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If a quantum fluid is driven with enough angular momentum, at equilibrium the ground state of the
system is given by a lattice of quantized vortices whose density is prescribed by the quantization of
circulation. We report on the first experimental study of the Feynman-Onsager relation in a nonequilibrium
polariton fluid, free to expand and rotate. Upon initially imprinting a lattice of vortices in the quantum fluid,
we track the vortex core positions on picosecond timescales. We observe an accelerated stretching of the
lattice and an outward bending of the linear trajectories of the vortices, due to the repulsive polariton
interactions. Access to the full density and phase fields allows us to detect a small deviation from the
Feynman-Onsager rule in terms of a transverse velocity component, due to the density gradient of the fluid
envelope acting on the vortex lattice.
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One of the most remarkable characteristics of a Bose-
Einstein condensate (BEC) is its response to rotation [1].
Different from a conventional fluid, in the “rotating bucket”
experiment a condensate does not rotate with the bucket for
angular velocities slower than a critical value [2]. The
absence of friction with the bucket walls is a unique
property of superfluids, which realize the ideal case of
irrotational flow. Yet, the velocity field of superfluids is
irrotational up to phase defects, i.e., quantized vortices,
which allow the condensate to have a finite angular
momentum. As a consequence, for a driving angular
frequency larger than a critical value [3], the superfluid
breaks into the formation of quantized vortex filaments in
3D, or pointlike vortices in 2D, as observed in superfluid
helium and ultracold atomic condensates [4,5]. More
generally, quantized vortices are excited states (topological
defects) of a quantum fluid which form also without
macroscopic rotation of the potential trap, for example,
via the Kibble-Zurek mechanism or in turbulent regimes
[6,7]. Quantized vortices have also proven to be striking
examples of the similarities between the condensed matter,
optical, and dilute-gas quantum systems, since complex
Ginzburg-Landau equations (CGLEs) describe a vast vari-
ety of phenomena such as superconductivity, superfluidity,
lasing, and Bose-Einstein condensation [8]. With respect to
the optical vortices observed in paraxial vortex beams,
CGLEs include light-matter interaction as a Kerr-type
nonlinearity [9,10], allowing for the existence of dark
vortex solitons in a defocusing nonlinear medium and
quantized vortices in a superfluid [11,12].
Exciton-polaritons (polaritons hereafter) are a relati-

vely new example of superfluid [13–15], in which a

macroscopic coherent state is formed even far from the
thermal equilibrium condition [16]. Polaritons are bosonic
quasiparticles which result from the strong interaction
between light and matter in semiconductor microcavities
with embedded quantum wells. In most cases, their
dynamics is well described by a generalized Gross-
Pitaevskii (GP) equation, which takes into account the
driven-dissipative character of polaritons [17].
In the past decade, quantized vorticity in polariton fluids

was observed under a variety of pumping conditions
[18,19]. Highly nonlinear effects on the nucleation of
few vortices, and solitons have been shown, as well as
their all-optical manipulation and trapping in propagating
polariton fluids [20,21]. A major advantage of this system
is given by the photonic component, which enables the
control over the phase and density profiles of the polariton
fluid by optical shaping of the pumping laser beam [22,23].
Additionally, the nonlinear interactions inherited from the
excitonic component are orders of magnitude higher than in
standard nonlinear media. High-quality samples now avail-
able with longer polariton lifetime and reduced density of
defects allow us to explore complex configurations of
vortices, going beyond previous realizations of a single
or few vortices.
In this Letter, we report on the creation demand of a

macroscopic lattice of quantized vortices in polariton fluids
and the measurement of the evolution of both density and
phase. The quantum fluid is free to expand and each vortex
has a dual function: It participates to the build up of the
rotation, and it acts as a test particle that enables the
observation of the dynamics. We measure the lattice
rotation and expansion and show that these exhibit a small
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but measurable deviation from the Feynman-Onsager
relation. In particular, we observe a detailed balance
between the faster radial separation of the vortex cores
due to the repulsive polariton-polariton interactions, and a
slower rotation of the quantum fluid, yet preserving the
regular lattice shape. We model these observations in terms
of the initial vortex lattice density, or equivalently, its
intervortex spacing, acting as the characteristic scaling
length which determines both the expansion rate of the
lattice and its instantaneous angular velocity. Finally, we
highlight the role of the gradients of quantum fluid density
resulting in an additional velocity contribution to the
rotation of the lattice, likewise a Magnus effect of classical
fluids.
We use a semiconductor planar microcavity with

