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We show the low-lying excitations at filling factor ν ¼ nþ 1=3 with realistic interactions can be
understood as quantum fluids with “Gaffnian quasiholes” as the proper elementary degrees of freedom.
Each Laughlin quasihole can thus be understood as a bound state of two Gaffnian quasiholes, which in the
lowest Landau level (LLL) behaves like “partons” with “asymptotic freedom” mediated by neutral
excitations acting as “gluons.” Near the experimentally observed nematic FQH phase in higher LLs,
quasiholes become weakly bound and can fractionalize with rich dynamical properties. By studying the
effective interactions between quasiholes, we predict a finite temperature phase transition of the Laughlin
quasiholes even when the Laughlin ground state remains incompressible, and derive relevant experimental
conditions for its possible observations.
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Strongly interacting topological systems in low dimen-
sions open doors to many exotic physics, particularly from
the topological and geometric properties of low-lying
excitations [1–3]. The fractional quantum Hall effect
(FQHE) [4] is one such example, where a wide variety
of topological phases can be realized from interactions
between electrons under a strong magnetic field
perpendicular to a two-dimensional manifold [5,6]. A
number of innovative techniques have been developed to
understand both the universal topological properties and
their dynamical robustness [7–14]. These are all funda-
mentally nonperturbative approaches, because the kinetic
energy of the system is completely quenched by the
magnetic field, leaving behind only the effective interaction
in a single Landau level (LL) [15].
Given that the electrons themselves are no longer good

degrees of freedom, the challenge is to find suitable
“elementary particles” not perturbatively connected to
electrons. Approaches along this line include the hierar-
chical pictures of the FQHE [7–9,16], and later the
composite fermion (CF) theory successfully explaining
many experimental observations, especially in the lowest
LL (LLL) for Abelian FQH states [10–12]. Extension to
higher LLs (e.g., with the parton theory) and non-Abelian
FQH states are also possible [17–20], though they are
technically more involved presumably because CFs also
start interacting strongly. Alternative approaches with
the Jack polynomial formalism [13,21,22] and the local
exclusion constraint (LEC) as a generalization [14,23,24]
seek a more microscopic understanding of the FQHE.
There many universal topological properties of the FQHE
can be determined algebraically without involving specific
local operators (e.g., Hamiltonians). Interestingly, after

identifying the model wave functions from this algebraic
approach, we can in many cases construct model
Hamiltonians for which the model wave functions are
exact zero energy states [9,25,26]. The algebraic approach
is particularly useful in understanding non-Abelian FQHE,
and has fundamental connections to the conformal field
theory [27,28]. In this Letter, we propose to understand and
analyze the dynamics of the FQH phases using the quasi-
holes of apparently unrelated FQH phases, justified by the
microscopic and algebraic relations revealed by the LEC
construction [14] and easily verifiable with numerical
calculations. We focus on the familiar Laughlin phase at
filling factor ν ¼ nþ 1=3, and predict rich dynamical
phenomena with realistic interactions. In addition, the
experimentally observed nematic FQH phase [29] can be
identified as the quantum critical point (QCP) separating
the conventional Laughlin phase and a Haffnian-like phase.
Near the QCP, Laughlin quasiholes can fractionalize into
“Gaffnian” [30] quasiholes carrying e=6 charge each. This
is interesting given that the Gaffnian state is the subject
of numerous studies due to its gapless nature [30–34].
Detailed analysis of the interactions between quasiholes
predicts a finite-temperature quasihole phase transition
with several experimental signatures.
Low-lying excitations in the Laughlin phase.—In the

LLL we can understand the physics of the Laughlin phase
from its model Hamiltonian (the V̂2bdy

1 Haldane pseudo-
potential). However, it is less clear what can happen when
the Hall plateau is observed with realistic interactions far
away from V̂2bdy

1 . We first establish here for a wide range of
interactions, the ground state and the low-lying excitations
at ν ¼ nþ 1=3 live (almost) entirely within the Gaffnian
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quasihole (GQ) subspace. This subspace is defined alge-
braically with LEC condition f2; 1; 2g∨f5; 2; 5g [14,23]. It
coincides with the null space (the GQs) of the Gaffnian
model Hamiltonian Ĥg, so we denote the subspace as HG.
We demonstrate this by calculating the ground state of

the 1LL Coulomb interaction V̂1LL, and show that its
cumulative overlap with HG is close to unity (see
Table I). One should note in the thermodynamic limit,
the GQ subspace is of measure zero in the full Hilbert
space. Even for finite systems, it is quite nontrivial to have
such high overlap decreasing slowly with system sizes
within a subspace containing a small fraction of states. In
contrast, the model wave functions for the Laughlin ground
state and quasihole states have rather poor overlap to the
true eigenstates of the interaction [17,20,35].
We can also look at the spectrum of V̂1LL within HG,

