PHYSICAL REVIEW LETTERS 127, 043604 (2021)

One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for
Fast W-State Generation

Jie Peng 2 Juncong Zheng ! Jing Yu,’ Pinghua Talng,1 G. Alvarado Barrios,” Jianxin Zhong,1 Enrique Solano,
F. Albarrdn-Arriagada ,2 and Lucas Lamata

2,34,5,F
6.%

'Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics,
Xiangtan University, Hunan 411105, China
*International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and
Physics Department, Shanghai University, 200444 Shanghai, China
*Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
4IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
5Kipu Quantum, Kurwenalstrasse 1, 80804 Munich, Germany
6Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain

® (Received 3 March 2021; accepted 17 June 2021; published 22 July 2021)

General solutions to the quantum Rabi model involve subspaces with an unbounded number of photons.
However, for the multiqubit multimode case, we find special solutions with at most one photon for an
arbitrary number of qubits and photon modes. Such solutions exist for arbitrary single qubit-photon
coupling strength with constant eigenenergy, while still being qubit-photon entangled states. Taking
advantage of their peculiarities and the reach of the ultrastrong coupling regime, we propose an adiabatic
scheme for the fast and deterministic generation of a two-qubit Bell state and arbitrary single-photon
multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit
design to catch and release the W states, and shows the experimental feasibility of the multimode multiqubit

quantum Rabi model.
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Introduction.—The quantum Rabi model [1,2] describes
the interaction between a two-level system and a single
photonic mode at the most fundamental level. Since it
involves both rotating and counterrotating interaction
terms, all Fock states are connected and there is no closed
subspace, turning the Hamiltonian hard to solve. Therefore,
despite its simple form, the exact solution of the model was
not found until 2011 [3], invoking a lot of interest in this
model [4-13] thereafter.

The Rabi model plays an important role in quantum
optics [14-17], optomechanics [18], condensed matter
physics [19], and so on [20-22]. However, in most
applications we need to consider more than one qubit
and/or one mode, e.g., to perform a controlled gate [23,24]
for universal quantum computing [25,26], and to generate
multipartite entangled states [27-29]. Hence, a mathemati-
cal description with physical implications for the multiqubit
multimode quantum Rabi model (MMQRM) is essential for
the development of scalable and efficient protocols, suit-
able for current technology demands.

In this Letter, we find special solutions with at most one
photon to the MMQRM for arbitrary number of qubits and
modes, although the interaction terms still connect all
photon number states. Unlike Judd’s isolated quasiexact
solutions (exact solutions for part of the spectrum [30,31])
to the quantum Rabi model [32], these solutions exist for
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any couplings with constant energy when qubit and
mode frequencies are fixed, provided the couplings them-
selves satisfy certain condition. They are a coherent super-
position of qubit-photon states, which makes the photon
population trapped in zero and one, and we call it a
special dark state [33]. Furthermore, we use such solu-
tions to propose a fast and deterministic entangled state
generation protocol to obtain a two-qubit Bell state and
an arbitrary single-photon M-mode W state |W),, =
(1/N) S 6,010y -+ 1,0, - -~ 0y) [34-37] simultane-
ously through adiabatic passage. Here, g; is the coupling
strength between the qubits and ith photon mode. It is
known that W states are robust under particle loss [38] and
a central resource in several quantum information process-
ing protocols [39—42]. Consequently, various schemes have
been presented to generate them [43-54]. Because of the
reach of ultrastrong coupling and peculiarities of the special
dark states, the most interesting advantage of using the
MMQRM is the fast generation (less than 70w~") and low
nonadiabatic error (less than 1%), outperforming the rece-
ntly reported fastest two-qubit CPHASE gate (30-4-5 ns) [55]
for photon frequency w/2z = 3 GHz. The generation time
is almost the same for different mode numbers and no
external laser is needed. Since g; is adjustable, we can
generate any W state in a unified and convenient way.
Finally, we propose a superconducting circuit design for the
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MMQRM, as well as for the catch and release of these W
states. These results pave the way to the implementation of
fast protocols in quantum information using the MMQRM.

