, 062113 (2002).
[12] H. Spohn, Rev. Mod. Phys. 52, 569 (1980).
[13] K. Dietz, J. Phys. A 37, 6143 (2004).
[14] B. Baumgartner, H. Narnhofer, and W. Thirring, J. Phys. A:

Math. Gen. 41, 065201 (2008).
[15] S. G. Schirmer and A. I. Solomon, Phys. Rev. A 70, 022107

(2004).
[16] P. R. Berman and R. C. O’Connell, Phys. Rev. A 71, 022501

(2005).
[17] D. K. L. Oi and S. G. Schirmer, Phys. Rev. A 86, 012121

(2012).
[18] A. Abragam, Principles of Nuclear Magnetism (Oxford

University Press, New York, 1961); C. P. Slichter, Principles
of Magnetic Resonance (Springer-Verlag, New York, 1990).

[19] M.M. Wolf and I. Cirac, Commun. Math. Phys. 279, 147
(2008).

[20] G. Kimura, S. Ajisaka, and K. Watanabe, Open Syst. Inf.
Dyn. 24, 1740009 (2017).

[21] F. Benatti, Lett. Math. Phys. 15, 325 (1988).
[22] P. Aniello and D. Chruściński, J. Phys. A: Math. Gen. 49,

345301 (2016).
[23] E. B. Davies, Commun. Math. Phys. 39, 91 (1974).
[24] S. Denisov, T. Laptyeva, W. Tarnowski, D. Chruściński, and

K. Życzkowski, Phys. Rev. Lett. 123, 140403 (2019).

[25] M.M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev.
Lett. 101, 150402 (2008).

[26] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (North Holland, Amsterdam, 2007).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.127.050401 for proofs of several
propositions.

[28] A. Böttcher and D. Wenzel, Linear Algebra Appl. 429, 1864
(2008).

[29] A. Böttcher and D. Wenzel, Linear Algebra Appl. 403, 216
(2005).

[30] K. Audenaert, Linear Algebra Appl. 432, 1126 (2010).
[31] E. B. Davies, Quantum Theory of Open Systems (Academic

Press, New York, 1976).
[32] F. Benatti and R. Floreanini, Mod. Phys. Lett. A 12, 1465

(1997).
[33] A. Rivas and S. F. Huelga, Open Quantum Systems. An

Introduction (Springer, Heidelberg, 2011).
[34] A. Fujiwara and P. Algoet, Phys. Rev. A 59, 3290

(1999).
[35] D. Davalos, M. Ziman, and C. Pineda, Quantum 3, 144

(2019).
[36] Z. Puchała, L. Rudnicki, and K. Życzkowski, Phys. Lett. A

383, 2376 (2019).
[37] Á. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys.

77, 094001 (2014).
[38] H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Rev.

Mod. Phys. 88, 021002 (2016).
[39] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001

(2017).
[40] L. Li, M. J. W. Hall, and H. M. Wiseman, Phys. Rep. 759, 1

(2018).
[41] Á. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett.

105, 050403 (2010).
[42] D. Chruściński and S. Maniscalco, Phys. Rev. Lett. 112,

120404 (2014).
[43] D. Chruściński, Á. Rivas, and E. Størmer, Phys. Rev. Lett.

121, 080407 (2018).

PHYSICAL REVIEW LETTERS 127, 050401 (2021)

050401-6

https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/PhysRevA.66.062113
https://doi.org/10.1103/RevModPhys.52.569
https://doi.org/10.1088/0305-4470/37/23/012
https://doi.org/10.1088/1751-8113/41/6/065201
https://doi.org/10.1088/1751-8113/41/6/065201
https://doi.org/10.1103/PhysRevA.70.022107
https://doi.org/10.1103/PhysRevA.70.022107
https://doi.org/10.1103/PhysRevA.71.022501
https://doi.org/10.1103/PhysRevA.71.022501
https://doi.org/10.1103/PhysRevA.86.012121
https://doi.org/10.1103/PhysRevA.86.012121
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1142/S1230161217400091
https://doi.org/10.1142/S1230161217400091
https://doi.org/10.1007/BF00419590
https://doi.org/10.1088/1751-8113/49/34/345301
https://doi.org/10.1088/1751-8113/49/34/345301
https://doi.org/10.1007/BF01608389
https://doi.org/10.1103/PhysRevLett.123.140403
https://doi.org/10.1103/PhysRevLett.101.150402
https://doi.org/10.1103/PhysRevLett.101.150402
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050401
https://doi.org/10.1016/j.laa.2008.05.020
https://doi.org/10.1016/j.laa.2008.05.020
https://doi.org/10.1016/j.laa.2005.02.012
https://doi.org/10.1016/j.laa.2005.02.012
https://doi.org/10.1016/j.laa.2009.10.022
https://doi.org/10.1142/S0217732397001497
https://doi.org/10.1142/S0217732397001497
https://doi.org/10.1103/PhysRevA.59.3290
https://doi.org/10.1103/PhysRevA.59.3290
https://doi.org/10.22331/q-2019-05-20-144
https://doi.org/10.22331/q-2019-05-20-144
https://doi.org/10.1016/j.physleta.2019.04.057
https://doi.org/10.1016/j.physleta.2019.04.057
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.121.080407
https://doi.org/10.1103/PhysRevLett.121.080407

