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The Kitaev model is a remarkable spin model with gapped and gapless spin liquid phases, which are
potentially realized in iridates and α-RuCl3. In the recent experiment of α-RuCl3, the signature of a nematic
transition to the gapped toric code phase, which breaks the C3 symmetry of the system, has been observed
through the angle dependence of the heat capacity. We here propose a mechanism by which the nematic
transition can be detected electrically. This is seemingly impossible because Jeff ¼ 1=2 spins do not have
an electric quadrupole moment (EQM). However, in the second-order perturbation, the virtual state with a
nonzero EQM appears, which makes the nematic order parameter detectable by nuclear magnetic
resonance and Mössbauer spectroscopy. The purely magnetic origin of the EQM is different from
conventional electronic nematic phases, allowing the direct detection of the realization of Kitaev’s toric
error-correction code.
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Introduction.—The Kitaev model [1] is a notable spin
model for quantum spin liquids (QSLs) with gapped and
gapless ground states. After the pioneering work by Jackeli
and Khaliullin [2], potential experimental realizations were
reported in iridates [3,4] and α-RuCl3 [5]. Indeed, those
materials have d5 metal ions in the octahedral ligand field
forming the honeycomb lattice, which results in the
unusual anisotropic interactions proposed by Kitaev [1].
This Jackeli-Khaliullin mechanism is intrinsic to the
Jeff ¼ 1=2 magnetic moment with a strong spin-orbit
coupling (SOC), and it makes the d5 materials family
(sometimes called Kitaev materials) a fascinating platform
for the physics of Majorana fermions. Especially
after the discovery of a field-revealed QSL phase in
α-RuCl3 [6,7], various experimental techniques were
used to characterize this exotic phase under a magnetic
field [8–10]. However, the realization of Kitaev’s gapped A
phase, which is nothing but a toric code phase [11], was
only discussed in a complex structure in metal-organic
frameworks [12].
Kitaev’s A phase is the ground state of the Kitaev model

in the anisotropic limit. This is a gapped Z2 spin liquid
phase and is mapped to the toric code model in the fourth-
order perturbation. The toric code is a topological error
correction code that is useful in fault-tolerant quantum
computing. We here discuss another route toward the
realization of this phase. This toric code phase is potentially
realized by a spontaneous breaking of the C3 symmetry of
the isotropic Kitaev model. If the order parameter reaches a
critical value, the system transforms from B phase
to A phase. This order parameter consists of quadrupole

operators rather than usual magnetic dipoles; and in this
sense, we can regard it as a nematic transition.
On the analogy of liquid crystals, a nematic phase is

discussed in various fields of condensed matter physics,
ranging from spin nematic phases in frustrated magnets
[13] to electronic nematic phases in quantum Hall systems
[14], ruthenates [15], unconventional superconductors [16],
etc. Inspired by the previous numerical studies [17,18], we
seek for a possibility of the nematic transition in Kitaev
materials. In Jeff ¼ 1=2 Kitaev materials, it should be
called spin-orbital nematic [19], with properties of being
both spin nematic and electronic nematic.
Recently, Tanaka et al. [20] indeed observed such a spin-

orbital nematic transition from a gapped chiral spin liquid
phase to a different gapped phase characterized by the
broken threefold rotation C3 symmetry, based on the
measurements of the angle dependence of heat capacity
under a strong magnetic field. It has been proposed that this
symmetry-broken phase could be the toric code phase [21]
because the half-quantized thermal Hall effect disappears at
the transition point [7]. However, the property of this
nematic transition is still obscure, and we need a more
sensitive local probe for this unusual phase transition.
Therefore, we propose an electric quadrupole moment

(EQM) as a direct probe for the topological nematic
transition [21] of the Jeff ¼ 1=2 magnetic moments. This
statement is very counterintuitive as the Jeff ¼ 1=2 pseu-
dospin does not have an EQM in the cubic environment,
which is different from the Jeff ¼ 3=2 case [22], where the
quadrupole moment is directly measurable. Interestingly,
however, holes with a Jeff ¼ 1=2 pseudospin can hop to the
nearest-neighbor (NN) sites, and a virtual state with two
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holes can possess an EQM. This is because, via the
superexchange pathway involving the Cl p orbitals, the
Jeff ¼ 1=2 state can be transformed into a state with a
nonzero quadrupole moment. This enables us to electrically
detect the nematic order parameter, which is originally
written in terms of spin operators. We also discuss that,
although the Chern number is not measurable, its change
can be inferred from the careful analysis of the derivative of
the in-plane anisotropy parameter η.
In a real experimental setup, the most sensitive way to

