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Two-dimensional quantum systems with competing orders can feature a deconfined quantum critical
point, yielding a continuous phase transition that is incompatible with the Landau-Ginzburg-Wilson
scenario, predicting instead a first-order phase transition. This is caused by the LGW order parameter
breaking up into new elementary excitations at the critical point. Canonical candidates for deconfined
quantum criticality are quantum antiferromagnets with competing magnetic orders, captured by the easy-
plane CP1 model. A delicate issue however is that numerics indicates the easy-plane CP1 antiferromagnet to
exhibit a first-order transition. Here we show that an additional topological Chern-Simons term in the action
changes this picture completely in several ways. We find that the topological easy-plane antiferromagnet
undergoes a second-order transition with quantized critical exponents. Further, a particle-vortex duality
naturally maps the partition function of the Chern-Simons easy-plane antiferromagnet into one of massless
Dirac fermions.
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Introduction.—It is well known that some quantum
critical systems exhibit a phase structure evading the tradi-
tional Landau-Ginzburg-Wilson (LGW) theory of phase
transitions [1–3]. Typical examples are two-dimensional
quantum systems with competing orders, like, for instance,
antiferromagnetic (AFM) and valence-bond solid (VBS)
orders originating from general quantum spin models with
SU(2) symmetry [3,4]. The LGW scenario predicts a first-
order phase transition for such a system. However, the
interplay between emergent instanton excitations (i.e.,
spacetime magnetic monopoles) and staggered Berry
phases [4] causes the actual phase transition to become a
second-order one, leading in this way to a quantum critical
point separating the AFM and VBS phases. For similar
reasons discussed in studies of the deconfinement transition
in high-energy physics, this type of critical point has been
dubbed a deconfined quantum critical point [1]. At such a
critical point, order parameters on both sides of the
transition fall apart into elementary particles called spinons
and we speak of spinon deconfinement.
A well-studied effective theory in this context is the

quantum O(3) nonlinear sigma model (NLσM),

LNLσM ¼ 1

2g
ð∂μnÞ2 þ…; ð1Þ

where n2 ¼ 1, supplemented by instanton-suppressing
terms, here symbolically represented by ellipses [1,2,
5–8]. Physically, the model is an effective theory of
antiferromagnets capturing the long-distance interactions,

and the unit vector n is the direction of the magnetization.
When tuning the coupling constant g, the system undergoes
a quantum phase transition from an AFM ordered phase to
a paramagnetic phase separated by a critical coupling gc.
By means of the Hopf map, n ¼ z�aσabzb, where σ ¼
ðσx; σy; σzÞ is a Pauli matrix vector, the O(3) NLσM is
shown to be equivalent to the CP1 model,

LCP1 ¼
1

g

X
a¼1;2

jð∂μ − iaμÞzaj2 þ…; ð2Þ

where the constraint jz1j2 þ jz2j2 ¼ 1 holds and the
gauge field is an auxiliary field given by aμ ¼ ði=2Þ×P

aðz�a∂μza − za∂μz�aÞ.
Although the gauge field aμ is an auxiliary field at the

level of field equations, it becomes dynamical when
quantum fluctuations of the spinon fields za are accounted
for, causing a Maxwell term to be generated in the low-
energy regime [9]. In this context it is also interesting to
consider generalizations withN complex fields, yielding an
Oð2NÞ symmetric version, the CPN−1 model. It has been
recently demonstrated [10] that the large N limit in a
instanton-suppressed CPN−1 model implies a second-order
phase transition. The result agrees with the standard field
theory analysis of the large N limit [9,11]. Nevertheless,
lower values ofN were shown numerically to exhibit a first-
order phase transition, specifically for N ¼ 4, 10, 15;
though the N ¼ 2 case remained inconclusive [10,12].
This result contrasts with the large N limit without
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instanton suppression, where a first-order phase transition
occurs [13,14].
A well-studied model since the early days of DC

