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As liquids approach the glass transition temperature, dynamical heterogeneity emerges as a crucial
universal feature of their behavior. Dynamic facilitation, where local motion triggers further motion nearby,
plays a major role in this phenomenon. Here we show that long-ranged, elastically mediated facilitation
appears below the mode coupling temperature, adding to the short-range component present at all
temperatures. Our results suggest deep connections between the supercooled liquid and glass states, and
pave the way for a deeper understanding of dynamical heterogeneity in glassy systems.

DOI: 10.1103/PhysRevLett.127.048002

Dynamic facilitation is the process whereby relaxation of
a local region in a glassy system enables another local
region to subsequently move and relax. Facilitation plays a
major role in the spatiotemporal pattern of correlated
relaxation events characteristic of supercooled liquids,
referred to as “dynamical heterogeneity,” which is perhaps
the most striking hallmark of glassy dynamics [1]. The
underlying structural and microscopic origins of dynamic
facilitation (also called kinetic facilitation) and dynamical
heterogeneity are still widely debated. At high temperatures
facilitation appears to be a local, short-ranged process
[2–6]. However it has been appreciated for decades that
some relaxation processes in glassy media involve long-
ranged correlations. Given that dynamic facilitation in
supercooled liquids arises initially at short timescales,
where the system should behave effectively as a solid, it
is natural to wonder whether long-ranged elastic processes
may influence facilitation and dynamical heterogeneity.
An extreme example of the influence of elasticity is the

low-temperature relaxation of tunneling defects in glasses,
which is mediated by long-ranged (dipolar) phonon
exchange [7–9]. Another example is provided by the plastic
behavior of amorphous solids. Local plastic deformations

in elastic media induce signature quadrupolar perturbations
to the stress and strain fields in the surrounding material
which decay as power laws in space [10]. The role of such
fields in triggering relaxation elsewhere when an amor-
phous solid is mechanically deformed has been the focus of
intense research activity during the last decade [11–17].
This triggering by stress is a type of “elastically mediated”
dynamic facilitation that has been thoroughly studied in the
context of the rheology of amorphous solids by means of
elastoplastic models [16], in which each rearrangement
perturbs the stress of the surrounding material, thereby
triggering new rearrangements when the perturbing stress
surpasses some local threshold value. It should be noted,
however, that elastoplastic models do not incorporate the
type of thermal motion that occurs in equilibrium liquids.
Recent reports of anisotropic spatial correlations in stress or
strain in liquids [18–23] have suggested that elasticity
might play a role even at high temperatures, but it is now
understood that such stress correlations must arise for
isotropic systems in mechanical equilibrium and do not
require elasticity [24,25].
Here we study by numerical simulation the effects of

elasticity on dynamic facilitation in supercooled liquids at
temperatures above and below the mode coupling tempera-
ture, TMCT. We examine both the strain response to a
rearranging particle as well as the pair correlation function
of rearrangements, ghopðrÞ, characterizing the probability of
finding a rearrangement at a relative position r within a
short time interval following a rearrangement at the origin.
At all temperatures studied we find that the strain response
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of the neighborhood of a rearranging particle is anisotropic
and qualitatively consistent with the response of a linearly
elastic medium. The pair correlation function of rearrange-
ments, however, reveals a change of behavior with temper-
ature. At high temperatures, dynamic facilitation is local;
i.e., it acts only on nearby regions, as is indeed assumed in
simple models [3,26]. However, dynamic facilitation
becomes progressively longer-ranged and elastically medi-
ated with decreasing temperature. Remarkably, the emer-
gence of long-ranged facilitation takes place near TMCT,
strengthening the interpretation of the mode coupling
crossover as the temperature at which the system starts
to display solidlike behaviors [17,27,28].
We conduct microcanonical molecular dynamics simu-

