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We show that unconventional nematic superconductors with multicomponent order parameter in
lattices with three- and sixfold rotational symmetries support a charge-4e vestigial superconducting phase
above Tc. The charge-4e state, which is a condensate of four-electron bound states that preserve the
rotational symmetry of the lattice, is nearly degenerate with a competing vestigial nematic state, which
is nonsuperconducting and breaks the rotational symmetry. This robust result is the consequence of a
hidden discrete symmetry in the Ginzburg-Landau theory, which permutes quantities in the gauge sector
and in the crystalline sector of the symmetry group. We argue that random strain generally favors the
charge-4e state over the nematic phase, as it acts as a random mass to the former but as a random field to the
latter. Thus, we propose that two-dimensional inhomogeneous systems displaying nematic superconduc-
tivity, such as twisted bilayer graphene, provide a promising platform to realize the elusive charge-4e
superconducting phase.
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Introduction.—The collective behavior of interacting
electrons in quantum materials can give rise to a plethora
of exotic phenomena. An interesting example is charge-4e
superconductivity [1–13], an intriguing macroscopic quan-
tum phenomena that was theoretically proposed but is yet
to be observed. In contrast to standard charge-2e super-
conductors characterized by Cooper pairing, a charge-4e
superconductor is formed by the condensation of four-
electron bound states. Many basic properties of this exotic
state, such as whether its quasiparticle excitation spectrum
is gapless or gapped, remain under debate [12].
One strategy to search for charge-4e superconductivity is

to look for systems that display two condensates and search
for a stable state where pairs of Cooper pairs are formed
even in the absence of phase coherence among the Cooper
pairs. One widely explored option is the so-called pair-
density wave (PDW) state, in which the Cooper pairs have a
finite center-of-mass momentum [13]. An unidirectional
PDW is described by two complex gap functions Δ�Q that
have incommensurate ordering vectors �Q. Charge-4e
superconductivity, described by the composite order
parameter ΔQΔ−Q, is a secondary order that exists inside
the PDW state. It has been proposed that the PDW state can
melt in two stages before reaching the normal state [6],
giving rise to an intermediate state in which there is no
PDW order hΔ�Qi ¼ 0, but there is charge-4e supercon-
ducting order hΔQΔ−Qi ≠ 0. Such an intermediate phase
is called a vestigial phase [14–16], as it breaks a subset of
the symmetries broken in the primary PDW state. The main
drawback of this interesting idea is the fact that the

occurrence of PDW states in actual materials and in
microscopic models seems to be rather rare [13]. Thus,
it is desirable to search for other systems that may host
vestigial charge-4e superconductivity.
In this Letter, we show that nematic superconductors

in hexagonal and trigonal lattices offer a promising alter-
native. A nematic superconductor breaks both the gauge
symmetry associated with the phase of the gap function and
the threefold (or sixfold) rotational symmetry of the lattice.
Importantly, nematic superconductivity has been experi-
mentally observed in doped Bi2Se3 [17,18] and in twisted
bilayer graphene [19], two systems whose lattices have
threefold rotational symmetry. Superconducting properties
that do not respect the threefold lattice symmetry were
also observed in few-layer NbSe2, although it is unclear
whether this is a consequence of a nematic pairing state
[20,21]. Unless fine tuning is invoked [22,23], nematic
superconductivity is realized in systems where the order
parameter transforms as a multidimensional irreducible
representation of the relevant point group G [19,24–28].
Typical examples are two-dimensional representations
ðΔ1;Δ2Þ where Δ1 and Δ2 correspond to px=py-wave
gaps or dx2−y2=dxy-wave gaps. Interestingly, it has been
shown that a secondary composite order parameter Φ ¼
ðjΔ1j2 − jΔ2j2;−Δ1Δ�

2 − Δ�
1Δ2Þ, corresponding to Potts-

nematic order, can onset even above the superconducting
transition temperature Tc [26,29].
Here, we show that the very same mechanism that favors

a vestigial nematic phase also promotes a vestigial charge-
4e phase characterized by a nonzero composite order
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parameter ψ ¼ Δ2
1 þ Δ2

2, but hΔii ¼ 0 (see Fig. 1). In
particular, we find that the effective Ginzburg-Landau
theory obtained after integrating out the normal-state super-
conducting fluctuations has the same form for both the
nematic order parameter Φ and the charge-4e order param-
eter ψ. We show that this is a robust result stemming from
the existence of a linear transformation, called a “perfect
shuffle permutation,” that relates Φ and ψ in the four-
dimensional space spanned by Δ1 and Δ2. Such a trans-
formation effectively permutes quantities in the “gauge
sector” and in the “crystalline sector” of the group Uð1Þ⊗G
that defines the symmetry properties of the system.
This result implies that there are actually two competing

vestigial phases that can onset before long-range super-
conductivity sets in: nematic order, as studied previously
[26,29], and charge-4e superconductivity. While additional
terms in the superconducting free energy can favor either
state, the coupling to random strain fundamentally alters
the balance between them. This is because random strain
acts as a random field to Φ, but as a random mass to ψ .
Consequently, random strain, intrinsically present in actual
materials, is expected to suppress Potts-nematic order much
more strongly than charge-4e order. We thus conclude that
the most promising candidates to realize vestigial charge-4e
superconductivity are relatively inhomogeneous nematic
superconductors with strong superconducting fluctuations,
as in quasi-2D systems. This analysis thus suggests that
twisted bilayer graphene [30–38] offers a potentially viable
platform to realize this elusive state of matter.
Vestigial nematicity: The standard scenario.—We con-

sider a nematic superconductor in a lattice with three- or

sixfold rotational symmetry, described by a two-component
order parameter ðΔ1;Δ2Þ. For concreteness, hereafter we
will focus on the case where the point group of the lattice
is D6, and Δ≡ ðΔ1;Δ2Þ† transforms as the E2 irreducible
representation (IR), corresponding to ðdx2−y2 ; dxyÞ-wave
gaps. Note, our results also apply to Δ transforming as
two-dimensional E-like IRs of D6, D3, C3v, etc. The
Ginzburg-Landau superconducting action expanded to
fourth order in Δ is given by [22,26,29,39]

S½Δ� ¼
Z
q
Δ�

i;qχ
−1
ij ðqÞΔj;q þ

u0
2

Z
r
ðjΔ1j2 þ jΔ2j2Þ2

þ γ

2

Z
r
jΔ1Δ�

2 − Δ�
1Δ2j2: ð1Þ

Here, χ−1ij ðqÞ is the inverse superconducting susceptibil-
ity in Fourier space, whereas u0 > 0 and γ are Ginzburg-
Landau parameters. Furthermore, q¼ðq;ωnÞ and r¼ðr;τÞ,
where q is the momentum, ωn is the bosonic Matsubara
frequency, r is the position, and τ is the imaginary time.
Note that S has an enlarged continuous rotational symmetry
Δ1 � iΔ2 → e�iθðΔ1 � iΔ2Þ, which is reduced to a discrete
one when higher-order terms are included, as we dis-
cuss later.
The superconducting ground state depends on γ: if