and find the low lying energies to approximate the exact
energies from the full Hilbert space very well, unlike the
variational energies from Laughlin model wave functions
[36]. The numerical evidence strongly suggests in a wide
range of realistic interactions where interesting physics
are observed at ν ¼ nþ 1=3, the low-lying excitations are
quantum fluids made of “GQs.” At this filling factor, each
GQ carries a charge of e=6 with respect to the Laughlin
ground state (i.e., a charge of e=5 with respect to the
Gaffnian ground state) [36]. Thus a Laughlin quasihole
(LQ) can be viewed as a bound state of two GQs.
Dynamics of Gaffnian quasiholes.—We know that HG

is spanned by microscopic wave functions in the form
of fermionic Jack polynomials Jαλðz1; z2;…; zNe

Þ with
α ¼ −3=2 and root configurations λ satisfying no more
than two electrons for every five consecutive orbitals
[13,39,40]. The Gaffnian ground state has the root con-
figuration λ ¼ 1100011000…110001100011. Here each
digit corresponds to an electron orbital on the Haldane
sphere [9], with the left most digit corresponding the north
pole and the right most digit the south pole. The digit “1”
implies the orbital is occupied by an electron, while the
digit “0” means the orbital is empty.
Many physical properties of the state can be read off

from the root configuration [36]. The quasiholes can be

created by inserting fluxes (or 0’s) to the ground state root
configuration. Adding one flux creates two quasiholes,
with two examples as follows:

ð1Þ

Here the positions of the quasiholes are marked by empty
circles [41]. The two quasiholes can either form a bound
state or be separated, given by the root configuration on the
left and right in Eq. (1), respectively.
We now turn our attention to the Laughlin ground state,

which has the root configuration

ð2Þ

The Laughlin ground state can be seen as a rotationally
invariant quantum fluid of GQs on the sphere. It has an
excess of Ne=2þ 1 orbitals (where Ne is the electron
number) as compared to the Gaffnian ground state, imply-
ing the number of GQs it contains is NG

qh ¼ Ne þ 2.
Adding one flux into Eq. (2) at the north pole yields
one LQ as follows [41]:

ð3Þ

Here the LQ is denoted by the empty triangle. Recall that
adding one flux is also equivalent to adding two GQs—the
additional GQs are denoted by red crossed circles. In this
configuration, the two GQs are on top of each other,
forming the bound state at the north pole that is the LQ.
Splitting the GQ pair can be achieved by violating the

admissibility rule of the Laughlin state, while still satisfy-
ing the admissibility rule of the Gaffnian state. One
example is given as follows:

ð4Þ

The solid triangles give the positions of Laughlin quasipar-
ticles [41]. Given any microscopic Hamiltonian, the varia-
tional energies of the corresponding many-body states show
if the two GQs are attractive or repulsive. We can clearly see
that such interaction is mediated by neutral excitations, or
LQ-quasiparticle pairs. Thus with V̂2bdy

1 , the GQs are
strongly attractive with the interaction energy increasing
with the quasihole separation, mimicking the “asymptotic
freedom” for quark system where the neutral excitations play
the role of “gluons.”With V̂2bdy

3 , however, GQs are repulsive
(see Fig. 1). Thus with realistic interactions, the GQs can be
either bound, weakly bound, or unbound.
Nematic FQH state as the quantum critical point.—Let

us first compare the Laughlin model state in Eq. (2) with
the Haffnian model state with the following root
configuration [42,43]:

TABLE I. The overlap of the 1LL ground state with the
Laughlin state, OL ¼ jhψ1LLjψLaughlinij and the total overlap

with the GQ subspace (OGðjψiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jϕi∈HG
jhψkjϕij2

q
) for

the Laughlin ground states and one-quasihole states. The last
row shows the dimension of the Gaffnian subspace used for
calculation compared to the dimension of the full Hilbert space in
the corresponding L sector.

ðNe; NoÞ (9,25) (9,26) (10,28) (10,29) (11,31)

OL 0.48 0.45 0.54 0.47 0.70
OG 0.97 0.97 0.97 0.89 0.97
dimðHGÞ= dimðHÞ 0.143 0.135 0.091 0.077 0.039
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ð5Þ

Both the many-body states of Eqs. (2) and (5) are zero
energy states of Ĥg, and are thus linear combinations of the
Gaffnian Jack polynomials. From the reduced density
matrix near the north pole, we can see that the Laughlin
state is made of bound GQs, but the Haffnian state is made
of unbound GQs. From Fig. 1 we thus expect the Haffnian
state to have extensive variational energy with respect
to V̂2bdy

1 .
We can now have a better understanding of the dynamics

of the magnetoroton modes for the Laughlin phase at
ν ¼ 1=3, with the following root configurations [22,44]:

ð6Þ

ð7Þ

where L is the total angular momentum quantum number
on the sphere. These are no longer Jack polynomials, but
we know immediately from LEC that the entire branch of
the magnetoroton mode lives inHG (i.e., zero energy states
of Ĥg). The quadrupole excitation at L ¼ 2 is also the zero

energy state of the Haffnian Hamiltonian Ĥh [45]. With the
V̂2bdy
1 interaction, the quadrupole excitation has higher

energy because it consists of an unbound pair of GQs.
In contrast, the dipole excitations in the limit of large L
define the incompressibility gap and consist of LQs as
bound GQs. Thus the energy difference between quadru-
pole and dipole excitations results from the V̂2bdy

1 favoring
bound states of GQs.
The nematic FQH state, an experimentally observed

phase where the quantum Hall plateau coexists with the
anisotropic longitudinal transport at low temperature
[29,46], is believed to result from the quadrupole excita-
tions going soft at ν ¼ 2þ 1=3 [47,48]. Its underlying
microscopic mechanism, however, is still not fully under-
stood [45,48]. Here, we show that the quadrupole excita-
tions going soft results from Hamiltonians favoring
unbound GQ pairs. The physics can be captured by the
following toy model within HG:

Ĥðλ1; λ2Þ ¼ Ĥh þ λ1V̂
2bdy
1 þ λ2V̂

2bdy
3 : ð8Þ

Given the assumption that V̂2bdy
1 is incompressible at

ν ¼ 1=3, we know Ĥðλ1; 0Þ is also incompressible for
any positive λ1. With λ2 ¼ 0 and small λ1, the dipole
excitations (and thus the charge excitations) are gapped by

both Ĥh and V̂
2bdy
1 . The lowest energy excitation is given by

the quadrupole excitation in the L ¼ 2 sector. A “linear”
dispersion in the even L sector can be seen [Fig. 2]. They
correspond to the multiple quadrupole excitation states with
unbound GQs, with the following root configurations [49]:

(a)    (b)

(c)         (d)

(e)

FIG. 1. (a)–(b) Variational energy difference between bound
(ENN) and unbound (ENS) GQs, plotted against system size. (c)–
(d) The energy cost to separate the two GQs plotted against the
number of neutral excitations between them, for systems with 10
electrons and 28 orbitals. (e) Electron density of the quasihole
wave functions. The center of the disk corresponds to the north
pole of the sphere. The leftmost Laughlin state has a bound
quasihole at the center, shown by the dip in electron density. As
the GQs are pulled apart, neutral excitations are formed, shown
by the ripples around the center.

(a) (b)

(c) (d)

FIG. 2. Energy spectrum for system in the Haffnian subspace
(blue triangles) and the complement of the Haffnian subspace
in the Gaffnian subspace (orange crosses). The dipole and
quadrupole excitation branches are highlighted in red and blue
dotted lines, respectively. Results on a system with 10 electrons
and 28 orbitals evaluated is shown here. The important features
of this numerics are robust and consistent with the full ED
spectrum [36].
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Let us denote the neutral gap of the system to beΔn, and the
charge gap to be Δc (both with respect to the lowest energy
state in the L ¼ 0 sector). The nematic FQH is realized
in the regime of Δn ≪ ΔT ≪ Δc as given by the λ1 ≪ 1,
λ2 ¼ 0 model, where ΔT is the energy scale of the
temperature or disorder. We can also make the nematic
FQH phase more robust by increasing λ2. This is because
V̂2bdy
3 punishes the Laughlin ground state and dipole

excitations (they consist of bound GQs), while energeti-
cally favoring the quadrupole excitation [see Fig. 2(d)].
By increasing λ2 from zero, we enter the regime where

the quadrupole excitation becomes gapless. Here the
dispersion of multiple quadrupoles becomes truly linear
[50] in the long wavelength limit with an effective velocity
vg. At the QCP, vg ¼ 0, implying the Laughlin state and the
Haffnian state become degenerate. We thus expect that
tuning of λ2 allows us to access a Haffnian-like phase
at ν ¼ 1=3 with topological shift S ¼ −4 (in contrast to
S ¼ −2 for the Laughlin phase) [51].
While Eq. (8) is artificial, it is actually more realistic than

it appears. The mean-field interaction Ĥ2bdy
h ¼ Ĥh þ Ĥ�

h,
where Ĥ�

h is the particle-hole conjugate, is a rather physical
short range two-body interaction (consisting of V̂2bdy