lations, using LAMMPS [29], of a d ¼ 2 dimensional
polydisperse system of particles first introduced in [30].
The swap Monte Carlo algorithm [31,32] allows for the
equilibration of this system even well below the mode
coupling theory temperature TMCT [30]. The particles have
random diameters σ ∈ ½σmin; σmax� with probability density
function ∝ σ−3, where σmin and σmax are determined by the
mean σ̄ and coefficient of variation cσ of σ. Particles
interact via a pair potential Vðr̃Þ ¼ GΘðr̃0 − r̃Þ½r̃−12 þ c0þ
c2r̃2 þ c4r̃4�. Here, Θ is the Heaviside step function and c0,
c2, and c4 are chosen such that Vðr̃0Þ ¼ 0 and V0ðr̃Þ is
continuously differentiable. The argument r̃ ¼ r=σ̃ is the
interparticle separation r between particles i and j with
diameters σi and σj normalized by σ̃ ¼ 1

2
ðσi þ σjÞ

ð1 − ϵjσi − σjjÞ. Following [30], we choose r̃0 ¼ 1.25,
ϵ ¼ 0.2, and cσ ¼ 0.23. We set G, σ̄, the (uniform) particle
mass m, and the Boltzmann constant kB to unity, thus
defining our energy, length, mass, and temperature units.
We study N ¼ 104 particles in an L × L periodic square
box of side length L ¼ 100. For this system the onset
temperature is T0 ≈ 0.236 and the mode coupling temper-
ature is TMCT ≈ 0.116 [30].
We study rearrangements in 400 trajectories with inde-

pendent initial velocities chosen from the Boltzmann
distribution for each of 1000 separate equilibrium configu-
rations for temperature T ¼ 0.100, 400 configurations for
T ¼ 0.105, and 202 configurations for T ¼ 0.110, 0.115,
0.120, 0.130, 0.140, and 0.150, doubling our statistics by
averaging over trajectories in both directions in time [33].
We follow equilibrium trajectories of the system, identify-
ing rearranging particles as those with squared displace-
ment Δr2 > 5a2 between inherent structure (i.e.,
quenched) positions at times t ¼ 0 and t ¼ 102 [20,33].
Here, a2 is the (unquenched) mean squared displacement
plateau height, a quantity that depends on the particle
diameter and on the system temperature [33]. The timescale
Δt ¼ 102 matches the time at which dynamic facilitation is
at play, identified as the one at which individual rearrange-
ments cluster together in space [33]. For reference, the
ballistic time is τballistic ≈ 100 in these units, and the

relaxation time is τα ¼ 3 × 102 and τα ¼ 2 × 106 at the
highest and lowest temperatures, respectively. For further
characterization and details on the choice of Δt, see the
Supplemental Material [33].
Our first observation is that the rearrangement of a given

particle causes elasticlike displacements of other particles;
i.e., the system, despite being a liquid, displays a solidlike
response at short times. To show this, we proceed as
follows. For each particle i in the system, we identify the
local best-fit linear strain tensor Ei [19,33,43] for quenched
displacements in the neighborhood of the particle. We
then extract strain invariants, such as the isotropic strain
γiso;i ¼ TrEi and the deviatoric strain γdev;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2TrE02

i

p

(where E0
i ≡ Ei − ð1=dÞTrEiI). Crucially, for rearranging

particles, Ei also gives us local extensional and compres-
sional axes from its orthonormal eigenvectors: we denote as
eext;i (ecom;i) the eigenvector corresponding to the largest
(smallest) eigenvalue of Ei. We then average over neigh-
borhoods of rearranging particles translated such that the
rearranging particle is at the origin at the start of the
rearrangement interval (of duration Δt) and rotated such
that the extensional axis of its local strain tensor is
eext ¼ ð1; 0Þ. From this we obtain a tensor field EðrÞ for
the mean strain tensor E at position vector r relative to a
rearranging particle at the origin with a horizontal local
extensional axis. We also calculate the strain in this
direction, γext ≡ E0∶eext ⊗ eext, where eext and ecom are
eigenvectors of the local strain tensor E computed at the
rearranging particle i, whereas E0 is the local deviatoric
strain tensor of the neighbors j of i. The dipolarity of γiso,
quadrupolarity of γext, and the isotropic behavior of γdev,
shown in Fig. 1 for temperatures T ¼ 0.100 (left) and
T ¼ 0.150 (right) spanning the full temperature range of
our study, are the expected signatures of the response of an
elastic solid [44].
We now assess the temperature dependence of the range