Special quasiexact solutions to the MMQRM.—We
present our method to obtain the quasiexact solutions with
at most one photon to the MMQRM

H = Za)a a; +ZZQU% a; +a +ZA iz,

i=1 j=

(1)

where af and a; are the ith photon mode creation and
annihilation operators with frequency w;, respectively.
Also, 6;,(a = x,y, z) are the Pauli matrices corresponding
to the jth qubit, 24 is the energy level splitting of the jth
qubit, and g;; is the qubit-photon coupling parameter
between the ith mode and jth qubit.

Since Hamiltonian (1) breaks the U(1) symmetry, there
is no closed subspace consisting of finite photon number
states. However, it has a Z, symmetry with generator

=expliz Y1, aa;|l;6,.. Accordingly, we categorize
all N-qubit states (|yy,)) into two sets corresponding to the
eigenvalues of Il;o;, being £1, and denote them 2V~!
dimensional row vectors, (|, +)). We also denote all k-
photon states with M modes by (|ky,)). Hence, there are
two invariant subspaces

(|0MJI/Nq,+>) <~ (|1M7V/Nq,—>) < (|2le//Nq,+>) e (2)

(10w wng-)) < (L wng+)) < (2arswvg-)) -+ (3)

with positive and negative parity, respectively. So H will
take the following form in the =+ parity subspace

D Oof 0 0 o0
0o, Df 0/ 0 0
0 0, Df 0} 0

H* =

where D is a 2V!1CK | x 2V7ICE L, | matrix and Oy
isa2V-ICpHl, x 2V-1Ck | | matrix which takes the same
form for + parity [56]. Although all Fock states are
connected, it is possible to find solutions with finite photon
numbers. Indeed, there are such solutions in the single-
mode multiqubit quantum Rabi model [57-59].

We search now for solutions with at most L
photons taking the form |w.) = &5, (|0y. wr,s)) +

s wngs) + -+ oLy wig 1)) to the
MMQRM, where ¢, is a 2¥~'C}, ., | dimensional vector

since ([ky, Wiy +(-1)4)) is @ vector of the same dimension,
by solving the eigenenergy equation

(H* = E¥)ly.) = 0. (5)

According to Egs. (4) and (5), there are more equations
than variables ¢i,, since we do not truncate H. But
quasiexact solutions could exist when parameters meet a
certain condition. For L > 1 this condition reads
f(gij» ;&) =0 [56], just like Judd’s solution [32] to
the quantum Rabi model. For L =1, it reduces to
f'(®;,A;) =0 and f"(g;;) =0, so the solutions change
from isolated points into lines in the spectra for certain o,
and A;. The latter may have important applications in
quantum information, as will be discussed below. Hence,
we will focus on L = 1, where Eq. (5) reduces to

DF — E* 0 &t
00 Dli - E'i - (6)

after matrix elementary row transformation [56]. For the
single qubit and single-mode case, O is just a ¢ number, so
there is no nontrivial solution for O,¢;; = 0. However, for
the multiqubit case, it can be satisfied if matrix O; has
eigenvalue 0 with &7, being its corresponding eigenvector.
Then, we make elementary row transformations to the
matrix in Eq. (6), and the solution is obtained if there are
more columns than nonzero rows. At the same time, the
condition for the parameters is calculated.

For the two-qubit and M-mode case, we find the special
solution for even parity to be [56]

) = 1080 = 0)[0u 1. 1) + W) (1. 1) = 11 D)L

(7)

where|WM>—91 . 0) 4+ 9,10, 1,0,. O>+-~~+
1) w1th the condltlon w; = w for all i, g;; =
g, for al] j and A, + A, = o= E". This is a special dark
state with at most one photon, which exists for arbitrary g;
with constant eigenenergy E™ = w, corresponding to a
horizontal line in the spectrum [see Fig. 1(a)], while still
being a qubit-photon entangled state. There are two similar
solutions |y,_) corresponding to odd parity [56].