measure the EQM is through the hyperfine interaction
because the nuclear with a spin of I ≥ 1 can feel the electric
field gradient (EFG) or the EQM. Specifically, nuclear
magnetic resonance (NMR) and Mössbauer spectroscopy
(MS) use a nuclear spin of Ru as a direct probe, and they are
highly sensitive to the symmetry of the local environment.
If the C3 symmetry of Ru forming the honeycomb lattice is
broken, it can potentially be detected by 99=101Ru-NMR
[23] or 99Ru-MS [24]. In NMR and MS, the in-plane
anisotropy is characterized by a single dimensionless
parameter η [25–27]. If the EFG or EQM tensor has an
anisotropy around the [111] axis, η gets nonzero and the
signal splits or shifts, which could detect the existence of a
nematic order.
In this Letter, we will prove that the in-plane anisotropy η

is directly connected to the nematic order parameter in
terms of Majorana fermions, which potentially detects the
transition to the toric code phase.
Quadrupole moment.—An electronic EQM is defined for

d orbitals by

qαβ ¼ 3

2
ðLαLβ þ LβLαÞ − L2δαβ; ð1Þ

where L are L ¼ 2 orbital angular momentum operators of
Ru d orbitals; α ¼ x, y, or z; and β ¼ x, y, or z. This rank-2
traceless symmetric tensor directly couples to the nuclear
EQM of Ru, and the anisotropy of qαβ is easily measurable.
If the EFG from the surrounding ions is negligible, as is the

case for 99Ru-MS [24], we can identify the effective EFG
Vαβ
eff to be proportional to qαβ. Therefore, we will not

distinguish between the EFG and EQM of Ru from now on.
The definition of η in terms of qαβ is as follows: Since

this tensor is symmetric, it can be diagonalized by
orthogonal transformation. Here, we denote the principal
axis as abc, where we define the order of abc such that
jqccj ≥ jqbbj ≥ jqaaj. In this case, η is defined as
η ¼ ðqaa − qbbÞ=qcc. If η ¼ 0, it is apparent that the
EQM is invariant under the rotation around the c axis,
and thus it potentially detects the breaking of the C3

symmetry of α-RuCl3. However, the connection between
η and the nematic order parameter is not evident in this
form. Differently from the “electronic” nematic order,
where η detects the distortion of surrounding ligands, the
spin nematic order is subtle without a detectable structural
transition.
Since the nematic transition of α-RuCl3 may be purely

magnetic, as around the transition point H ∼ 10 T, no
structural transition has been observed [20]; we have to
think of a mechanism where a pure spin operator is
transformed into an electric quadrupole. Especially in
the case where the position of Cl ligands is not distorted,
we have to consider a purely electronic origin for this
mechanism, which involves a microscopic structure of Ru d
orbitals. From now on, we set ℏ ¼ 1.
As is well known, the Jeff ¼ 1=2 pseudospin cannot

possess an EQM in the cubic environment; thus, we have to
perturb the Jeff ¼ 1=2 wave function in some way to get a
nonzero expectation value of the EQM. One simple way is
by the ligand field effect of the lattice distortion, but it only
produces a static contribution. A more exotic answer is to
perturb the Jeff ¼ 1=2wave function via the superexchange
mechanism. Especially in the case of the low-spin d5

configuration, it is well known as the Jackeli-Khaliullin
mechanism that the Jeff ¼ 1=2 state is transformed into the
Jeff ¼ 3=2 state with a nonzero quadrupole moment, which
produces the following Kitaev Hamiltonian for Jeff ¼ 1=2
pseudospins:

HKitaev ¼ −K
X
hiji∈γ

Sγi S
γ
j; ð2Þ

where Si is a pseudospin on the ith site of α-RuCl3; K > 0
is a Kitaev interaction; and hiji ∈ γ means an NN bond hiji
in the γ direction with γ ¼ x, y, and z. The bond direction is
defined as illustrated in Fig. 1(a). Assuming the zero-flux
ground state, the Hamiltonian can be recast into the tight-
binding model of Majorana fermions:

HMajorana ¼
K
4

X
hiji

icicj; ð3Þ

where ci is an itinerant Majorana fermion on the ith site.
We note that, in this Letter, we do not antisymmetrize
Majorana fermion operators.
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FIG. 1. (a) Honeycomb lattice where Kitaev model is defined.
Red, green, and blue bonds represent bonds in x, y, and z
directions, respectively. (b) Idealized geometry of α-RuCl3.
Orange and yellow spheres represent Ru and Cl ions, respec-
tively. Bonds in γ direction defined to be perpendicular to γ axis
of cubic lattice. Figure generated by software VESTA [28].
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Similarly to the Jackeli-Khaliullin mechanism, we can
compute an effective quadrupole moment produced by the
virtual state; and it can potentially have a form of Sγi S

γ
j. This

is how the pure spin operator Sγi S
γ
j can be transformed into

an electric quadrupole qγγ in the second-order perturbation.
Second-order perturbation.—Following Jackeli and

Khaliullin [2], we will do the perturbation inside the t2g
orbitals by assuming a large octahedral ligand field. The
discussion also follows Refs. [29–31]. The idea is especially
related to the one discussed in Ref. [32]. We first note that t2g
orbitals (dyz, dxz, and dxy) possess an effective angular
momentum operator leff with leff ¼ 1. This effective moment
has a relation L ¼ −leff inside the t2g-manifold, but we
cannot simply use this relation in the calculation of qαβ. The
computation of qαβ involves intermediate eg orbitals, which
bring about a nonzero correction. Details are included in the
Supplemental Material (SM) [33].
We take the following basis set to write down the

Hamiltonian:

d†i ¼ ðd†i;yz;↑; d†i;yz;↓; d†i;xz;↑; d†i;xz;↓; d†i;xy;↑; d†i;xy;↓Þ; ð4Þ

where d†i;α;σ denotes a hole creation operator for a dα orbital
with a spin of σ ¼ ↑, ↓ with α ¼ yz, xz, and xy. We
sometimes identify yz, xz, and xy with x, y, and z,
respectively.
The Hamiltonian H consists of the following terms:

H ¼ Hhop þHSOC þHLF þHHubbard; ð5Þ

which is the sum of the kinetic hopping term, the SOC, the
ligand field splitting, and the Hubbard term. The kinetic
hopping term can be written generically as follows:

Hhop ¼ −
X
hiji∈γ

½d†i ðTγ ⊗ 12Þdj þ H:c:�; ð6Þ

where 1n is the n × n identity matrix; and Tγ with γ ¼ x, y,
and z are

Tx ¼

0
B@

0 0 0

0 0 t2
0 t2 0

1
CA; Ty ¼

0
B@

0 0 t2
0 0 0

t2 0 0

1
CA;

Tz ¼

0
B@

0 t2 0

t2 0 0

0 0 0

1
CA; ð7Þ

where t2 is the main contribution coming from the pathway
via Cl p orbitals. Of course, we can consider a more generic
form including ti (i ¼ 1;…; 4) [29,30].

The SOC Hamiltonian is

HSOC ¼ λ

2

X
i;α

d†i ðlα ⊗ σαÞdi;

where λ > 0, ðlαÞβγ ¼ −iϵαβγ; and σα are Pauli matrices
with α ¼ x, y, and z.

HLF ¼ Δ
X
i

d†i ½ðl · n̂Þ2 ⊗ 12�di;

with n̂ ¼ ð1; 1; 1Þ= ffiffiffi
3

p
, assuming the preserved C3 sym-

metry of the lattice.
HHubbard is a multiorbital Hubbard interaction term. We

here ignore the Hund coupling JH for simplicity because
JH is much smaller than the Hubbard interaction U:

HHubbard ¼
U
2

X
i

niðni − 1Þ;

where ni ¼ d†i · di is a number operator for each site.
Let us begin with the case without a ligand field splitting

by settingΔ ¼ 0. In the atomic limit without a kinetic term,
the system has exactly one hole per site. The states for a
single hole are split into Jeff ¼ 3=2 and Jeff ¼ 1=2; and the
atomic ground state consists of degenerate Jeff ¼ 1=2
pseudospins as λ > 0, which is denoted by Si. The effective
operator form of qαβ in terms of pseudospins Si can be
derived from the second-order perturbation in the kinetic
term. This is achieved by perturbing a magnetic state jϕmi
into jψmi up to the first order and by computing