12 GaAs quantum wells embedded in two distributed
Bragg reflectors. A pulsed excitation tuned on resonance
with the polariton energy is used to imprint the vortex
lattice state [22]. The phase wave front of the exciting beam
is modulated by a spatial light modulator (SLM) consisting
of an array of individually programmable pixels made of
liquid crystal cells. The phase profile of the vortex lattice is
designed by software, sent to the SLM, and transferred to
the pumping beam upon reflection on the SLM screen. The
SLM and the microcavity are conjugate planes in the
optical excitation path, with the image of the vortex lattice
reduced by a factor 50 in size on the sample surface (see
Fig. 1). The exciton-polariton phase profile is inherited
from the pulsed laser upon resonant excitation and is free to
evolve after the pulse has gone (pulse duration of 2 ps). The
time-resolved evolution of the vortex lattice is obtained by
interfering the signal coming from the microcavity with a
sample of the exciting pulse, as shown in Fig. 1. Digital off-

axis holography allows us to retrieve the spatial distribution
of both density and phase of the polariton fluid in the 2D
plane of the microcavity [24]. By changing the time delay
between the pump and the reference, the evolution dynam-
ics of the 2D quantum fluid is obtained in both space and
time domain (see Ref. [25] Method section).
The phase and the velocity fields of the initial state of the

system with a regular lattice of 7 × 7 vortices with the same
unit topological charge are shown in Fig. 2(a). Because of
the internal concentration of vortex charges, the largest
momentum is reached at the outer boundary of the region
(apart from local fluctuations). The background amplitude
profile [Fig. 2(b)] of the lattice is not uniform but
modulated by the Gaussian profile of the laser beam.
Once the pulsed resonant excitation is over, the polariton
lattice rotates in a rigid-body movement, such that the fluid,
irrotational for simply connected regions, effectively
appears as rotational in a coarse grained picture (in
Fig. 2, time shots illustrate the evolution of the polariton
density during the first 45 ps).

FIG. 1. Schematic representation of the experimental setup. A
laser beam is divided in two paths by a beam splitter (BS1) and
one beam is diffracted by a SLM, where the phase pattern of a
lattice of vortices is displayed. The beam with the imprinted
phase profile is imaged on the sample surface by a system of
lenses. The signal is made to interfere with a time-delayed
reference beam. The interferogram is acquired by a CCD camera,
and both density and phase are reconstructed in space and time by
digital off-axis holography.

FIG. 2. (a) Phase map φðrÞ of the initial state of a 7 × 7 square
lattice of vortices (left) with momentum kðrÞ ¼ ∇φ representing
the velocity field (right). The color scale of the momentum map is
bounded at jkj ¼ 1.6 μm−1 to avoid saturation inside the cores.
The regular lattice builds up a continuous increase of azimuthal
momentum reaching a maximum at its boundary of ≈0.42 μm−1

corresponding to a fluid velocity of 1.2 μmps−1. Overlapped
streamlines (black lines) display the velocity direction, indicating
the rotating motion. (b) The normalized amplitude maps over a
span of 45 ps. The outer boundary of the lattice is shown by a
square (thin line).
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The velocity circulation around a multiply connected
region enclosing a lattice of unitary vortices is quantized
according to the Feynman-Onsager relation [30,31], result-
ing in an angular velocity of the lattice

Ω ¼ h
2m

1

d2
; ð1Þ

with m the polariton mass and d the intervortex dis-
tance [25].
In experiments with superfluid helium [32,33], when the

system is put into rotation at constant frequency Ω, at
equilibrium a regular lattice of vortices of equal sign
unitary charge is formed with an average density in
agreement with Eq. (1). Experiments with gaseous BECs
in cylindrical traps [34,35] confirm these results with the
formation of triangular (or hexagonal) lattices, which are
ground state configurations in the rotating frame, contain-
ing up to hundreds of vortices. However, in our system, the
polariton fluid expands due to the absence of the confining
potential, and moreover, a stationary state can never be
reached, leading to both the vortex spacing and the rotation
frequency to change in time. In order to quantitatively
describe the change of the intervortex distance, we can
think of the initial condition as that of a rigid-body rotation,
in agreement to the Feynman-Onsager relation, with the
azimuthal velocity proportional to the distance from the
center v ¼ ðΩ × rÞ · êθ. In the absence of interactions,
given that the fluid is free to expand, every particle
continues to move along a straight line with the initial
velocity v [36]. The intervortex distance dðtÞ increases
following a law of analog form to what is expected for the
density of a diffracting optical beam and for an expanding
BEC of noninteracting particles after the release from a
magnetic trap,

dðtÞ ¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

a
d20

t

�

2

s

: ð2Þ

Here, d0 is the initial distance and a ¼ a0 ≡ h=2m in the
linear regime. The expansion factor (a=d20) sets the scaling
of all the distances in the lattice. Noteworthy, the circular
symmetry of initial velocities is such that any shape, such as
the square lattice, appears to be expanding and rotating at
later times. This angle of rotation, directly linked to the
Gouy phase, can be written upon geometrical consider-
ations as