For the three-qubit and M-mode case, the quasiexact
solution for odd parity reads

) = Wad (I 4 D) = D) = LD+ I 1 1)
200 14+ T 0 4 1)
& Oy, L. 1), 8
gugmlMiTT) (8)
where |Wy,) = ¢14/1,0,0,...,0) + ¢,,/0,1,0,...,0) + - - -+
gn1]0,0,0, ..., 1) with the conditions Aj=w;=w=E",
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FIG. 1. (a) Spectrum of the two-qubit two-mode quantum Rabi
model with W] = Wy =, Al = 096(), Az = OlCU, g1 =912 =
g1 = g = ¢g. (b) Spectrum of the three-qubit two-mode
quantum Rabi model with A} =A, = A3 =w; = w, = o,
9= g11 = 912 + 915 = 921, Y12 = 922 = 913 = Yo3- Red lines cor-
respond to even parity while blue lines to odd parity.

9i1 = 9n + g- This eigenstate corresponds to the hori-
zontal line E/w = 1 in Fig. 1(b).

For the N-qubit and M-mode case, there exist special
dark states with £ = w [56]

|WN> = |W2> ® (|WB>)(N_2)/2’ N = 2?4167 87 (AR} (9)

) = lws) ® (fws) V2 N=3.579... (10)

where |yg) = (1/v2)(]41) = [11)) is the two-qubit sin-
glet Bell state and |y, 3) includes |y, ) and |y;_), which
has been obtained above.

Fast generation of the arbitrary single-photon multi-
mode W state.—Here, the special dark state |y, ) Eq. (7) is
an excellent candidate for deterministically generating
arbitrary W states |W,,) through adiabatic passage:
(1) The initial state |0y, 1, 1) is easy to prepare, and the
target state is obtained once A; — A, = 0 for any nonzero
¢g; with no external laser needed. (2) The coefficient of
[0,05 -+ 1;0;; - - - 0) is just g; in |W,,), so any W state can
be generated by adjusting g; directly.

Our scheme is as follows. First, two qubits are excited by
pumping pulses and coupled to M resonators in vacuum
states with initial coupling strength g;; = g,» = g; = 0. The
qubit frequencies are nonidentical and always satisfy
A; 4+ A, = w; = w. Then, we slowly decrease |A; — A,|
to 0 while we increase g; to a nonzero value, so that the
target state |W,wp) is obtained. As an example, the
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FIG. 2. Adiabatic evolution of the special dark state |y, ) of
Eq. (7) from |0y11) to |Wyyp) for the two-qubit M-mode
quantum Rabi model, where |yz) = (1/v2)(|{1) = [11)), and
|Wy,) is the normalized prototype W state with all g;’s equal.
(a) Adiabatic trajectory used to vary the parameters for M = 2.
g1 = g = g. (b) Fidelity Fy; = |(Wywg|w(T))|> when T is fixed
to 100w™" for mode number M. (c) Population of different states
during the adiabatic process for M = 2. (d) Interaction time
needed to reach F), > 0.99 for mode M in unit of @w~!.

numerical simulation for the adiabatic evolution of
the two-qubit two-mode case is shown in Fig. 2(c) with
the adiabatic trajectory used to vary the parameters depicted
in Fig. 2(a). The evolution time is just 7 = 100w~ and the
fidelity F, = |(w(T)|W,yp)|> reaches 99.89%. If the
evolution time is fixed to 100w™', the fidelities F,, for
the M-mode case are shown in Fig. 2(b), which are almost
equal and higher than 99.6%. If the fidelities are restricted
to be higher than 99%, the time costs for each mode are
shown in Fig. 2(d), which are less than 69w~'. The
linear adiabatic trajectories for different cases are shown
in [56].

