
 

Drops on the Underside of a Slightly Inclined Wet Substrate Move Too Fast to Grow
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Pendant drops suspended on the underside of a wet substrate are known to accumulate fluid from the
surrounding thin liquid film, a process that often results in dripping. The growth of such drops is hastened
by their ability to translate over an otherwise uniform horizontal film. Here we show that this scenario is
surprisingly reversed when the substrate is slightly tilted (≈2°); drops become too fast to grow and shrink
over the course of their motion. Combining experiments and numerical simulations, we rationalize the
transition between the conventional growth regime and the previously unknown decay regime we report.
Using an analytical treatment of the Landau-Levich meniscus that connects the drop to the film, we
quantitatively predict the drop dynamics in the two flow regimes and the value of the critical inclination
angle where the transition between them occurs.
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Anyone who has applied paint to a ceiling knows that
thin liquid coatings can spontaneously destabilize and
accumulate into an array of pendant drops [1,2]. While
interfacial instabilities can be harnessed to build structures
akin to geomorphic patterns [3–8], the Rayleigh-Taylor
instability in films is more commonly seen as undesirable,
e.g., jeopardizing the uniformity of coatings [9]. Worse, as
they grow, instability-mediated drops can drip and pollute
the space underneath, with potentially severe consequences
for engineering constructs [10,11]. As such, the Rayleigh-
Taylor instability in thin viscous films has been extensively
studied [1,2,12–14] and diverse strategies have been
proposed to prevent the formation of drops [15–21].
Linear stability analysis for this class of problems is
therefore well established, while insights in the drop
patterns formed by the instability have been provided
using weakly nonlinear developments [2]. Yet, our under-
standing of fully formed pendant drops and their transition
to dripping remains sparse [22] owing to the difficulties of
modeling the fully nonlinear long-term dynamics. In this
Letter, we focus on a single pendant drop (see Fig. 1), a
problem that remains analytically tractable while retaining
a rich physics.
Pendant drops under uniformly coated films are capable

of steady translation, even in the theoretical limit of a
perfectly horizontal substrate [22]. Over the course of their
trajectory, these drops accumulate more fluid from the
surrounding thin film than if they were stationary [22],
thereby reaching the critical size leading to dripping [4]
faster than immobile drops. Here, using experiments,
numerical simulations, and theory, we show that increasing
the drop velocity by slightly tilting the substrate surpris-
ingly prevents dripping. Past a critical inclination, the film
left by the drop in its wake is thicker than the one absorbed

by the drop in its front. This negative balance depletes the
volume of fluid in the drop, which shrinks, thereby
avoiding dripping. Through an analysis of the Landau-
Levich meniscus at the edge of the drop, we unveil the
physics at play in these drops that are too fast to grow and
predict analytically their dynamics and the transition
between the two aforementioned flow regimes.
Our experiment is schematized in Fig. 1. Silicone oil

(density ρ ¼ 971 kg=m3, surface tension γ ¼ 20.3 mN=m,
viscosity η ¼ 1.13 Pa s) is spin coated on a flat glass
substrate to produce a film of uniform thickness h0
(measured by weighing the sample). The substrate is then
flipped and mounted onto a rotating arm while a droplet is
applied on the film with a micropipette. The resulting
pendant drop has an initial amplitude A0 ∼ lc, where
lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ðρgÞp

denotes the capillary length and g denotes
the acceleration of gravity. The substrate is then tilted by an
angle α and the dynamics is recorded (see Supplemental
Material, Sec. I for details [23]). Note that the initial coating
is sufficiently thin not to destabilize via the Rayleigh-
Taylor instability over the course of our experiment [2]. The
film thickness is therefore assumed to be uniform and
constant far from the drop.
Figure 2(a) shows a chronophotography of an experi-

ment performed with a nearly horizontal substrate

FIG. 1. Schematic of a pendant drop of amplitude A sliding
with velocity U under a substrate prewetted with a film of
thickness h0 and inclined by an angle α.
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(α ¼ 0.9°). As evident from the figure, the drop translates
by several times its diameter over the course of the
experiment, while both the drop speed U and
amplitude A increase. In Fig. 2(b), we show an experiment
nearly identical to Fig. 2(a), except for that the inclination
angle is slightly higher (α ¼ 3.4°). As expected, the drop
initially moves faster. However, unlike the lower inclina-
tion case, it progressively shrinks and decelerates. In
Fig. 3, we plot the amplitude AðtÞ and position xðtÞ of
drops sliding over films of similar thickness (h0 ≈ 89 μm)
but with different inclination angles α. Whereas
the drop accelerates and grows for the three smallest
angles, the situation is reversed for the two largest
angles. The inclination αc ≈ 2° appears to be the
critical angle αc, where the drop amplitude and speed
are constant (U ≈ 2.3 mm=min). Video S1 in the
Supplemental Material [23] displays similar observations
for h0 ≈ 112 μm. Modifying the film thickness
changes the value of αc, as well as the timescale of the
experiment. Increasing the drop initial amplitude A0

