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Metal-insulator transitions driven by magnetic fields have been extensively studied in 2D, but a 3D
theory is still lacking. Motivated by recent experiments, we develop a scaling theory for the metal-insulator
transitions in the strong-magnetic-field quantum limit of a 3D system. By using a renormalization-group
calculation to treat electron-electron interactions, electron-phonon interactions, and disorder on the same
footing, we obtain the critical exponent that characterizes the scaling relations of the resistivity to
temperature and magnetic field. By comparing the critical exponent with those in a recent experiment
[F. Tang et al., Nature (London) 569, 537 (2019)], we conclude that the insulating ground state was not only
a charge-density wave driven by electron-phonon interactions but also coexisting with strong electron-
electron interactions and backscattering disorder. We also propose a current-scaling experiment for further
verification. Our theory will be helpful for exploring the emergent territory of 3D metal-insulator
transitions under strong magnetic fields.
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Introduction.—Metal-insulator transition is a fascinating
problem in condensed matter physics because of its rich
mechanisms [1–3]. There have been extensive studies on
2D metal-insulator transitions in magnetic fields [1–17],
but a 3D theory is still lacking, despite that recent experi-
ments show that magnetic fields can drive metal-insulator
transitions in 3D systems [18–22] with characteristics of
quantum phase transitions [23–25] [see Fig. 1(a)], in
particular, in the strong-field quantum limit of a topological
insulator [21,22]. It is challenging to determine the insu-
lating ground states in strong magnetic fields, because
magnetic fields reduce the effective dimension, leading to
stronger interactions and related instabilities, such as
charge or spin density wave, Wigner crystal, Anderson
localization, etc. [25–32].
In this Letter, we develop a scaling theory for the

metal-insulator transition in the quantum limit of a 3D
topological insulator under strong magnetic fields (see
Fig. 2). Our theory agrees well with recent experiments
[21]. The quantum phase transition is governed by univer-
sal relations described by critical exponents [23] [Fig. 1(a)],
corresponding to various instabilities and universal classes
[25,29,33–38]. With the help of a renormalization-group
calculation, we find the dynamical critical exponents z and
correlation length exponents ν for the candidate instabil-
ities. Based on them, we build the scaling relations of the

resistivity to temperature and magnetic field, described by a
critical exponent ξ. We find ξ for five cases (Table I). By
comparing with the experimentally measured ξ ¼ 5.5 [21],
we conclude that the insulating ground state is a
charge-density wave not only driven by electron-phonon
interactions but also requiring strong electron-electron
interactions and backscattering disorder. We also propose
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FIG. 1. (a) A quantum phase transition can be described by a
nonthermal parameter λ that converges to λc at the quantum
critical point. The boundaries (dashed curves) of the quantum
critical region are described by T ∝ jλ − λcjzν, where z is the
dynamical critical exponent and ν is the correlation length
exponent. (b) The magnetic field B can serve as λ, and z and
ν can be used to construct a measurable critical exponent ξ that
describes the resistivity as a scaling function of the magnetic field
and temperature, e.g., ρðBÞ=ρðBcÞ ¼ fðjB − Bcj=T1=ξÞ, where
fðxÞ is a scaling function with fð0Þ ¼ 1.
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a current-scaling experiment for further verification, by
fitting the dynamical critical exponent and correlation
length exponent. Our theory will be helpful for the
emergent territory of 3D metal-insulator transitions under
strong magnetic fields.
Model for 3D systems in strong fields.—3D insulators

and metals can be generically described by a Dirac
model [41]:

H ¼ mðkÞτzσ0 þ vxkxτxσz þ vykyτyσ0 þ vzkzτxσx; ð1Þ

where k ¼ ðkx; ky; kzÞ is the wave vector, τ and σ are Pauli
matrices for pseudo and real spin, respectively, vx;y;z are
parameters for the “Fermi velocities,” and mðkÞ stands for
the “Dirac mass” [42,43]. We will focus on the quantum
limit in strong fields, where a z-direction magnetic field

splits the energy spectrum into a series of 1D bands of
Landau levels dispersing with kz and only the lowest
Landau band 0þ is occupied (Fig. 2). An effective free
Hamiltonian for the lowest Landau band can be found by
linearizing the dispersion near the two Fermi wave vectors
�kFez [Fig. 2(b)] as H0 ¼