[1,2,6,7] is the easy-plane CP1 model with Lagrangian,

Lep ¼ LM þ LCP1 þ
K
2g2

ðjz1j2 − jz2j2Þ2; ð3Þ

which follows directly from the NLσM by adding the easy-
plane anisotropy term, Lanis ¼ Kn2z=2g2, where K > 0.
Instanton suppression in the above Lagrangian is achieved
by means of a Maxwell term [2,5],

LM ¼ 1

2e2
ðϵμνλ∂νaλÞ2: ð4Þ

An exact particle-vortex duality transformation of the
lattice Villain model version of Lep shows that the model is
self-dual [1,2,5,12]. Partly on the basis of this self-duality,
it was originally argued [1,2] that the easy-plane CP1 model
undergoes a second-order phase transition, featuring there-
fore a deconfined quantum critical point. However, it was
later demonstrated numerically that the phase transition is
actually a first-order one [6,7], a result that is also
corroborated by renormalization group (RG) results [8].
Here we consider the topological easy-plane CP1

Lagrangian including a Chern-Simons (CS) term, i.e.,
L ¼ Lep þ LCS, where,

LCS ¼ i
κ

2
ϵμνλaμ∂νaλ; ð5Þ

describes a CS Lagrangian in Euclidean spacetime. For
arbitrary real κ the CS action is invariant under any
topologically trivial gauge transformation, since the surface
term vanishes in this case. On the other hand, topologically
nontrivial ones generate a surface term that does not vanish.
In this case one demands the invariance of expð−SCSÞ,
which forces κ to be quantized, κ ¼ n=ð2πÞ, where n ∈ Z
is the CS level [15,16].
The motivation for such a system is twofold. First, it is

interesting to examine the case of the instanton suppression
by a topological term instead of a bare Maxwell term.
Second, a system with similar properties should arise in the
context of chiral spin liquids [17]. Moreover, as we will
elaborate later, this is of direct relevance to bilayer quantum
Hall systems that have been realized experimentally.
This Letter consists of three parts. First, we perform an

RG analysis of the CP1 CS action and show that the fixed
point structure implies a second-order phase transition with
critical exponents depending on the CS coupling and,
hence, forming a new universality class. We will see that
the scaling behavior of the topological theory cannot be
smoothly connected to the limit where κ → 0. In the second

part of the Letter we show that the dual model features a CS
term of the form,

L̃CS ¼ −
i
2κ

ϵμνλðb1μ þ b2μÞ∂νðb1λ þ b2λÞ; ð6Þ

with two gauge fields b1μ and b2μ. Finally, in the third part
we show that for κ ¼ 1=ð2πÞ the duality of the second part
actually corresponds to a bosonization duality [18,19]
involving massless Dirac fermions [20].
Renormalization group analysis.—Let us start by dis-

cussing the nature of the phase transition of the easy-plane
CP1 CS model by means of RG calculations. In order to
regularize the short distance behavior, we also include the
Maxwell term (4) in the Lagrangian L ¼ Lep þ LCS, and
consider a soft constraint version of the model,

L ¼ LM þ LCS þ
X
a¼1;2

½jð∂μ − iaμÞzaj2 þm2
0jzaj2�

þ u
2
ðjz1j2 þ jz2j2Þ2 þ

K
2
ðjz1j2 − jz2j2Þ2: ð7Þ

Details of theRGcalculations are presented in Supplemental
Material [21]. There we show that the original theory
features two IR fixed points for the renormalized dimension-
less couplings û, K̂, and ê2. Importantly, e2 sets a UV scale
for the renormalized dimensionless gauge coupling ê2, in the
sense that the IR stable fixed point ê2� is also reached when
e2 → ∞ [21]. One of the fixed points is Oð2Þ × Oð2Þ
symmetric, while the second one corresponds to an emer-
gent O(4) symmetry. Interestingly, the Abelian Higgs CS
critical exponents do not belong to theXY universality class,
as they are κ dependent.
An important outcome of the RG analysis is that the limit