γ < 0, the action is minimized by Δ ¼ Δ0ð1;�iÞ†,
corresponding to a time-reversal symmetry-breaking
(TRSB) superconductor that preserves the sixfold rota-
tional symmetry of the lattice. If γ > 0, we obtain Δ ¼
Δ0ðcos θ; sin θÞ†, with arbitrary θ, corresponding to a
nematic pairing state, as it preserves time-reversal sym-
metry but lowers the sixfold rotational symmetry to
twofold. It is convenient to construct the real-valued
composite order parameters ζ≡ Δ†σyΔ and Φ≡ ðΔ†σzΔ;
−Δ†σxΔÞ, where σμ is a Pauli matrix that acts on the
two-dimensional subspace spanned by Δ [16,26,29]. While
ζ transforms as the A2 IR of D6, and is thus related
to TRSB, Δ transforms as the E2 IR, being related to
sixfold rotational symmetry breaking. Clearly, if the ground
state is Δ ¼ Δ0ð1;�iÞ†, ζ ≠ 0 and Φ ¼ 0, but if
Δ ¼ Δ0ðcos θ; sin θÞ†, ζ ¼ 0 and Φ ≠ 0. The sign of γ is
ultimately determined by microscopic considerations.
While weak-coupling calculations favor γ<0 [22,28,40],
spin-orbit coupling or density-wave and nematic fluctua-
tions favor the nematic superconducting state [24,25,
28,41]. Hereafter, we will assume one of these microscopic
mechanisms as the source of γ > 0.
The nematic superconducting state supports a vestigial

nematic phase, i.e., a phase in which the composite nematic
order parameter is nonzero hΦi ≠ 0, but superconducting
order is absent hΔi ¼ 0 [see Fig. 1(a)]. To see this, we
follow Ref. [16] and rewrite the quartic terms in Eq. (1)
in terms of the TRSB bilinear ζ ¼ Δ†σyΔ and the trivial
bilinear λ≡ Δ†σ0Δ as Sð4Þ ¼ ðu0=2Þ

R
r λ

2 þ ðγ=2Þ Rr ζ2.

(a) (b)

FIG. 1. A nematic superconducting state in a lattice with three-
or sixfold rotational symmetry (here, a honeycomb lattice is
shown) is described by a two-component order parameter
ðΔ1;Δ2Þ ¼ Δ0ðcos θ; sin θÞ, represented here by bound states
of electron pairs (red dots). The ellipses represent, schematically,
different orientations θ. Two competing vestigial phases are
supported: (a) a Potts-nematic phase and (b) a charge-4e phase.
In (a), the angle θ associated with the nematic director is fixed,
breaking the threefold rotational symmetry. In (b), the threefold
rotational symmetry is preserved and a coherent state of bound
states of four electrons emerge. In both (a) and (b), hΔii ¼ 0, i.e.,
charge-2e superconducting order is absent.
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Here, σ0 is the identity matrix. Now, the Fierz identityP
μ σ

μ
ijσ

μ
kl ¼ 2δilδjk − σ0ijσ

0
kl implies a relationship between

the bilinears, ζ2 ¼ λ2 −Φ2. As a result, the quartic term
can be rewritten as Sð4Þ ¼ ðu=2Þ Rr λ2 − ðγ=2Þ RrΦ2, where
u≡ u0 þ γ and, as defined above, Φ ¼ ðΦ1;Φ2Þ ¼
ðΔ†σzΔ;−Δ†σxΔÞ is the nematic bilinear. Since γ > 0
by assumption, we can perform Hubbard-Stratonovich
transformations to decouple the quartic terms and obtain

S½Δ; λ;Φ� ¼
Z
r

Φ2

2γ
−
Z
r

λ2

2u

þ
Z
q
Δ�

i;q½χ−1ij ðqÞ þ λσ0ij −Φ1σ
z
ij þΦ2σ

x
ij�Δj;q:

ð2Þ

Because the action is quadratic in Δi, superconducting
fluctuations can be exactly integrated out in the normal
state, yielding an effective action forΦ and λ. Since λ does
not break any symmetries, it is always nonzero and simply
renormalizes the static superconducting susceptibility.
On the other hand, Φ is only nonzero below an onset
temperature. A large-N calculation [42], as performed in
Ref. [29], indicates that hΦi ≠ 0 already above Tc, imply-
ing that vestigial nematic order precedes the onset of
superconductivity (see also the Supplemental Material
[43]). Interestingly, a vestigial nematic phase has been
recently observed in doped Bi2Se3 [46,47].
Competition between nematicity and charge-4e

superconductivity.—We now show that there is a hidden
symmetry between the two-component real-valued nematic
order parameter Φ and the complex bilinear ψ ≡ Δ2

1 þ Δ2
2.