P
k ψ

†ðkÞvFkzσzψðkÞ [39],
where ψðkÞ ¼ ½ψ−ðkÞ;ψþðkÞ�T , ψ†

�ðkÞ and ψ�ðkÞ are the
creation and annihilation operators, respectively, near
∓ kF, and k is measured from �kFez.
Interactions and disorder.—Electron-electron or elec-

tron-phonon interactions can open a charge-density-wave
gap near�kF [see Fig. 2(c)]. The charge-density wave may
induce the Wigner crystal [26,27]. Also, disorder could
induce Anderson localization [28–30]. We study them on
the same footing by using the effective action

S ¼
Z

d3xdτðLe þ Lp þ LbÞ þ
Z

d3xdτdτ0Ld;

Le ¼ uψ†
þψþψ†

−ψ−; Lp ¼ gðϕψ†
þψ− þ ϕ�ψ†

−ψþÞ;
Lb ¼ j∂τϕj2 þ v2bj∂ϕj2 þ rjϕj2;
Ld ¼ −

X

i¼f;b

ðΔi=2Þðψ†ΓiψÞτðψ†ΓiψÞτ0 : ð2Þ

The Lagrangian Le describes electron-electron interactions
that induce the 2kF instability [44]. Lp represents the
coupling between charge-density-wave order parameter ϕ
and electrons [32,40,45]. The order parameter is defined as
ϕ ¼ ðα2kF=VÞðhb†−2kFezi þ hb2kFeziÞ, where b†q and bq are
the creation and annihilation operators, respectively, for the
phonons with momentum q and αq measures the electron-
phonon coupling strength [40,45]. Lb describes the order
parameter dynamics [24] with r ¼ 0 at the quantum critical
point.Ld is the Lagrangian of disorder after being ensemble
averaged by means of the replica method [46–48]. The
Hamiltonian of disorder takes the formHdis ¼ UiðxÞψ†Γiψ ,
where UiðxÞ is the impurity potential of a Gaussian white-
noise distribution as hUii ¼ 0 and hUiðxÞUjðx0Þi ¼
Δiδijδðx − x0Þ. For the forward-scattering disorder,

TABLE I. Comparison between experiments [21] and our
theory on the critical exponent ξ that describes the scaling
relations of the resistivity to temperature and magnetic field,
for different dominant and coexisting interactions and disorder.
Theoretically, ξ is a product of the dynamical critical exponents z
and correlation length exponents ν. In the experiments, the metal-
insulator transition happens at a critical magnetic field of
Bc ¼ 6.71 T, where an incommensurate charge density wave
dominates the ground state according to our theory [39], different
from the previous work [40] for B ∈ ½1.7; 2.1� T, where the Hall
resistivity plateau indicates a commensurate charge-density wave
as the ground state.

Insulating
phases Dominant Coexisting z ν ξ

Charge
density
wave

Electron-
phonon

Electron-electron 1 1.5 1.5

Anderson
insulator

Forward-
scattering
disorder

Electron-phonon
Electron-
electron

1 2 2

Charge
density
wave

Electron-
phonon

Backscattering
disorder
Weak electron-
electron

1.5 3 4.5

Wigner
crystal

Electron-
electron

Backscattering
disorder
Electron-
electron

2 1 2

Charge
density
wave

Electron-
phonon

Backscattering
disorder
Strong electron-
electron

2 3 6

Experiment

Sample 1 2 3 4
Mean value Mean value
(all samples) (2, 3, 4)

ξ 3.95 6.06 5.78 6.25 5.5� 1.1 6.0� 0.1

(a) no Magnetic field (b) In magnetic field (c) With interactions
 

 

 
 

 

 

 
 

Energy

 

 

 
  

 0+

0-

1+ 0+

1-
2-

2+

 