1 ,
V̂2bdy
3 , V̂2bdy

5 ). In the thermodynamic limit, replacing Ĥh

with Ĥ2bdy
h in Eq. (8) may retain the qualitative features of

the original model [52,53]. In higher LLs, three-body
interactions also arise from LL mixing, which can play
an important role to the physics near the QCP [54].
In Fig. 2 we show the transition between the dipole

excitations and the quadrupole excitation when increasing
λ1, λ2. While the mixing of the two branches of excitations
complicates the dynamics of the neutral excitations, the
softening of the quadrupole excitation at L ¼ 2 sector is not
affected, since there is no competing single-dipole excita-
tion (which starts at L ¼ 3) in this sector. The condition of
Δn ≪ Δc is also maintained for a large parameter range.
Unlike the dipole excitations, states containing quadru-

pole excitations [e.g., Eq. (9) and Eq. (10)] have uniform
electron density in the thermodynamic limit. They are thus
conjectured to be the nematic Goldstone mode proposed
in the effective field theories [47,55]. Thus for the effective
field theory to be relevant to the nematic FQH, the
microscopic interaction has to gap out all states not
in HG. The effective theory also assumes Δn < 0 < Δc
with vg > 0 in the nematic phase. Microscopically, since
the ground state energy, quadrupole and dipole energies are
fundamentally determined by the dynamics of GQs, they

cannot really be independently tuned. The likely scenario
relevant to the experiments is for 0 < Δn < ΔT < Δc with
vg ∼ ΔnlB. For Δn < 0 we are no longer in the Laughlin
phase and may not have a charge gap with vg < 0.
Experimental signatures of quasihole fractionalization—

Unlike V̂2bdy
1 or V̂LLL, the interaction close to the nematic

FQH no longer heavily punishes unbound GQs. This can
also been seen from the root configuration of an unbound
pair of GQs in Eq. (4). The interaction between them is
mediated by quadrupolelike neutral excitations (satisfying
LEC condition f2; 1; 2g∨f6; 2; 6g), instead of the dipolelike
ones (satisfying f2; 1; 2g∨f5; 2; 5g). Indeed, Eq. (8) can
serve as the model Hamiltonian both for the quasihole
fractionalization and the nematic FQH transition [56]. Thus
near the nematic FQH phase, Δn ≪ Δc implies an incom-
pressible phase given by Δc and thermally excited quasi-
holes of charge e=6 (with excitation energies given by Δn).
Unlike individual quarks confined to very small length scales
and are thus unobservable, at the Laughlin phase e=6 GQs
are bound at the order of a few magnetic lengths. Near the
QCP and at finite temperature the separation of GQs can
be significantly larger. We thus expect e=6 charge to be
observable in the bulk with single electron tunneling experi-
ments [57] near the nematic FQH phase.
We also predict a quasihole phase transition at the

incompressible Laughlin phase at some critical temper-
ature, similar to the Berezinskii-Kosterlitz-Thouless (BKT)
transition [58,59], evidenced by the softening of the
quadrupole modes in Fig. 2. Let n, ne=6 be the density
of additional magnetic flux to the ground state, and of
GQs with charge e=6, respectively. The average distance
between any two GQs is thus d̄ ∼ 1= ffiffiffiffiffiffiffiffine=6

p . From Eq. (4)
and the linear dispersion in Fig. 3, the average energy
cost is proportional to the number of quadrupole excitations
between two fractionalized GQs, with ΔE ≃ Δ̄nd̄2,
Δ̄n ¼ Δn=ð3π2l2BÞ. We can thus define dimensionless
quantities n̄ ¼ ne=6=n and β̄ ¼ βn−1Δ̄n, β ¼ ðkBTÞ−1, sat-
isfying the following [36]:

n̄ð1þ eβ̄=n̄Þ ¼ 2: ð11Þ

There is thus a critical temperature given by β̄c ¼ 0.55693.
The n̄ > 0 solutions, implying a finite density of e=6
quasiholes, only exist for T > Tc with the following:

Tc ¼ Tn
2

3πβ̄c

�
δB
B0

�
−1

∼ 0.381Tn

�
δB
B0

�
−1
; ð12Þ

where Tn ¼ Δn=kB is the quadrupole gap temperature; B0

is the magnetic field at the center of the ν ¼ nþ 1=3
plateau, and δB is the deviation of the magnetic field from
B0 on the quasihole side. The solutions to Eq. (11) and the
intuitive picture of this phase transition are illustrated
in Fig. 3.
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In experiments, lower Tc is preferred because the e=6
quasiholes are only observable if kBTc is smaller than the
charge gap. We see from Eq. (12) that this can be done by
lowering Δn, and from Fig. 2 that Δn can be lowered by
adding long-range interaction (V2bdy

3 ). Thus, we expect
such a window to exist in higher LL and near the nematic
FQH phase, where Δn ∼ 0 can be potentially realized in
experiments [29,46–48]. Finally, we emphasize that the
robustness of the Hall plateau at ν ¼ nþ 1=3 in experi-
ments does not automatically imply well-quantized quasi-
particle charge of e=3 in shot noise or tunneling
experiments.
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