κ → 0 with e2 finite does not reduce to the RG equations
expected for a Uð1Þ × Uð1Þ Abelian Higgs model [9]. This
happens because the presence of the CS term causes the
one-loop gauge field bubble in the scalar field vertex
function to vanish at zero external momenta (see
Supplemental Material [21] for details on this point).
From the RG analysis it follows that the correlation

length critical exponents for the Oð2Þ × Oð2Þ- and O(4)-
symmetric IR fixed points are quantized and depend on the
level of the CS term. In particular, for a level 1 CS term this
yields νOð2Þ×Oð2Þ ¼ 49=80 ≈ 0.613. This value is nearly the
same as the one-loop result ν ¼ 5=8 of the XY universality
class. For the O(4)-symmetric criticality we obtain a larger
value, νOð4Þ ¼ 2=3, which is independent of the CS level at
the one-loop order.
The anomalous dimension ηN is defined by the critical

magnetization correlation function at large distances,
hnðxÞ · nð0Þi ∼ 1=jxj1þηNðnÞ. For a level 1 CS term we

obtain, ηOð2Þ×Oð2ÞN ¼ 59=49 ≈ 1.2 and ηOð4ÞN ¼ 164=147≈
1.12, for the Oð2Þ × Oð2Þ and O(4)-symmetric cases,
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respectively. This clearly shows that a new universality
class emerges.
At this point the following remark is in order. Typically,

DC implies considerably larger anomalous dimensions ηN
as compared to the case of the LGW paradigm of phase
transitions. However, it is rather rare that these values
exceed unity. The leading order value in the easy-plane case
without a CS term is ηN ¼ 1 (Gaussian approximation) [1].
For the J −Q model the result is ηN ≈ 0.35, but the easy-
plane J −Q model is reported to deliver a much larger
value, ηN ≈ 0.91 [26]. On the other hand, the theory
considered here exhibits anomalous dimensions ηN > 1.
An example where this also occurs is in a lattice boson
model with an emergent Z2 gauge symmetry [27], where
the anomalous dimension is numerically calculated to
be η ≈ 1.493.
Duality analysis.—We start the discussion of the duality

transformation by changing to polar coordinates za ¼
ρaeiθa in the partition function of the easy-plane CS CP1

model. After integrating ρ2 out and assuming a strong
anisotropy (K ≫ g2), we obtain ρ21 ≈ ρ22 ≈ 1=2, leading to
an effective action depending only on the phase fields
coupled to the gauge field,

Seff ¼ SCS þ
1

2g

X
a¼1;2

Z
d3xð∂μθa − aμÞ2; ð8Þ

where the CS action SCS corresponds to the Lagrangian (5).
The above effective action is equivalent to a two-
component CS superconductor in the London limit where
the amplitudes of the order parameter are constrained to be
equal.
The traditional way to perform a duality transformation

is to carry it out on the lattice [28]. Nevertheless, while it is
a straightforward task to define a Maxwell term on the
lattice [29], fundamental difficulties arise when one tries to
define the CS term on the lattice. It is known to be
problematic to enforce the properties of a topological
continuum field theory consistently on the lattice
[30–32], although recently considerable progress has been
made [33–35]. For these reasons, we will restrict ourselves
to performing the subsequent calculations directly in the
continuum.
Even though we are working directly in the continuum,

in order for the theory to be well defined at the short
distances, we need to regularize it. So we include an
additional Maxwell term [36]. The first step of our duality
transformation introduces auxiliary fields hIμ, I ¼ 1; 2,
such that,

S0eff ¼
X
I¼1;2

Z
d3x

�
g
2
h2Iμ − ihIμð∂μθI − aμÞ

�

þ 1

2e2

Z
d3xðϵμνλ∂νaλÞ2 þ i

κ

2

Z
d3xϵμνλaμ∂νaλ:

ð9Þ

To account for the periodicity of θI , the following decom-
position in terms of longitudinal phase fluctuations and
vortex gauge fields holds [28], ∂μθI ¼ ∂μφI þ 2πvIμ,
where φI ∈ R and the vorticity,

wIμ ¼ ϵμνλ∂νvIλðxÞ ¼
X
c

nIc

I
LIc

dyðcÞμ δ3ðx − yðcÞÞ; ð10Þ

with quanta nIc ∈ Z and the integral is over a path along
the cth vortex loop LIc.
Integrating out both φI and aμ leads to the action,

S̃ ¼
X
I¼1;2

Z
d3x

�
g
2
h2Iμ þ i2πvIμhIμ

�

þ 1

2

Z
d3x

Z
d3x0Dμνðx − x0Þðh1μ þ h2μÞðh01ν þ h02νÞ;

ð11Þ

where h0Iμ denotes dependence on x0, and the propagator in
momentum space,

DμνðpÞ ¼
e2

p2 þ e4κ2

�
δμν − e2κϵμνλ

pλ

p2

�
; ð12Þ

is the Fourier transform of DμνðxÞ. Here, the longitudinal
contribution is absent due to the constraint ∂μhIμ ¼ 0,
which appears after integrating out fields φI . This also leads
to hIμ being expressed in terms of new auxiliary fields bIμ
as hIμ ¼ ϵμνλ∂νbIλ.
As we are interested in the case of the easy-plane CS CP1

model, we can send e2 → ∞ after performing explicitly the
calculations in Eq. (11) and obtain the following dual
Lagrangian,

Ldual ¼
X
I¼1;2

�
g
2
ðϵμνλ∂νbIλÞ2 þ i2πwIμbIμ

�

−
i
2κ

ϵμνλðb1μ þ b2μÞ∂νðb1λ þ b2λÞ: ð13Þ

One notices that the presence of the CS term in the original
model leads to the appearance of the mixed CS term
anticipated in Eq. (6). Thus, the dual action (13) features
gauge fields coupled to an ensemble of vortex loops wIμ.
The latter represent the worldlines of the particles of the
original model [29,37].
As mentioned earlier in the context of the original theory

using a soft constraint, an IR stable fixed point for the
dimensionless renormalized gauge coupling is reached as
e2 → ∞. This result remains valid in the hard constraint
case. In Eq. (13) 1=g assumes the role of e2 of the original
theory. Note that g ¼ ĝ=Λ, where ĝ is dimensionless and Λ
is a UV cutoff, so the theory with a hard constraint reaches
a UV nontrivial fixed point ĝ� as Λ → ∞, so g → 0. Thus,

PHYSICAL REVIEW LETTERS 127, 045701 (2021)

045701-3



the duality establishes a mapping between the UV and IR
regimes of the theory.
Bosonization duality.—Having obtained a bosonic dual

theory, we will show now that the theory of CS easy-plane
antiferromagnets is actually self-dual at criticality and leads
to the bosonization duality for massless Dirac fermions. We
proceed to show this by first integrating out the fields bIμ in
Eq. (13). This yields the dual action in terms of vortex loop
fields,

S̃ ¼ 2π2
Z

d3x
Z

d3x0D̃μνðx − x0Þðw1μ þ w2μÞðw0
1ν þ w0

2νÞ

þ π

g

Z
d3x

Z
d3x0

ðw1μ − w2μÞðw0
1μ − w0

2μÞ
jx − x0j ; ð14Þ

where as before we are using primes to denote the
dependence on x0 and D̃μνðx − x0Þ in momentum space
reads,