of the elasticlike response by studying the angular Fourier
series coefficients, which characterize the strength of the
observed symmetries reported above [33]. More specifi-
cally, we consider the zeroth and second order coefficients
γ̂iso;0 and γ̂iso;2, the zeroth order coefficient γ̂dev;0 and the
fourth order coefficient γ̂ext;4. As shown in Fig. 2, γ̂iso;2 and
γ̂ext;4 [Figs. 2(c), 2(d)] decay for T ≤ 0.12 as r−2 from r ¼ 3

up to a cutoff that increases slightly with decreasing T but is
roughly r ≃ 10. This power-law decay is expected for an
elastic response [44]. The radial dependence of γ̂dev;0 [Fig. 2
(b)] deviates from the elastic response behavior at higher
temperatures but appears to approach the expected behavior
(dashed line) with decreasing temperature. This can be
explained by the decreasing density of rearrangements per
unit time with decreasing T, which allows the elastic
displacement field from rearrangements to extend further
into the material without being obscured by other rearrange-
ments [33]. Finally, for the zeroth mode of γiso [Fig. 2(a)],
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steady-state elasticity predicts γ̂iso;0 ≡ 0. Instead, we see a
rapidly decaying radial wave of isotropic expansion and
contraction, with expansion peaks (compression troughs)
roughly coinciding with the peaks (troughs) of gðrÞ [33].
This is consistent with the results of [44] in the context of
athermal quasistatic shear: rearrangements expand the
structure at the shortest distances from the rearrangement,
thus locally hardening the structure, but compress the
structure slightly further out, with this hardening-softening
pattern repeating out to large distances.

We now focus directly on dynamic facilitation and
analyze its relation with the elastic responses characterized
above. We use the pair distribution of rearrangements,
ghopðrÞ ¼ ghopðr; θÞ (the average density of rearrangements
at r given a rearrangement at the origin, divided by
the bulk rearrangement density [33]), to investigate the
extent to which facilitation of rearrangements is due to
elasticity. In Figs. 3(a) and 3(b) we display g̃hopðr; θÞ ¼
2πghopðr; θÞ=

R
2π
0 ghopðr; θÞdθ [the rearrangement pair dis-

tribution ghopðr; θÞ normalized at each r by its angular mean
ð2πÞ−1 R 2π

0 ghopðr; θÞdθ] for rearrangements over the time
interval ½0;Δt� [45] at distances r ¼ 1, 3, 10, 30, for
temperatures T ¼ 0.100 and T ¼ 0.150. Well below
TMCT, at T ¼ 0.100 [Fig. 3(a)], the spatial distribution of
subsequent rearrangements remains anisotropic out to
r ¼ 30. The angular Fourier series expansion coefficients
of g̃hop [33] show that this anisotropy comes from the
second- and fourth-order Fourier modes of g̃hop, and
persists up to at least r ≈ 20. Above TMCT, at T ¼ 0.150
[Fig. 3(b)], no anisostropic structure can be discerned
beyond the second neighbor shell, i.e., beyond r > 3.
The anisotropy in ghop upon coaligning the local strain

tensors of plastic events is an unambiguous measure of the
elastic component of ghop. To quantify the amount of
anisotropy in the spatial distribution of rearrangements
we introduce the mean squared anisotropy (deviation from
isotropy) αðrÞ ¼ ð2πÞ−1 R 2π

0 ½g̃hopðr; θÞ − 1�2dθ, as shown
in Fig. 3(c). When calculating α in practice, we control for
the effect of statistical noise, which is larger at lower