Energy 

FIG. 2. A z-direction magnetic field splits the energy spectrum
of a 3D insulator or metal (a) into 1D bands of Landau levels
dispersing with the wave vector kz (b). The n� stand for the nth
Landau bands. In the quantum limit, the Fermi energy EF crosses
the lowest Landau band 0þ at �kF, which is a metal phase and
the starting point of this work. (c) Correlations between electrons
near −kF and kF open a gap of size 2jϕj and induce an
insulating phase.
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Γi ¼ σ0, which couples electrons near kF only to those near
kF or−kF only to those near−kF [31,49], whichmay induce
Anderson localization [28–30]. For the backscattering dis-
order, Γi ¼ σx þ σy, which couples electrons near kF to
those near −kF or −kF to those near kF [31,49]. We study
these two types of disorder separately.
Renormalization-group equations.—The renormaliza-

tion group [50–53] is an approach to determine the insta-
bilities and corresponding critical exponents. We perform a
Wilsonian momentum-shell renormalization-group analysis
[54–58] for the model described by Eq. (2). The momentum
shell is defined as e−lΛ < jkzj < Λ, where l is the running
scale parameter. The renormalization-group flow equations
are found as [39]

dvF=dl ¼ ½z − 1þ 2βγ3=ðγ þ 1Þ2 − a1iΔi�vF;
dΔf=dl ¼ 2Δ2

f þ Δf − 4βγ3Δf=ðγ þ 1Þ2;

dΔb=dl ¼ −4Δ2
b þ ð1þ 2uÞΔb −

2βγ2ð2γ þ 1ÞΔb

ðγ þ 1Þ2 ;

dβ=dl ¼ −2β2γ2=ðγ þ 1Þ2 þ ð2þ 2u − 2a2iΔiÞβ;
du=dl ¼ 2u2 − 2βγ2u=ðγ þ 1Þ − a3iΔiu; ð3Þ

where ami is a 3 × 2 constant matrix with elements ami ¼
ðm; 2Þ and i ¼ f,b representing the forward- and backward-
scattering disorder, respectively. z is the dynamic exponent,
which can be found by fixing vF. We have redefined the
dimensionless coupling constants as

electron-phonon∶ g2=4π2l2
Bv

3
bΛ2 → β;

electron-electron∶ u=4π2vFl2
B → u;

disorder∶ Δi=2π2v2Fl
2
BΛ → Δi; ð4Þ

where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðeBÞp

is the magnetic length. Different
from nonmagnetic field theories, the integrals in the plain
give the Landau degeneracy of the magnetic field [39]. The
renormalization-group equations highly depend on the
parameter γ ≡ jvb=vFj, the ratio of the phonon speed to
the Fermi velocity, which does not flow with l, and γ ≈
1.7 × 10−3 from the model parameters [39,59–61]. Later,
our conclusions hold for a range of small γ.
Charge-density wave without disorder?—For a system

with only electron-electron and electron-phonon inter-
actions, there are two fixed points [Fig. 3(a)] at ðiÞc
ðu�; β�Þ ¼ ð0; 0Þ and ðiiÞc ½0; ð1þ 1=γÞ2�. If the phonon-
Fermi velocity ratio is not extremely small (e.g., γ > 1), the
attractive fixed point ðiiÞc [39] has a small value for electron-
phonon interactions. Neither electron-electron nor electron-
phonon interactions could induce the charge-density wave.
This conclusion explicitly conflicts with the Peierls phase
transition [32,62]. Because of an extremely small γ,
the attractive fixed point ðiiÞc behaves like an infinitely
large electron-phonon coupling point. Before reaching the

attractive point ðiiÞc, the electron-phonon coupling becomes
strong enough to induce the Peierls phase transition, which
opens a charge-density-wave gap. Therefore, an extremely
small γ is crucial to induce the Peierls phase transition. In this
case, electron-phonon interactions can be viewed as a
relevant perturbation starting from the Gaussian fixed point
ðiÞc [see Fig. 3(b)]. The linearized renormalization-group
equations around the fixed point ðiÞc show that the electron-
phonon coupling increases with l as e2l. Therefore, the
correlation length diverges with an exponent νβ ¼ 1=2 and
the dynamical critical exponent z ¼ 1 [39,63]. The general
scaling relation of the resistivity to temperature and mag-
netic field is given by [1,2,64]
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FIG. 3. The renormalization-group flow in the u − β plane for
(a) γ ¼ 2 and (b) γ ¼ 0.002. u and β measure the effective
electron-electron and electron-phonon interactions, respectively.
γ ¼ jvb=vFj is the ratio of the phonon speed to Fermi velocity.
There are two fixed points at ðiÞc ðu�; β�Þ ¼ ð0; 0Þ and ðiiÞc
½0; ð1þ 1=γÞ2�. (c) The renormalization-group flow in the u-Δb
plane, in the absence of electron-phonon coupling. In this case,
there are two non-Gaussian fixed points at ðu�;Δ�

bÞ ¼ ð0; 1=4Þ
and ð1=2; 1=2Þ. The red curve distinguishes a disordered metal
with zero electron-electron coupling on the left and a Wigner
crystal on the right [39]. (d)–(f) Running of the electron-electron
coupling u, electron-phonon coupling β, and u=β with l, for
different initial values of u. The initial values of bothΔb and β are
0.1. (d)–(f) share the same legends. The green and red lines
overlap in (e).
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ρðB; TÞ ¼ ρðBcÞf½jB − Bcj=T1=zνB �; ð5Þ

where fðxÞ is a scaling functionwith fð0Þ ¼ 1. To obtain the
general scaling with respect to the magnetic field, we have
defined νB, which describes how the correlation length ζ
diverges with the magnetic field, following ζ ∼ jB − Bcj−νB .
On the other hand, the correlation length exponent obtained
by our renormalization-group analysis describes that the
correlation length ζ diverges with the coupling strength as
ζ ∼ jβ − βcj−νβ . Our scaling analysis based on Eq. (4) yields
νB ¼ 3νβ [39], and the critical exponent takes the form

ξ ¼ 3zνβ ¼ 1.5: ð6Þ

This value is far less than the experimental value ξ ¼ 5.5
[21], so, without disorder, the coexistence of electron-
electron and electron-phonon interactions cannot induce
the metal-insulator transitions in the experiments [21].
Anderson localization induced by forward-scattering

disorder?—When forward-scattering disorder exists,
Anderson localization happens first with z¼1, νB¼
2νΔ¼2, and ξ¼2 (see details in Sec. SIII E in Ref. [39]),
which is far less than the experimental value ξ ¼ 5.5 [21].
Charge-density wave with backscattering disorder.—

When backscattering disorder exists, the fixed points are
ðiÞb ðu�;β�;Δ�

bÞ¼ð0;0;0Þ; ðiiÞb ½0; ð1þ 1=γÞ2; 0�; ðiiiÞb
ð0; 0; 1=4Þ; and ðivÞb ð1=2; 0; 1=2Þ, belonging to four differ-
ent universality classes because they have different critical
exponents. Fixed point ðiÞb is unstable for electron-phonon
interactions and disorder. Fixed point ðiiÞb is attractive for all
three couplings and represents the charge-density wave with
an irrelevant electron-electron coupling and backscattering
disorder [39]. Without electron-phonon interactions, fixed
point ðiiiÞb is stable, and fixed point ðivÞb is a critical point for
a Wigner crystal [39]. As shown in Fig. 3(c), there exists a
critical line in the u-Δb plane; on the right, u flows to infinity,
indicating a charge-density wave driven by electron-electron
interactions, i.e., a Wigner crystal, while on the left, the
system flows to a finite disorder fixed point with a stable zero-
valued electron-electron coupling. When including electron-
phonon interactions, as shown in Fig. 3(d), the behavior of u
does not change qualitatively. Figure 3(e) shows that the
electron-phonon coupling β flows to infinity with increasing
l. Near fixed point ðiiiÞb, β is the only unstable coupling.
Fixedpoint ðiiiÞb becomes the critical fixedpoint for a charge-
density wave induced by electron-phonon interactions in the
presence of a finite backscattering disorder and irrelevant
electron-electron coupling. The divergent β gives νβ ¼ 1

[39]. The dynamical critical exponent for this universality
class is found as z ¼ 1þ 2Δ�

b ¼ 1.5. We thus get a critical
exponent for the resistivity scaling:

ξ ¼ 3zνβ ¼ 4.5; ð7Þ

which is close to the experimental value ξ ¼ 5.5 [21].