D̃μνðpÞ ¼
gκ2

2ðg2κ2p2 þ 4Þ
�
δμν − 2

εμνλpλ

κgp2

�
: ð15Þ

Now, we will show that, similarly to the standard easy-
plane theory [5], the model considered here is self-dual in
the large distance regime g2p2 ≪ 1. In this case the vortices
w1μ and w2μ balance, so we can write approxi-
mately, w1μ ¼ w2μ ≡ wμ, so that (for details, see the
Supplemental Material [21]),

Sdual ¼
Z

d3xð2π2gκ2w2
μ þ i2π2κvμwμÞ: ð16Þ

On the other hand, letting g → 0 in the initial Abelian
Higgs CS action (9) and integrating out h2μ yields
aμ ¼ ∂μθ2. Subsequent integration of h1μ enforces
θ1 ¼ θ2 ≡ θ. At the end, this yields,

S ¼
Z

d3x
�
2π2

e2
w2
μ þ i2π2κvμwμ

�
; ð17Þ

and therefore we obtain the duality for the partition
function,

Zdualðe2 ¼ ∞; g; κÞ ¼ Z½g0 ¼ 0; e02 ¼ 1=ðgκ2Þ; κ�: ð18Þ

Underlying the above result is the duality relation between
the couplings, ge2 ¼ 1=κ2. For a level 1 CS term the latter
reduces to ge2 ¼ ð2πÞ2, which is the Dirac quantization
associated to particle-vortex duality. It is interesting to note
that Eq. (18) constitutes a topological version of the “frozen
superconductor” regime in the particle-vortex duality for
the Abelian Higgs model in 2þ 1 dimensions derived by
Peskin [29] and Dasgupta and Halperin [38].

We are now ready to explore the critical dual theory
which, as was discussed above, is obtained by setting
g → 0 in the Lagrangian (16). This yields up to an overall
normalization of the partition function

Z̃crit ¼
X
loops

exp

�
i
πκ

2

X
a;b

nanb

×
I
La

dxðaÞμ

I
Lb

dxðbÞν ϵμνλ
ðxðbÞ − xðaÞÞλ
jxðbÞ − xðaÞj3

�
; ð19Þ

where we sum over all loops La and Lb, not excluding
a ¼ b contributions, which will turn out to be a crucial
point [39,40]. For a ≠ b the double integral above yields a
contribution ei2π

2Nabκ, Nab ∈ Z, in virtue of the Gauss
linking number formula [41,42]. Despite looking at first
sight singular, the a ¼ b contributions are actually finite
and proportional to the so-called writhe of the (vortex) loop
[43–45]. The latter can be conveniently written in terms of a
suitable parametrization, xμðsÞ, s ∈ ½0; 1�, by defining the
unit vector, uμðs; s0Þ ¼ ½xμðsÞ − xμðs0Þ�=jxðsÞ − xðs0Þj, in
which case the writhe is recast as

Wa ¼
1

4π

Z
La

ds
Z
La

ds0ϵμνλ
dxμ
ds

dxν
ds0

½xλðsÞ − xλðs0Þ�
jxðsÞ − xðs0Þj3

¼ 1

4π

Z
La

ds
Z
La

ds0ϵμνλuμ∂suν∂s0uλ: ð20Þ

The result is reminiscent of the point-splitting regulariza-
tion employed to calculate expectation values of Wilson
loops [46]. This is in agreement with Ref. [36], where it is
shown that the point-splitting procedure yields the topo-
logical invariant which coincides with the writhe in theories
containing a Maxwell term in addition to a CS one when
e2 → ∞.
We now consider a specific case of a level 1 CS theory

in the original model corresponding to κ ¼ 1=ð2πÞ.
Consequently, the dual partition function at criticality
(19) takes the form