The latter, which is nonzero (zero) inside the nematic
(TRSB) superconducting state, breaks the U(1) gauge
symmetry and is precisely the charge-4e order parameter
[see Fig. 1(b)]. To reveal this unexpected symmetry,
we construct complex bilinears out of the primary order
parameter Δ. Since the latter transforms as the IR Γ ¼
eimθ ⊗ E2 of the group Uð1Þ ⊗ D6, we can write it as a
four-dimensional vector η≡ ðΔ0

1;Δ00
1;Δ0

2;Δ00
2ÞT, where

the prime (double prime) denotes the real (imaginary)
part. Then, the bilinears are generally given by
ηTðσμ ⊗ σmÞη, where the first Pauli matrix (with Greek
superscript) in the Kronecker product σμ ⊗ σm refers
to the subspace associated with the two-dimensional IR
E2 (dubbed the crystalline sector), whereas the second
Pauli matrix (with latin superscript) refers to the
subspace associated with the U(1) group (dubbed
the gauge sector). In this notation, the components of
the nematic bilinear become

Φ1 ¼ ηTðσz ⊗ σ0Þη;
Φ2 ¼ −ηTðσx ⊗ σ0Þη: ð3Þ

The other real bilinears are given by ζ ¼ ηTðσy ⊗ σyÞη
and λ¼ηTðσ0⊗σ0Þη. The charge-4e bilinear ψ≡ψ 0 þ iψ 00,
on the other hand, is

ψ 0 ¼ ηTðσ0 ⊗ σzÞη;
ψ 00 ¼ ηTðσ0 ⊗ σxÞη: ð4Þ

The key point is that, although the Kronecker product
(M ⊗ N) is noncommutative, in the case where M and N
are square matrices it satisfies the property ðM ⊗ NÞ ¼
P̃TðN ⊗ MÞP̃, where P̃ is the so-called “perfect shuffle
permutation matrix” [48]. Here, due to the minus sign in the
second equation of (3), a slightly modified 2 × 2 matrix P
is needed,

P ¼

0
BBB@

1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 1

1
CCCA: ð5Þ

Physically, P permutes quantities from the crystalline
and the gauge sectors of the four-dimensional space
spanned by η. Because P is an orthogonal matrix,
P−1 ¼ PT ¼ P, upon performing the unitary transforma-
tion η̃ ¼ Pη, we see that, while the bilinears ζ and λ remain
invariant, ðΦ1;Φ2Þ → ðψ 0;ψ 00Þ, i.e., the nematic bilinear is
mapped onto the charge-4e bilinear. Consequently, pro-
vided that the susceptibility in the quadratic term of
Eq. (1) is invariant under the linear transformation (5),
the effective action in the normal state has the same
functional form with respect to either Φ2 or jψ j2. This is
the case if we consider the standard susceptibility expres-
sion χ−1ij ðqÞ ¼ ðr0 þ q2Þδij, where r0 ∝ T − Tc;0 is a tuning
parameter and Tc;0 is the bare superconducting transition
temperature (see the Supplemental Material [43]).
This is the main result of our Letter: for the Ginzburg-