According to the current available circuit QED technol-
ogy, the transmon frequency A/z can be tuned from O to
6 GHz [60,61], hence the resonator frequency w/27 is
chosen to be 3 GHz [62] to satisfy A+ A, =w at
g;/27x = 0. The couplings could satisfy ¢g;; = g;» in experi-
ments [63,64]. They are also tunable [64,65], even inde-
pendently of qubit frequencies [66], or from O to half of the
resonator frequency [23]. Therefore, our scheme shown in
Fig. 2(a) is within experimental reach and the adiabatic
evolution takes only 33.3 ns with nonadiabatic error 0.1%.
It is faster than the current state-of-the-art two-qubit
CPHASE gate with an operation time of 40 ns [67,68],
and comparable to recently reported fastest two-qubit gates
of 30-45 ns [55]. If we restrict the nonadiabatic error to less
than 1%, then the average evolution time to generate
[Wywg) from [0,11) for M =2,3,...,10 will be
21.9 ns. Note that we have chosen the simplest linear
adiabatic path shown in Fig. 2(a), but we can also consider
a “faster adiabatic” trajectory to reduce the time such as in
Refs. [67,69,70].
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The fast adiabatic speed is due to the reach of ultrastrong
coupling and the peculiarities of the special dark state
lway) [56].

(1) (Wg—o|H|w>,) =0, no matter how fast the para-
meters change, so that the adiabatic speed is not limited by
the vanishing energy gap at the degeneracy points [e.g.,
around g/ =~ 0.357 and 0.392 in Fig. 1(a)] according to
the adiabatic theorem [71,72]

‘ <Em(t)|H|E—"<t)>’ <1, m # n, te[0,7]. (11)

(Em - En)z

(2) There are C3,, | + 1 degenerate eigenstates [y _,,) at
the Jaynes-Cummings coupling regime when the rotating
wave approximation is applied. They reduce to very close
eigenstates in the MMQRM spectrum at this regime, as
shown in Fig. 1(a) for M = 2. We name them |y, ,.,) in
energy descending order with |y, ) = |y,,). Numerical
results show (,, |H|w,,) = 0, where lY/4,,) have photon
numbers bounded form below at two and one, respectively,
and we explain it analytically in [56]. (y,, |H ) L)/@* =0
and decreases with |A; — A,|/g.

On the other hand, the gap between |y, ) and its closest
eigenstates other than v, ., is A; —A,, which can be
chosen as w at g = 0 provided A; + A, = w, as shown in
Fig. 2(a), while normally the energy gap between the most
adjacent levels is much smaller. Although |Wyp) is
obtained once A; = A, and g # 0, we find the adiabatic
speed will be much faster if g is increased to the ultrastrong
coupling regime. All these factors make the adiabatic
evolution quite fast.

We have also considered the parameter fluctuation
around ¢g;; = g, and A, = w — A [56] during the adia-
batic process. The fidelity Fy; = |[(Wywg|w(T))|? is quite
robust against such fluctuations. There are possibly two
reasons. First, |(w, [y} )|* = 1, where |y}, ) is the devi-
ated special dark state under parameter fluctuations.
Second, (i [y, ) =0 reduces to (y,,, [y, )/ ~
0 or even vanishes under deviation of parameters [56].

Catch and release of the W state.—On the other hand,
just generating a W state inside resonators is not convenient
for its transport and detection [49], such that we propose a
scheme to store or extract them out on demand in quantum
information processes. Our scheme is depicted in Fig. 3(a),
where two superconducting qubits (SQs) in the center of
the devices are capacitively coupled to N coplanar wave-
guide resonators (CWRs), which can be described by the
two-qubit M-mode Rabi model. A detailed description of
the superconducting circuit design for the two-qubit two-
mode Rabi model [see Fig. 3(b)] with independently
tunable qubit frequencies and couplings is shown in
[56]. Besides, there is an externally variable coupler to
modulate the decay rate k. of each CWR through that
coupler, such that its photon emission into the connected

. ° H-QLHCWHA/
D eV
CWR, H%H [A
c, X

FIG. 3. (a) Schematic setup for the generation and release of the
W state: Two SQs are capacitively coupled to M CWRs. Each
CWR is connected to a TL through a variable coupler C, such
that the photon emission rate into the TL is controllable.
(b) A superconducting circuit design for the two-qubit two-mode
Rabi model [56].

transmission line (TL) is controllable. In current exper-
imental setups, k. can be tuned to be 1000 times the CWR
intrinsic decay rate k;, in a few nanoseconds [73], such that
we can catch (generate and store) and release the W state on
demand.