appears to speed up the dynamics, but does not
change its outcome (see Supplemental Material,
Sec. II [23]).
We turn to numerical simulations to rationalize these two

flow regimes. Owing to the dimensions of the problem, we
use the lubrication approximation to describe the evolution
of the position of the interface hðx; y; tÞ [1], but retain the
full-fledged expression of the curvature κ [14,24]. In the
Cartesian frame aligned with the substrate (see Fig. 1), we
obtain the following dimensionless thin-film equation after
rescaling x and y using lc=

ffiffiffiffiffiffiffiffiffiffi
cos α

p
, h using the coating

thickness far from the drop h0, and t using
τ ¼ ηγ=ðh30ρ2g2 cos2 αÞ:

∂ t̄h̄þ α̃h̄2∂ x̄h̄þ ð1=3Þ∇̄ · ½h̄3ð∇̄ h̄þ∇̄ κ̄Þ� ¼ 0;

κ̄ ¼ ∇̄ ·

�
∇̄h̄=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh0

ffiffiffiffiffiffiffiffiffiffi
cos α

p
=lcÞ2ð∇̄h̄Þ2

q �
; ð1Þ

where a bar indicates rescaled variable. Note that
the inclination of the substrate is captured by
α̃ ¼ lc tan α=h0

ffiffiffiffiffiffiffiffiffiffi
cos α

p
≈ lcα=h0.

We solve Eq. (1) with the finite element software
COMSOL on a rectangular domain with periodic
boundary conditions and the initial condition
h̄ðx̄; ȳ; 0Þ ¼ 1þ hdðx̄; ȳÞ=h0. Here, hdðx̄; ȳÞ=lc is the
dimensionless profile of a static pendant drop obtained
by integrating the Young-Laplace equation numerically
(see Supplemental Material, Sec. I for numerical details
[23]). In Video S2, we report typical numerical results,
which appear qualitatively similar to experiments, i.e.,
predicting growth and ultimately dripping at low inclina-
tion angles and the opposite at higher angles. In Fig. 3, we
show the evolution of the drop amplitude AðtÞ and position
xðtÞ obtained numerically with the parameters correspond-
ing to the aforementioned experiments within their uncer-
tainty (Δh0 ¼ 7 μm, Δα ¼ 0.15°). The agreement between
experiments and numerics is favorable, thereby validating
our simulations.
Leveraging our simulations, we investigate the physics

setting the value of the critical angle αc. In Fig. 4(a), we plot
side by side the log of the dimensionless film thickness
hðx; yÞ=h0 for two drops, each of which corresponds to a
given flow regime. The two situations only differ in the
value of the dimensionless inclination angle α̃. Yet, their
respective wakes are qualitatively different. In particular,
the wake thickness hw appears to be mostly greater than h0
for large inclinations and lower than h0 for small inclina-
tions. This sizable difference plays a key role in defining
the flow regimes. Along its trajectory, a drop indeed
absorbs the uniform film laying at its front and releases
liquid in its wake. The contribution from the Rayleigh-
Taylor instability being negligible (see Fig. S3 in the
Supplemental Material [23]), the change in volume of
the drop is ∂xV ≈

R
R
−R½h0 − hwðyÞ�dy with R as the drop

radius. The drop shrinks if ∂xV < 0; i.e., if the average
thickness left in the wake is less than h0, as seen for the

(a)

(b)