Landau action in Eq. (1), which describes a nematic super-
conducting ground state in a lattice with three- or sixfold
rotational symmetry, an instability toward a vestigial nematic
state at Tnem implies an instability toward a vestigial charge-
4e state at the same temperature T4e¼Tnem. This degen-
eracy between nematicity and charge-4e superconductivity
is rooted on the invariance of the action upon a perfect
shuffle that permutes elements from the crystalline and the
gauge sectors. As we show in the Supplemental Material,
an explicit large-N calculation shows that, for anisotropic
2D systems, there is a wide parameter regime for which
T4e ¼ Tnem > Tc, implying that the vestigial order emerges
before the onset of superconductivity.
Selecting nematic or charge-4e order.—We proceed

to discuss how the degeneracy between charge-4e and
nematicity is lifted. Focusing on finite-temperature phase
transitions, two additional terms in the superconducting
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action (1), not considered in the analysis above, break
the degeneracy in different ways. The first one is a
symmetry-allowed anisotropic term in χ−1ij ðqÞ of the form
κ½ðq2x−q2yÞðσz⊗σ0Þijþ2qxqyðσx⊗σ0Þij�, with coefficient
κ. Within large N, this contribution gives T4e >Tnem, as
we show in the Supplemental Material. The second one is
the sixth-order term [39]

Sð6Þ½Δ� ¼ ρ

Z
r
½ðΔ1 þ iΔ2Þ3ðΔ�

1 þ iΔ�
2Þ3 þ H:c:�: ð6Þ

Here, ρ is a coupling constant. Expressed in terms of
the nematic bilinear Φ, it corresponds to a symmetry-
allowed cubic term in the nematic action proportional to
ðΦ3þ þΦ3

−Þ, where Φ� ¼ Φ1 � iΦ2 [24,26,29,49,50]. In
contrast, because ψ is complex, such a cubic term is not
allowed in the charge-4e action. This cubic term lowers the
symmetry of the nematic order parameter from continuous
U(1) to discrete three-state Potts, as it fixes the phase ofΦ�
to three possible values [26,29,49,51]. Moreover, it gives
Tnem > T4e, as shown by a mean-field calculation (see
Supplemental Material [43]). Thus, depending on which of
the effects associated with the coupling constants κ and ρ is
stronger, either a vestigial nematic or a vestigial charge-4e
order can be favored.
There is, however, an important ingredient missing in

our analysis that generally favors the charge-4e instability,
thus opening a route to realize this exotic state in
realistic settings: the coupling to lattice degrees of free-
dom. The latter are described by the strain tensor εij ¼
1
2
ð∂iuj þ ∂juiÞ, with u denoting the lattice displacement

vector. Decomposing it in the IRs of theD6 group, there are
two relevant modes: the longitudinal mode, which trans-
forms as A1, εA ≡ εxx þ εyy þ εzz, and the shear mode,
which transforms as E2, εE ≡ ðεxx − εyy;−2εxyÞ. As a
result, the leading-order couplings to the nematic and
charge-4e orders are given, respectively, by the linear
coupling εE ·Φ and by the quadratic coupling εAjψ j2.
Thus, uniaxial strain acts as a conjugate field to the nematic
order parameter—a well-known result [50]—whereas for
the charge-4e order parameter, it can only change the
transition temperature, similar to hydrostatic pressure.
While strain can be externally applied, it is intrinsically

present in materials as random strain caused by defects
arising in the crystal growth or device fabrication. From the
analysis above, it is clear that such random strain acts as a
random field to the Potts-nematic order parameter, but as a
random mass (also called random Tc) to the charge-4e
order parameter. This distinction is very important, as
random-field disorder is known to be much more detri-
mental to long-range order than random-mass disorder. For
the three-state Potts model, random field is believed to
completely kill the Potts transition in two dimensions and
to suppress it in three dimensions [52–54]. In the 2D case,
the situation is similar to the random-field Ising model (see,

e.g., [55]): random strain breaks up the Potts-nematic
ordered state into multiple domains, destroying long-range
order. The so-called breakup length Lb characterizing
these domains depends on the width δε of the distribution
of random strains according to Lb ∼ exp ðB=δε2Þ (see
Supplemental Material for details [43]). Consequently, in
2D, even an infinitesimal strain inhomogeneity δε kills
nematic order in the thermodynamic limit. Thus, one
generally expects random strain to tilt the balance between
the competing vestigial charge-4e and nematic orders in
favor of the former. The resulting schematic phase diagram
is shown in Fig. 2.
Experimental consequences.—Nematic superconductiv-