At the first step, |Wypp) can be generated using the
scheme discussed above. Thereafter, the two-qubit Bell
state is decoupled from the CWRs, hence |W),) is naturally
stored in resonators for any g; = g;;. After a desired time 7,
we turn on the coupling x,. and therefore the W state is
released into the transmission lines. With both «,. and
intrinsic dissipation included, we use a Lindblad master
equation to present the numerical simulation (see
Supplemental Material [56] for brief description, which
includes Refs. [74,75]) in Fig. 4. The dissipation rates for
each CWR are set to be equal, ensuring the emission rate

into the ith TL KCTr(aZ'a,»p) proportional to g7. The time
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FIG. 4. Numerical simulation for the catch and release of the
prototype three-mode W state |W5) = (1/4/3)(]100) + |010) +
|001)) (left panel) and the four-mode W state |W}) =
(1/+/10)(]1000) + +/2|0100) + /3]0010) + 2|0001))  (right
panel). (a) and (b) Population of different states inside resonators.
(¢) and (d) Emission rates into transmission lines.
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FIG. 5. Numerical simulation for the catch and release of the
perfect three-mode W state |[W4) = 1(|100) + |010) + v/2/001))
for quantum teleportation. (a) Population of different states inside
resonators. (b) Emission rates into transmission lines.

cost for generating |W3) and |W/) is still 100w™", but the
fidelity is reduced to 98%.

However, the prototype W state [W5) = (1/+/3)(|100)+
|010) + |001)) cannot be used to perform quantum tele-
portation, while the so-called perfect W state |W%) =
1(|100) + [010) + +/2|001)) can [39]. This state can be

easily generated by tuning g; = v2¢g, = v/2g;, as shown
in Fig. 5(a). The first two qubits are kept by Alice while the
third one is sent to Bob to carry out the remote commu-
nication. If the distance L between them is known, we can
delay the emission of the W state into the first two
transmission lines by L/c, where ¢ is the speed of light,
to assure they receive the qubits at the same time, which
will increase the communication security. The correspond-
ing numerical simulation is shown in Fig. 5(b).
Conclusions.—All Fock states are excited by the dipole
interaction in the ultrastrong coupling regime of the
quantum Rabi model. Therefore, although the operation
can be faster, it seems impossible to construct any kind of
single photon state deterministically. However, we find that
for the MMQRM, there exist special dark eigenstates con-
sisting of only vacuum and single photon multimode W
states for the photon part in the whole coupling regime with
constant energy. Accordingly, we propose a unified and
deterministic scheme to adiabatically generate arbitrary W
states using the special dark state solution to the two-qubit
M-mode quantum Rabi model, being able to take advan-
tages of the ultrastrong coupling and avoid its dynamical
complexities. Because of their peculiarities, the time cost
according to the current circuit QED technology (33 ns
with nonadiabatic error 0.1% and 21.9 ns with nonadiabatic
error 1%) is comparable to the recently reported fastest
two-qubit gate (30-45 ns) [55]. Optimization of the
adiabatic path could further accelerate the adiabatic process

in our protocol. Moreover, the generated W states can be
released into the transmission lines on demand, which is
illustrated to be useful in quantum information processing.
It is interesting to explorer similar uses of other special dark
states and fast protocols in quantum information using the
MMQRM, with its experimental feasibility provided here.
Numerical results show there are special solutions to the
MMQRM with photon numbers bounded from below and we
have explained its existence analytically, but a rigorous
proof is still needed.
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