FIG. 2. Chronophotographies of two experiments at low (a) and high (b) inclination angles with h0 ≈ 89 μm (scale bars are 5 mm).
The interval between pictures is 9 and 3.75 min, respectively. The pictures include the reflection of the drop on the substrate. The solid
lines indicate the position of the substrate. The dotted lines mark the initial amplitudes of the drops A0 ¼ f1.03; 1.16g mm.
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greater values of the inclination. The structure of the wake
is thus key for rationalizing the transition between the two
flow regimes. This numerical observation is confirmed in
experiments: as evident from Fig. 4(b), the wake is thinner
than h0 for α < αc and thicker for α > αc (see details in the
Supplemental Material, Sec. I [23]).
We model the variation in thickness across the wake

using an approach analogous to that used in Landau-Levich
and Bretherton problems. We treat our problem in the polar
coordinate system centered on the drop apex [see Fig. 4(c)].
Focusing on the matching region between the drop and the
film, we expect the radial curvature to vary rapidly and
dominate the pressure gradient [22]. Consequently, we
neglect the advection and gravity terms in the meniscus
such that Eq. (1) reduces to a radial Landau-Levich
equation (see Supplemental Material, Sec. III [23]).
Therefore, we treat the wake as a collection of two-
dimensional radial Landau-Levich films, where the pro-
jected speed U cosðθÞ is the effective deposition speed. In
this framework, we obtain [25]

hwðθÞ ≈ 1.34κ−1d cos ðθÞ2=3Ca2=3: ð2Þ

Here κd is the curvature at the edge of the drop, which is
assumed to remain close to that of a static pendant drop
κd ≈ 0.28A=l2

c (see Supplemental Material, Sec. III [23]),
and Ca ¼ ηU=γ is the capillary number of the problem.
Note that the drop speed UðtÞ and amplitude AðtÞ are
a priori unknown and depend on the drop initial profile,
film thickness, and inclination of the substrate. Varying the
dimensionless parameters of the problem (A0=lc, h0=lc,
and α̃), we generate a large dataset of simulations to assess
the validity of our model.
In Fig. 5(a), we plot the wake profile in the transverse

direction hwðyÞ for a given drop and film at different
inclination angles [the wake is quasi-invariant in the x
direction, see Fig. 4(a)]. We first focus on the angular
dependence by rescaling the data by hwðy ¼ 0Þ. As shown
in Fig. 5(b), the profiles collapse in the central region of the
wake defined as −R < y < R with R the drop radius. The
resulting master curve matches our theoretical prediction
hwðθÞ=hwð0Þ ¼ cos ðθÞ2=3 with no fitting parameter [see
Eq. (2)]. We then compare our prediction for hwð0Þ to data
from all our simulations in Fig. 5(c). Note that each
simulation provides multiple data points, as A and U are
both functions of time and thus vary over the course of a
simulation. The resulting collapse and overall favorable
agreement with Eq. (2) confirms the validity of our
approach. Note that the agreement becomes less favorable
when α̃ and h0=lc increase, a result consistent with the
approximations made in our model (negligible advection in
the meniscus and static pendant drop shape, see
Supplemental Material, Sec. III [23]).
Using Eq. (2), we evaluate the amount of liquid deposited

in the wake
R
R
−R hwðyÞdy ¼ Rhwð0Þ

R π=2
−π=2 cos ðθÞ5=3dθ and

obtain the drop growth rate

∂xV ≈ Rð2h0 − 7.91l2
cCa2=3=AÞ: ð3Þ

6010 15 20 25 30
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

1

2

3

4

5

6

7

0 5 100 20 30 40 50

(a) (b)

exp
num

0.1 1.9 3.42.41.2 2.0

FIG. 3. Shown is the (a) amplitude AðtÞ and (b) position xðtÞ of
drops sliding under a film of thickness h0 ≈ 89 μm at different
inclination angles α (see legend). Markers indicate experiments
and dashed lines indicate numerical simulations.

0
5

10
15

20
25

x (cm)0
5

10
15

20
25

y (cm)

0

0.1

0.2

0.3

h 
(a

.u
.)

0
5

10
15

20
25

x (cm)0
5

10
15

20

y (cm)

0

0.1

0.2

0.3

h 
(a

.u
.)

(b) (c)(a)

0 0.4 0.8-0.4-0.8 0 0.05 0.1 0.15 0.2 0.25 0.3

FIG. 4. (a) Thickness map for two simulations with identical initial drops (A0=lc ¼ 1.05, h0=lc ¼ 0.04) but different inclination
angles α̃ (position x ¼ 37.4lc). Scale bar 5lc. (b) Thickness profiles inferred from experiments conducted with dyed oil at low and high
inclination angles (A0=lc ≈ 0.8, h0 ≈ 85 μm). (c) Three-dimensional schematics of the drop introducing the polar coordinates fr; θg
and curvature κd.