ity has been now established in doped Bi2Se3 and in twisted
bilayer graphene (TBG) [17–19]. The latter seems to be
the most promising candidate to realize our results. First,
TBG displays 2D superconductivity, and fluctuations are
stronger in low-dimensional superconductors. Second, its
superconducting state breaks threefold rotational symmetry
in different directions over a range of carrier concentrations
[19], indicative of γ > 0 in (1). Third, strain inhomogene-
ities in TBG appear to be strong enough to suppress
nematic order. A good proxy for strain inhomogeneity is
the width δε of the distribution of local strains. Because the
moiré lattice parameter aM of TBG is very large, a typical
device has a linear size L ∼ 100aM. This defines a critical
inhomogeneity strength δεc beyond which the breakup

nematic

charge4 e

T

T

δε

FIG. 2. Schematic phase diagram of the vestigial nematic
(transition temperature Tnem, green) and vestigial charge-4e
(T4e, red) phases. Here, δε represents the strength of strain
inhomogeneity. Because random strain couples as a random field
to the nematic order parameter but as a random mass to the
charge-4e order parameter, the former is expected to be sup-
pressed much more strongly than the latter. In the clean system,
ΔT ≡ Tnem − T4e is positive because of the sixth-order term in
Eq. (6) that restricts the nematic director to three directions (three-
state Potts nematicity) and lifts the emergent degeneracy between
the two vestigial ordered phases. Note that, as temperature is
lowered, a superconducting transition is expected (not shown
here). Whether charge-4e and nematic orders can coexist in the
overlapping region of the phase diagram remains to be studied.
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length Lb discussed above is smaller than L, and nematic
order is destroyed. We estimate δεc ≈ 0.2Tc=ζnem-el, where
Tc ∼ 3 K is the typical TBG superconducting transition
temperature and ζnem-el is the nematoelastic coupling (see
Supplemental Material [43]). Experimental measurements of
heterostrain in TBG find local strain values as big as 0.4%,
and a distribution of strains with large standard deviations,
of about 50% of the average value [56,57]. This strain
inhomogeneity is also reflected in a twist angle inhomoge-
neity, which has been widely studied in TBG [58–61].
Therefore, as long as the nematoelastic coupling is not

too small, inhomogeneous TBG devices in the doping
range where nematic superconductivity is found are prom-
ising candidates to realize charge-4e order. Note that
the mechanism proposed here is different from a recent
proposal for charge-4e superconductivity based on an
approximate SU(4) symmetry of twisted bilayer graphene
[62]. To experimentally detect charge-4e order, one would
search for signatures of vortices with half quantum flux
(hc=4e), for instance, in phase-sensitive experiments
involving Josephson junctions, such as the superconducting
quantum interference device (SQUID) loop proposed in
Ref. [6]. Alternatively, atomically resolved shot noise
measurements using Josephson scanning tunneling micros-
copy, such as those performed in Ref. [63], could also be
used to directly detect the charge-4e bound state.
Conclusions.—In this Letter, we showed that a nematic

superconductor in lattices with three- or sixfold rotational
symmetry supports competing nematic and charge-4e
vestigial orders. Such a competition is rooted on a perfect
shuffle permutation that transforms one order parameter
onto the other in the four-dimensional space spanned by the
multicomponent superconducting order parameter. We
showed that random strain provides the most promising
tuning knob to favor charge-4e superconductivity over
nematic order, because it acts as a random-field disorder to
the latter, but as a random-mass disorder to the latter. These
results establish a new class of systems—nematic super-
conductors—in which charge-4e order may be realized.
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Note added in the proof.—After submission of this Letter,
two interesting theoretical works reported the emergence of
charge-4e order above Tc in multicomponent supercon-
ductors [64,65].
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