(a) (b)

(c) (d)

FIG. 2. (a)–(d) Fourier series cofficients γ̂iso;0, γ̂dev;0, γ̂iso;2, and
γ̂ext;4, respectively, as a function of distance r from a rearranging
particle (cf. Fig. 1). Dotted segments denote negative values. The
colors correspond to temperatures T ¼ 0.100, 0.105, 0.110,
0.115, 0.120, 0.130, 0.140, and 0.150 (darkest to lightest).
Dashed lines (b)–(d): slopes corresponding to the power-law
decay, ∝ r−2, of an infinite elastic medium responding to a small
plastic deformation. Dashed line (a): power law decay ∝ r−3

plotted as an upper bound to the envelope of γ̂iso;0.

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Polar plots of (a),(b) γiso ¼ TrE, (c),(d) γdev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2TrE02p

,
and (e),(f) γext ¼ E0∶eext ⊗ eext across a rearrangement interval
Δt ¼ 102 as a function of the position r relative to a rearranging
particle that was at r ¼ 0 at the start of the rearrangement interval
for systems at temperatures T ¼ 0.100 (a),(c),(e) and T ¼ 0.150
(b),(d),(f). Here, E is the best-fit linear strain tensor at r, E0 is
detraced E, and eext is a unit eigenvector corresponding to the
largest eigenvalue ofE at the origin. The radial axes are plotted on a
log scale.
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temperatures due to these temperatures having fewer
rearrangements per trajectory, as described in [33]. High
α at small r shows that displacements at this scale, though
highly nonlinear, are measurably influenced by the ori-
entation of the linear strain. This short-ranged influence—
indicative of short-ranged dynamic facilitation—persists
over the entire temperature range studied. As T is lowered,
the large-r tail of α increases markedly, spanning two
orders of magnitude, implying a significant difference in
the role played by long-range elastic interactions between
the lowest and highest temperatures considered here. At the
same time, Fig. 3(d) shows that hops become more strongly
correlated with decreasing temperature, with the dynamic
facilitation implied by correlations ghop > 1 surviving up to
increasingly large distances as a result.
To quantify the extent of elastically mediated dynamic

facilitation, we introduce Iα ≔
R
40
2.5 αðrÞdr, which integra-

tes α over distances beyond the second neighbor shell at
r≳ 2.5 (to filter out the effect of short-range facilitation)
and up to the limit beyond which finite-size effects appear.
Figure 4(a) displays its evolution with 1=T. We observe a
crossover at TMCT from a slow to a rapid growth of Iα as a
function of 1=T. Above TMCT, the strain-correlated spatial

organization of the rearrangements is largely obscured,
beyond the second-neighbor shell, by other rearrange-
ments [33]. The competition between these other rear-
rangements and emergent elasticity at longer distances
leads to the observed crossover in Iα. Note that the
observed crossover at TMCT is robust to choices of lower
bound of the integral, rearrangement interval Δt, strain
length ξFL, and starting point for the integration (r0 ≥ 2.5)
[33]. We similarly define an integrated excess density
of rearrangements (relative to the bulk rearrangement
density), Ihop ≔

R
40
2.5 2πr½ghopðrÞ − 1�dr, where ghopðrÞ ¼

ð2πÞ−1 R 2π
0 ghopðr; θÞdθ. Figure 4(b) shows that Ihop, quan-

tifying the strength of correlations between hops, and
hence dynamic facilitation, increases with decreasing T.
Taken together, these results for ghop, Iα, and Ihop provide
direct and explicit evidence for the elastoplastic mecha-
nism, in which the elastic response to a rearrangement
triggers other, distant rearrangements. The elastoplastic
mechanism emerges as a significant component of an
increasingly prominent facilitation upon crossing TMCT.
Taken together, our findings suggest a crossover from