½qαβeff �mn ¼ hψmjqαβjψni: ð8Þ
jψmi is

jψmi ¼ αjϕmi þ
1 − P

E0 −H0

Hhopjϕmi; ð9Þ

where α ∼ 1 is a renormalization constant, P is a projection
operator onto unperturbed states, andH0 is an unperturbed
Hamiltonian with an energy E0 for jϕmi. Since the original
Jeff ¼ 1=2 state jϕmi does not have an EQM, the effective
operator can finally be written:

qαβeff ¼ PHhop
1 − P

E0 −H0

qαβ
1 − P

E0 −H0

HhopP: ð10Þ

The contribution of the hiji bond to the ith site can also be
written as

qαβij ¼ PHi→j
hop

1 − P
E0 −H0

qαβi
1 − P

E0 −H0

Hj→i
hopP; ð11Þ

where Hj→i
hop ¼ d†i ðTγ ⊗ 12Þdj when hiji ∈ γ.

From now on, an NN site of i is denoted by iγ for the γ
direction. When γ ¼ z, the direct calculation leads to the
following effective EQM:
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qiiz ¼
t22

½U þ ð3=2Þλ�2

0
BB@

ð4=3ÞðSxi Sxiz − Syi S
y
iz
Þ þ 4Szi S

z
iz

−ð4=3ÞðSxi Syiz þ Syi S
x
iz
Þ −ð16=3ÞSxi Sziz

−ð4=3ÞðSxi Syiz þ Syi S
x
iz
Þ ð4=3ÞðSyi Syiz − Sxi S

x
iz
Þ þ 4SziS

z
iz

−ð16=3ÞSyi Sziz
−ð16=3ÞSxi Sziz −ð16=3ÞSyi Sziz −8Szi S

z
iz

1
CCA; ð12Þ

up to a trivial constant. Although it looks complicated, the
main contribution is simple. In the spirit of Kitaev’s
perturbative treatment of the magnetic field, we can regard
the first contribution to be the one that does not change the
flux sector. In qαβiiz , such a contribution is only the S

z
iS

z
iz
term

in the diagonal element, which can be written by assuming
that i is on the even sublattice as

P0qiizP0 ¼
t22

½U þ ð3=2Þλ�2

0
B@

−iciciz 0 0

0 −iciciz 0

0 0 2iciciz

1
CA;

ð13Þ

where P0 is a projection operator onto the zero-flux sector.
By summing up all the contributions from the three

bonds surrounding the ith site, the total EQM in the second
order becomes

P0qiP0 ¼
t22

½U þ ð3=2Þλ�2

0
B@

3icicix 0 0

0 3iciciy 0

0 0 3iciciz

1
CA

−
t22

½U þ ð3=2Þλ�2 ðicicix þ iciciy þ icicizÞ13;

ð14Þ

which is nothing but a nematic order parameter because
two terms cancel out when hicicixi ¼ hiciciyi ¼ hicicizi
and the C3 symmetry around the ith site is preserved. Thus,
we have shown that the EQM of Ru is directly connected to
the nematic order parameter of Majorana fermions.
Specifically, a nematic Kitaev spin liquid (NKSL) where
the ground state remains the zero-flux sector but breaks the
C3 symmetry by a nematic order parameter can be detected
through the measurement of this EQM directly by Ru-
NMR or Ru-MS. However, such an effect could compete
with a static EQM coming from the trigonal distortion, and
so we should be careful about whether η is detectable if we
include both of the contributions.
Trigonal distortion.—Even if we introduce a small

trigonal distortion of Δ ≠ 0, the ground state remains a
Kramers doublet in the atomic limit and the effective spin-
1=2 description is valid. The effective operator form of the
EQM can be obtained in almost the same way as before up
to the first order in Δ=λ:

P0qiP0¼

0
BBBBB@

3it2
2

½Uþð3=2Þλ�2cicix −4Δ
3λ −4Δ

3λ

−4Δ
3λ

3it2
2

½Uþð3=2Þλ�2ciciy −4Δ
3λ

−4Δ
3λ −4Δ

3λ
3it2

2

½Uþð3=2Þλ�2ciciz

1
CCCCCA

−
t22

½Uþð3=2Þλ�2 ðicicix þ iciciy þ icicizÞ13
þOðΔ2;Δt22;t42Þ: ð15Þ

By diagonalizing this tensor, we can calculate the value of
η. Since usually Δ=λ > t22=U

2, the principal a axis is nearly
perpendicular to the (111) plane. b and c axes are inside this
plane, detecting the C3 symmetry of the system.
In order to show the relevance of our theory to detect

NKSL, we try to check the size of η for the ansatz state. In
the mean-field level, the ansatz state of the NKSL should be
the ground state for the following ansatz Hamiltonian:

HNKSL ¼ −
X
hiji∈γ

KγSγi S
γ
j; ð16Þ

where Kγ > 0 is an effective Kitaev interaction for the γ
direction. On the Kx ¼ Ky line shown in Fig. 2(a), Lieb’s
theorem [40] is applicable and the expectation value of the
EQM becomes

hΨGSjqijΨGSi ¼ hΨGSjP0qiP0jΨGSi; ð17Þ

for any ground state jΨGSi. We then compute η for the
ground state of HNKSL along the line Kx ¼ Ky. The results

0

π/4

π/2

(a) (b)

FIG. 2. (a) Phase diagram of Kitaev model [1]. Cyan regions
represent A phase, and white region represents B phase. Black
solid line represents Kx ¼ Ky line, which is parametrized by θ as
depicted. (b) η with respect to model parameter θ. Δ ¼ 10 meV,
λ ¼ 150 meV, and U ¼ 1.5 eV are used. t2 takes 150, 200, and
250 meV. Kitaev’s gapped A phase shown by cyan shaded region.
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are shown in Fig. 2(b), where θ is defined as
tan θ ¼ Kz=Kx. The calculation method is included in
the SM [33].
From the isotropic point θ ¼ π=4 with η ¼ 0, the value

of η gradually grows; and it continuously changes around
θ ¼ θc with tan θc ¼ 2, where the topological transition
between Kitaev’s B and A phases occurs. In the gapped A
phase (cyan shaded region), η reaches 0.1–0.2. Thus, the
topological nematic transition should result in a Oð0.1Þ
change of the value of η, which is definitely detectable in
the Ru-NMR or Ru-MS measurement.
Although the transition is continuous, the derivative of η

has a cusp at the transition point (see Fig. S2 in the SM
[33]). Experimentally, the B phase and the A phase can be
distinguished by the presence of a cusp in the derivative,
and the critical value can be determined by its position. The
consequence of an applied magnetic field is also discussed
in the SM [33].
Other contributions.—In this Letter, we have only

considered the on-site d orbital contribution to the EFG.
Usually, the interaction with the EFG is divided into on-site
and off-site contributions [41] as Hel ¼ Hon

el þHout
el with

Hon
el ¼ −

e2Q
2Ið2I − 1Þ hr

−3ihLkαkLiIq↔I;

Hout
el ¼ ð1 − γ∞Þ

eQ
2Ið2I − 1Þ IV

↔out
I; ð18Þ

where e is the elementary charge, Q is the quadrupole
moment of the nucleus, I are nuclear spin operators where I
depends on the isotope, hr−3i is the expectation value of r−3
for Ru 4d electrons, hLkαkLi is a constant defined in
Ref. [41], γ∞ is the Sternheimer antishielding factor,

and V
↔out

is the EFG tensor caused by the surrounding ions.
Usually, Hon

el is the main contribution because Ru 4d
orbitals are strongly localized, and thus we have ignored the
effect of Hout

el so far. However, because the C3 symmetric

structure of ligands is stable in α-RuCl3, the effect of V
↔out

is
just renormalizing the value of Δ. Therefore, our theory is
qualitatively valid even if we include the contribution from
the surrounding ions. Whether or not it gives a non-
negligible change quantitatively will be discussed in the
future.
Discussion.—We have shown that the nematic transition

in α-RuCl3 is detectable by NMR and MS through the
measurement of η. Experiments should be combined with
the high-resolution x-ray diffraction to exclude the pos-
sibility of a lattice distortion. Although the conclusion is
modified when the external magnetic field is applied, the
first-order contribution vanishes and η still serves as a
nematic order parameter. The mechanism of the detection
itself is different from conventional electronic nematic
phases. Although the expression of q given by the bilinear
form of the spin operators is not limited to Kitaev systems,

its highly anisotropic form is a consequence of the
strong SOC.
Our theory can be generalized to the three-dimensional

extensions of the Kitaev model [42,43]. Specifically, the
spin-Peierls instability expected in the hyperoctagon lattice
[44] is potentially detectable in our scheme based on NMR
and MS.
In the case of NMR, not only static quantities like the

EFG but also dynamical quantities can be observed.
Specifically, the nuclear spin-lattice relaxation rate divided
by temperature 1=T1T would also be a good probe for the
timescale of the nematic transition. We would remark that
the anisotropy of 1=T1T can be another signature of the
existence of a nematic order [45].
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