θðtÞ ¼ b × arctan

�

a
d20

t

�

; ð3Þ

with the prefactor b ¼ 1 in the linear regime, meaning that
the limit angle tends to π=2 for large times. If we add the
repulsive interactions between polaritons, the initial mean-
field energy is expected to be partially released into kinetic

energy during the expansion [37–39]. Nonlinear repulsion
marks the origin of a dynamical regime where the vortex
trajectories deviate from the straight lines of the linear case
due to the earlier onset of an additional radial component of
the velocity. As a consequence, in the nonlinear case, the
expansion factor in Eqs. (2) and (3) is expected to be always
larger than in the linear limit, a > a0.
The evolution of the intervortex distances in regular

lattices of same-sign vortices and in a lattice of vortices and
antivortices is shown in Fig. 3(a). While the averaged
spacing d increases independently of the sign of the
circulation (Q ≠ 0), when the total injected topological
charge is null (lattice of vortices and antivortices), the
rotation rate is zero [25] and the intervortex spacing slightly

(a) (b)

(c) (d)

FIG. 3. (a) Intervortex distances over time for three cases with
total charge equal to Q ¼ �49 (red and blue dots, respectively),
and Q ≃ 0 (green dots). Error bars come from the estimate of the
vortex positions. (b) Mean intervortex distances for three differ-
ent initial separations and Q ¼ −49. (c) The orientation angle of
the whole lattice for the same cases as in (b). In panels (b) and (c),
solid lines are the best fits of Eqs. (2) and (3), with a ¼ 11.6�
0.9 μm2 ps−1 and b ¼ 0.99� 0.09. The small contraction of the
lattice at short time lags, due to a residual curvature of the phase
profile of the exciting beam, is taken into account by introducing
a time offset t0 in the fitting functions used in panels (b),(c):
t0 ¼ 7, 11, and 17 ps for d0 ¼ 21, 26.5, and 30 μm, respectively.
(d) Rotation angle as a function of the vortex distance during the
expansion of the lattice for the three cases shown in panels (b) and
(c). Only positive angles are shown in panel (d), i.e., for t > t0, to
allow the comparison between different d0. Solid lines corre-
spond to the first 150 ps of expansion and rotation. Inset: the
value of ab=a0 as extracted from individual fit [same color legend
as in panels (b) and (c)], and for a global fit (yellow point). The
deviation from the Feynman-Onsager relation is quantified by the
distance from the dashed line, with a0 ¼ 9.85 μm2 ps−1 and b ¼
1 of the linear case.
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shrinks due to the mutual attraction of vortices with
opposite sign. The time behavior of the average spacing
d and rotation angle θ measured during the expansion of
lattices with different initial intervortex distance d0 are
shown in Figs. 3(b) and 3(c), respectively. The solid lines
are the best global fit of Eqs. (2) and (3) to experimental
data, showing a very good agreement with a single set of
parameters. In Fig. 3(d), the rotation angle is shown as a
function of the intervortex separation for the same data
reported in Figs. 3(b) and 3(c). These results have been
confirmed by independent analysis of numerical simula-
tions (see Ref. [25]).
The rigidlike rotation of the lattice allows us to compare

the Feynman-Onsager relation in Eq. (1) with the mea-
surements of the vortex trajectories. Indeed, from Eqs. (2)
and (3), we obtain

d2ðtÞ dθðtÞ
dt

¼ ab:

Therefore, the angular velocity dθðtÞ=dt is inversely
proportional to the squared intervortex distance dðtÞ during
the whole expansion of the lattice, and their product is the
same for the three initial d0 shown in Fig. 3.
In the inset of Fig. 3(d), the product ab is compared to

the equilibrium value a0 ¼ h=2m of Eq. (1), showing a
measurable deviation from the Feynman-Onsager relation.
The difference is small, but can be appreciated for each
separate d0, as well as for the global best fit over the three
evolutions (yellow point). We ascribe such a deviation to the
Magnus effect, i.e., the transversal velocity of the vortex
cores induced by density gradients in the polariton fluid [40–
42]. In our experiments, the density gradient (similar for the
three initial d0, since it depends on the Gaussian envelope of
the same pumping beam) points radially inward and the
Magnus-like velocity accelerates the rotation of the lattice
with respect to that of the fluid, ab > h=2m.
To highlight the role of nonlinearities in the dynamics,

we move to a position on the sample with a higher excitonic
fraction (see Ref. [25]). In Fig. 4(a), the trajectories of a
vortex pair in the polariton fluid are compared to the
straight ones of the linear case. The faster increase of the
intervortex distance, with respect to the linear evolution, is
shown in Fig. 4(b) for an experimental dataset at
μ ¼ 0.12 meV. From Fig. 4(a), it can be seen that a faster
expansion implies a smaller rotation angle at long times, as
shown in Fig. 4(c) by comparing the linear to the nonlinear
case. Although the deviation of the rotation angle from the
linear evolution becomes significantly appreciable only at
longer times, the global fit of expansion and rotation allows
us to extract a reliable value for the prefactor b in Eq. (3). In
Fig. 4(d), the results for the parameters ða; bÞ obtained from
the experiments shown in Figs. 3 and 4 and from the
numerical simulations of GP dynamics are summarized for
different chemical potentials. The blue line corresponds to

the curve b ¼ a0=a expected without the Magnus contri-
bution. Both experiments and simulations show a small but
measurable deviation from the blue line. If the cores are in
the parabolic region of the Gaussian envelope, the added
velocity scales up linearly with r, without disturbing the
regular lattice shape. However, the effect of additional local
density gradients due to the presence of neighboring
vortices increases the distortion of the lattice from the
regular shape, adding noise to the measurements.
Furthermore, the strength of the interactions is responsible
for sustaining on a longer time the rigidlike behavior of the
lattice dominated by the kinetic energy. In the opposite
limit of very small interactions, or waiting enough time in
the polariton evolution, this condition may cease to be valid
since the intervortex separation becomes comparable to the

(a) (b)

(c) (d)

FIG. 4. (a) Graphical representation of the effect of nonlinear
interactions producing a bending of the trajectories from the
straight lines. (b) The time evolution of the intervortex separation
d for a lattice of 5 × 5 vortices. Red points with error bars are
experimental data at chemical potential μ ¼ 0.12 meV (corre-
sponding to a polariton density n ∼ 100 μm−2, with an interaction
strength g ¼ 10−3 meV μm2), and the red solid line is the result of
a numerical simulation at equal μ; from the best fit, the
corresponding nonlinear expansion factor is a ¼ 1.38a0. The
black dashed line is the evolution in the linear case corresponding
to μ ≃ 0 meV, and a ¼ a0 ¼ 5.04 μm2 ps−1. (c) Rotation angles
as a function of time corresponding to the lattice expansions
shown in (b). Red line is the best fit of Eq. (3) with a ¼ 1.38a0
and b ¼ 0.8; the black dashed line is the angle evolution in the
linear case (a ¼ a0, b ¼ 1). In the inset, an enlargement at small
time lag shows the experimental data (red points) superposed to
the best fit (red line). (d) Parameters ða; bÞ extracted from
experiments (crosses) and simulations (circles, squares) at differ-
ent values of μ. The red line is a polynomial fit to a values; the
blue line is the expected behavior for b in the absence of the
Magnus effect, a0=a.
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healing length, and a new regime may arise, as reported in
Ref. [43], and confirmed by our simulations [25].
We have shown that lattices of quantized vortices in out-

of-equilibrium, untrapped quantum fluids exhibit a con-
formal stretching and rotation, compensating the ballistic
radial expansion by a decreasing angular velocity.
Interactions modify this picture: In our repulsive case, a
radial acceleration outward increases the intervortex sep-
aration and limits the rotation angle at long times. The
vortex lattice behavior is compared to the quantized
circulation of the whole fluid, showing a Magnus-like
effect as an additional rotation of the vortex lattice with
respect to the fluid. These results show the crucial impor-
tance of having experimental access to a well-resolved
space or time tracking of the vortices in an expanding fluid,
where nonlinear effects rapidly weaken. Such a high degree
of control over the nonequilibrium dynamics of interacting
quantum fluids opens up the possibility to achieve con-
figurations with a larger vortex density and ad hoc all-
optical confining potentials. It is still an open question
whether turbulentlike regimes akin to what is realized in
other systems [44,45] will be within reach in exciton-
polariton fluids.
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