PHYSICAL REVIEW LETTERS 127, 044503 (2021)

044503-3



Next, we derive an expression for Ca in order to close the
problem.
To obtain the drop speed, we perform a force balance on

the drop [26]. The force driving the motion of
the drop derives from the change in gravitational
energy Ep ¼ ρgVzc, with zc as the altitude of the drop
center of mass. Defining Fg ¼ −∂xEp, we find
Fg ≈ ρgVαþ 2ρgzcRh0 − 7.91γRzcCa2=3=A. Whereas the
first term in the expression of Fg is conventional, the other
two terms originate from the change of volume of the drop
∂xV in Eq. (3). The motion of the drop is resisted by
viscous stresses in the film. The flow being significant only
around the drop and the meniscus being the thinnest
part of that region, we anticipate the meniscus to be the
main source of dissipation. The corresponding viscous
force per unit length is fvðθÞ ¼ 4.94γðCa cos θÞ2=3 [25].
Integrating along the drop contour, the total friction
force is Fv ¼

R π=2
−π=2 fvðθÞðcos θex þ sin θeyÞRdθ ≈

8.31γRCa2=3ex. Assuming that the drop shape remains
close to that of a static pendant drop, we have zc ≈ 0.29A,
R ≈ 3.58lc, and V ≈ 0.89AR2 (see Supplemental Material,
Sec. III [23] for the derivation of all the prefactors).
Balancing Fg and Fv ¼ Fv · ex, we obtain

Ca2=3 ¼ 0.0553
Ah0
l2
c
ð1þ 5.34α̃Þ: ð4Þ

In Fig. 6(a), we compare the drop speed obtained in
simulations with Eq. (4) and find favorable agreement
without any fitting parameter. Likewise, we show in the
inset of Fig. 6(a) that Eq. (4) also captures our experiments.
Note that the agreement becomes less favorable when α̃ and
h0=lc increase, as expected from the deterioration of our
model’s assumptions (static pendant drop shape and neg-
ligible advection in the meniscus, see Supplemental
Material, Sec. III [23]).
We now leverage our results and combine Eqs. (3) and

(4) to derive the drop growth rate ∂xV and subsequently
integrate this expression over time to obtain the drop
dimensionless amplitude

Āðt̄Þ
Ā0

¼
�
1 −

1

2
fðα̃ÞĀ1=2

0 t̄

�
−2

ð5Þ
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with fðα̃Þ ¼ ð0.0065 − 0.0097α̃Þð1þ 5.34α̃Þ3=2 (see
Supplemental Material, Sec. III [23]). In Fig. S5(a), we
show that Eq. (5) compares favorably with experiments
without fitting parameters. The value of the critical incli-
nation is obtained solving for the root of f, yielding
α̃c ≈ 0.67. In Fig. 6(b), we show the combined experi-
mental and numerical state diagram for the drop dynamics,
where the two flow regimes are apparent. As predicted by
our model, the transition occurs at a roughly constant
critical angle α̃c ≈ 0.6 in good agreement with our estimate.
In summary, using experiments and numerical simula-

tions, we have revealed a transition from growth to decay
for pendant drops sliding under slightly inclined prewet
substrates. This transition, which occurs at a surprisingly
low angle, is governed by the amount of fluid left in the
wake of the drop. As the inclination angle increases, the
drop becomes too fast to grow and its volume is slowly
depleted. We have rationalized this complex nonlinear
problem with an analytically tractable Landau-Levich
model that accurately predicts the drop dynamics in the
two regimes, in spite of the approximations introduced in
its derivation. Note that on longer timescales the Rayleigh-
Taylor instability will eventually influence the dynamics of
drops that do not drip. Although this situation is beyond the
scope of the present Letter, preliminary results indicate that
the wake forms lenses that are later absorbed by the drop
(see Supplemental Material, Sec. II [23] and Video S3).
Yet, no dripping is observed, which suggests that the
critical angle we have introduced remains accurate. As
such, our results could find application in dripping pre-
vention for drops directly deposited on substrates, e.g., in
coating and printing technologies [27]. Additionally, our
results could be extended to control and transport pendant
drops via carefully crafted substrate topography. Finally,
our analysis could be generalized to model the dynamics of
sliding liquid plugs in prewetted channels [28] and sliding
liquid bridges between prewetted substrates [29,30].
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