Near fixed point ðivÞb, both β and u are unstable and
increase unboundedly when the initial value of u is large
enough. Fixed point ðivÞb is a multicritical point for the
Wigner crystal or Peierls phase transition. Which phase
transition occurs first depends on the relative strength of β
and u. The solid lines in Fig. 3(e) show that the ratio of u to
β decreases rapidly and finally vanishes when its initial
value is not large enough, indicating that the Peierls phase
transition happens first. The dotted line in Fig. 3(f) shows
that u is always larger than β, when its initial value is large
enough, which means that the Wigner crystal occurs first.
Despite that these two phase transitions both produce
charge-density waves, the gap sizes and critical behaviors
are different [31,32]. For the Peierls phase transition, the
correlation length exponent is νβ ¼ 1, and the dynamical
critical exponent is z ¼ 1þ 2Δ�

b ¼ 2, which gives a critical
exponent for the resistivity scaling:

ξ ¼ 3zνβ ¼ 6: ð8Þ

For the Wigner crystal, we obtain νu ¼ 1 and z ¼ 2, which
lead to ξ ¼ 2 [39].
Conclusion and experimental verification.—So far,

ξ ¼ 6 is closest to the experimental result ξ ¼ 5.5 [21].
Therefore, we conclude that the magnetic-field-induced
metal-insulator transition in the experiments is likely a
charge-density wave induced by electron-phonon inter-
actions, in the presence of strong electron-electron inter-
actions and backscattering disorder (only for samples 2–4
in Ref. [21]; see discussion below). Its quantum critical
behavior is described by the universal class of fixed point
ðivÞb with a correlation length exponent νB ¼ 3 and
dynamical critical exponent z ¼ 2.
Our conclusion can be verified by performing the

current-scaling measurement [65–69], which along with
the temperature scaling results in Ref. [21] could give rise
to the experimental values of z and ν. The experimental
setup is shown in Fig. 4(a). One needs to measure the
longitudinal resistivity as a function of the magnetic field at
different measurement currents I. Rearranging the mea-
sured magnetoresistivity ρðBÞ=ρðBcÞ near the critical field
Bc as a function of jB − BcjI−1=κ could generate a current-
scaling plot as shown in Fig. 4(b), which is similar to that in
Fig. 1(b). The scaling relation of the resistivity to the
current takes the form [2]

ρðB; TÞ ¼ ρðBcÞF ½jB − Bcj=I1=ðzþ1ÞνB �; ð9Þ

where F ðxÞ is a scaling function with F ð0Þ ¼ 1. With the
fitted ξ in Ref. [21] and κ in this current-scaling measure-
ment, the correlation length exponent νB and dynamical
critical exponent z can be found as

νB ¼ κ − ξ; z ¼ ξ=ðκ − ξÞ; ð10Þ
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respectively. Previously, this method has been widely
employed in 2D quantum phase transitions [66–69], and
it could provide an experimental way of distinguishing our
theoretical exponents in Table I.
Also, the charge-density wave could be probed in x-ray

diffraction spectrum [70–72], though the combination of
the high magnetic field and x-ray facilities is challenging.
Discussion.—Our theory provides a deeper understand-

ing to the data in Ref. [21], where the value ξ ¼ 5.5 is
obtained by averaging four samples, as shown in Table I.
However, the value of ξ for sample 1 is closer to the value
ξ ¼ 4.5 of the universal class described by fixed point
ðiiiÞb. By contrast, ξ of samples 2–4 belongs to fixed point
ðivÞb. The physical difference is that electron-electron
interactions in sample 1 can be seen as zero valued when
the metal-insulator transition happens, whereas they are
finite and strong in the other three samples. As shown in
Table I, the mean value of samples 2–4 gives rise to
ξ ¼ 6.0, which remarkably agrees with our theoretical
value in Eq. (8). Despite that we take the experiments in
Ref. [21] as a concrete sample to compare with, our theory
can be applied to other 3D metal-insulator transitions under
strong magnetic fields. Recently, the field-driven metal-
insulator transition in β − Bi4I4 [73] is found to have
ξ ¼ 6.5 within the experimental error, showing the wide
application potential of our theory. Nevertheless, 3D metal-
insulator transitions of spin-correlated systems driven by
magnetic fields [18–20] are beyond the scope of our theory
and will be a challenging topic in the future.
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