solely short-ranged dynamic facilitation for T > TMCT to
additional long-ranged, elastically mediated dynamic facili-
tation of avalanches at T < TMCT. This finding provides an
intriguing link between mean-field models, where TMCT
marks the location where supercooled liquids first exhibit a
transient solidlike behavior, and real-space dynamical
heterogeneity. We note that the crossover at TMCT is not
visible in the strain field induced by a rearrangement; for
example, the isotropic strain shows dipolar angular behav-
ior at all temperatures considered. The crossover is only
evident in the spatial and angular distribution of rearrange-
ments that follow soon after the original rearrangement at
the origin. The anisotropic spatial distribution of hops
evidenced in ghop, Figs. 3(a), 3(b), and the increase in range
of ghopðrÞ, Fig. 3(d), as well as the crossover at T ¼ TMCT

seen in Iα, Fig. 4(a), can only be due to the strain field
created by the rearrangement at the origin. At high T strain
does not facilitate rearrangements because the

(a) (b)

(c) (d)

FIG. 3. Top row: plots of the normalized pair distribution of
rearrangements g̃hop ¼ 2πghop=

R
2π
0 ghopdθ across one rearrange-

ment interval Δt ¼ 102 for temperatures (a) T ¼ 0.100 and
(b) 0.150. Each curve corresponds to a different r, and is scaled
so that isotropy (dashed black circle) corresponds to the corre-
sponding r value for the log-scaled r of Fig. 1. (c) Mean squared
anisotropy αðrÞ ¼ ð2πÞ−1 R 2π

0 ðg̃hop − 1Þ2dθ as a function of r for
T ¼ 0.100, 0.105, 0.110, 0.115, 0.120, 0.130, 0.140, and 0.150
(lighter shade denoting higher T). Transparent curves: results of
bootstrap sampling (sampling hops with replacement from the set
of hops in the raw data, while preserving the number of hops per
r-bin) to indicate the statistical uncertainty of the results. (d): Pair
correlation of hops ghopðrÞ, same color coding as (c).

(a) (b)

FIG. 4. Integrated (a) mean squared anisotropy
Iα ¼

R
40
2.5 αðrÞdr and (b) pair distribution of rearrangements

Ihop ¼
R
40
2.5 2πr½ghopðrÞ − 1�dr as a function of inverse temper-

ature 1=T. Transparent crosses in (a) are the results of bootstrap
sampling, which accentuates fluctuations. Dotted lines: 1=TMCT.
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rearrangements are so abundant and closely spaced that
their strain fields effectively interfere [33]. We note that at
temperatures below TMCT, dynamical heterogeneity still
involves short-ranged facilitation, whereby the local relax-
ation of clusters coalesces on longer length scales to form
avalanches. Nevertheless, the emergence of prominent
long-ranged elastic effects must influence the spatiotem-
poral correlations between such avalanches.
Approximately ten years ago it was noticed that rare,

long-ranged “surges” of dynamical heterogeneity con-
nected to strain deformation occur in supercooled liquids
[46], and that such behavior occurs in some coarse-grained
kinetically constrained models [3,5,47]. Our findings
potentially pinpoint the microscopic underpinnings of such
behavior, which could lead to greater understanding of the
building blocks of phenomenological models of super-
cooled liquids, though further work is needed to confirm
this crossover in other systems, particularly experimental or
three-dimensional systems. It would also be worthwhile to
generalize elastoplastic models [16] to describe elastic
dynamic facilitation within equilibrium thermal dynamics
along the lines of [48,49]. More generally, our results
highlight the importance of long-ranged elastic processes in
mediating the organization of dynamical heterogeneities on
long length and timescales, and the need to incorporate
such processes in simplified models of the glass transition.
In light of recent work [50,51] showing evidence that
elasticity sets the activation energy barriers to rearrange-
ment of deeply supercooled liquids, and hence their short
timescale dynamics [52], it is tempting to conclude that
elastoplasticity alone can account for most of the dynamics
of supercooled liquids below TMCT.

Data sets and code for the work in this paper can be
found at Ref. [53].
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