Z̃crit ¼
X
loops

ð−1ÞNabeiπ
P

a
n2aWa : ð21Þ

The contribution from the linking number formula gen-
erates weight factors ð−1Þn in the dual model, where n is
the integer. This result is reminiscent of the lack of gauge
invariance of the partition function under topologically
nontrivial gauge transformations in the dual model [47,48].
This result makes apparent that the considered duality
corresponds to a form of bosonization akin to the one
discussed by Polyakov for the CP1 model with a CS term
[39,49]. This contribution is sometimes referred to as the
Polyakov spin factor [39,40,50–53]. Equation (21) relates
to the representation of the partition function of a Dirac
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fermion in 2þ 1 Euclidean dimensions in terms of loops
[40,51–53], with the difference that in our case the parity
anomaly factor implies that the fermions are massless
[15,54–56].
As far as the writhe is concerned, it is worth recalling that

it arises quite naturally in the partition function of Wilson
fermions on a Euclidean cubic spacetime lattice [40].
However, the analysis of Ref. [40] and previous ones
[39,50–53,57] requires massive fermions.
It is remarkable that even if the analysis above does not

explicitly employ fermions, still a result that can only
follow from massless fermions is obtained. To elaborate
this point further we recall that a topologically nontrivial
gauge transformation γ, aμ → aγμ, in a continuous defor-
mation of the gauge field, leads to the subsequent trans-
formation of the fermion determinant detð=∂ þ i=aÞ →
ð−1Þn detð=∂ þ i=aγÞ, with n being the winding number
[48,54–56]. Therefore, integrating over aμ requires acco-
unting for redundant gauge configurations and summing
over all possible winding numbers corresponding to differ-
ent topological sectors in the partition function.
To further substantiate our bosonization claim, we

rederived this result using the flux attachment approach
to duality [19], which involves a path integral formalism
corresponding to a Fourier transform for quantized fluxes.
In order for this to work in our case we have to attach fluxes
to both fermions and bosons. The end result is that the
dual Lagrangian (13) is the bosonized version of massless
Dirac fermions with half-quantized CS flux attached. (The
explicit derivation can be found in the Supplemental
Material [21]). Therefore, our derivation is consistent with
the flux attachment technique, but in contrast to it, does not
assume any conjectures as a starting point. Thus, our
analysis provides yet a further check for these conjectures.
Final remarks.—We have demonstrated through RG

analysis that the topological easy-plane CP1 model under-
goes a second-order phase transition. Following this result,
we established a dual theory, which at criticality exhibits a
parity anomaly. This occurs at the particular value of a CS
coupling κ that provides topological gauge invariance. We
relate that to massless Dirac fermions, thereby establishing
an explicit bosonization duality [18]. Since the theory we
consider here possesses a Uð1Þ × Uð1Þ symmetry, our
analysis subscribes into the so-called beyond flavor bound
scenario of duality [58,59].
Additionally, let us consider these results within an

experimental context. The dual theory (13) with κ ¼
1=ð2πÞ and gauge fields rescaled as bIμ → bIμ=ð2πÞ
features a CS term as it occurs in the (1,1,1) quantum
Hall (QH) state associated to a bilayer QH system [60–62].
As mentioned, the initial model corresponds to a two-
component CS superconductor. Therefore, the duality
picture discussed here naturally connects the observed
resonant tunneling in bilayer QH ferromagnets [63]
to a Josephson-like effect in a system that is not

superconducting [64–66]. Our analysis shows that such
an experimental setup represents the dual physical system
to the actual easy-plane CS antiferromagnet. They belong
to the same universality class so that the bilayer QH
ferromagnet offers a controllable experimental system
for a deconfined critical point. Moreover, in view of the
connection to massless Dirac fermions established in this
Letter, bilayer QH ferromagnets would, in principle, offer a
platform to experimentally explore the bosonization duality
in 2þ 1 dimensions. It would be interesting to check
whether experiments can reveal the critical behavior with
quantized exponents as we predict here.
Another system of interest where our approach may

(with appropriate modifications) be relevant is the topo-
logical field theory for magic-angle graphene [67], where a
duality between superconductivity and insulating regimes
occur.
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