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We investigate droplet formation in three-component ultracold bosons. In particular, we identify the
formation of a Borromean droplet, where only the ternary bosons can form a self-bound droplet while any
binary subsystems cannot, as the first example of Borromean binding due to a collective many-body effect.
Its formation is facilitated by an additional attractive force induced by the density fluctuation of a third
component, which enlarges the mean-field collapse region in comparison to the binary case and renders the
formation of a Borromean droplet after incorporating the repulsive force from quantum fluctuations.
Outside the Borromean regime, we demonstrate an interesting phenomenon of droplet phase separation due
to the competition between ternary and binary droplets. We further show that the transition between
different droplets and gas phase can be conveniently tuned by boson numbers and interaction strengths. The
study reveals the rich physics of a quantum droplet in three-component boson mixtures and sheds light on
the more intriguing many-body bound state formed in multicomponent systems.
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Introduction.—Discovering peculiar bound states helps
to expand our horizons in understanding intriguing quan-
tum effects in a physical world. Borromean binding clearly
belongs to such a case, where only three items together can
form the bound state while any two of them cannot. This
phenomenon has been successfully reported in nuclear
physics as halo nuclei [1,2] and in ultracold gases as the
Efimov effect [3–5]. In these situations, the Borromean
binding refers to the trimer formation in few-body clusters
where no dimer is present, such as the Efimov trimers
observed in the negative scattering length side [6–13] that
are supported by the attractive potential due to quantum
interference of three particles. Theoretical studies have
found that the Borromean trimer can be equally supported
by fine-tuning the shape and strength of pairwise potential
[14–18] or by modifying the single-particle dispersion [19].
Given the stringent requirement for its occurrence in small
clusters, whether the Borromean binding can be extended
to many-body systems due to a collective effect is an
interesting yet challenging problem.
On the other hand, as a typical many-body bound state,

the droplet has been well studied in helium liquid [20,21]
and in Bose-Einstein systems with short- and long-range
interactions [22]. Recently, it has regained great attention in
ultracold atoms following a pioneering proposal by Petrov
[23]. Stabilized by the mean-field attraction and the Lee-
Huang-Yang(LHY) repulsion from quantum fluctuations, a
quantum droplet has so far been successfully observed in
dipolar gases [24–30] and binary Bose gases of alkali atoms
[31–34]. It has also been theoretically extended to low
dimensions [35–40], Bose-Fermi mixtures [41–46], dipolar
mixtures [47,48], etc.

In this Letter, we point out the first example of
Borromean binding due to a collective many-body effect,
namely the Borromean droplet in three-component boson
mixtures. Specifically, “Borromean” means that only ter-
nary bosons can form the droplet while any binary
subsystems cannot. Its physical origin lies in an additional
attractive force induced by the density fluctuation of a third
component, which further intensifies the mean-field col-
lapse and renders the formation of a Borromean droplet
after incorporating the LHY repulsive force. Such a
collective effect is substantially different from the mecha-
nism of Borromean binding in small clusters [3–5,14–19].
Outside the Borromean regime, we demonstrate an inter-
esting phenomenon of droplet phase separation due to the
competition between ternary and binary droplets. The
emergence of these different droplets, which is shown to
be conveniently tuned by the species number and the
coupling strengths, shed light on more intriguing bound
state formation in multicomponent systems.
Model.—We start with the Hamiltonian for three-com-

ponent bosons H ¼ R
drHðrÞ, with (ℏ ¼ 1):

HðrÞ ¼
X

i¼1;2;3

Ψ†
i ðrÞ

�
−

∇2

2mi

�
ΨiðrÞ þ

X
ij

gij
2
Ψ†

iΨ
†
jΨjΨiðrÞ:

ð1Þ

Here r is the coordinate; mi and Ψi are respectively the
mass and field operator of boson species i; gij is the s-wave
coupling strength between species i and j.
For a homogeneous system with uniform densities fnig

(i ¼ 1, 2, 3), the mean-field energy per volume is given by
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ϵmf ¼
1

2

X3
i;j¼1

gijninj: ð2Þ

Following the standard Bogoliubov theory to treat quantum
fluctuations [49], we obtain the LHYenergy per volume as

ϵLHY ¼
Z

d3 k
2ð2πÞ3

�X3
i¼1

ðEik − ϵik − giiniÞ

þ
X
ij

2mijg2ijninj
k2

�
: ð3Þ

Here Eik (i ¼ 1, 2, 3) are the Bogoliubov spectra
(Supplemental Material [50]).
To describe a droplet with inhomogeneous densities, we

adopt the local density approximation(LDA) and write
the total LHY energy as ELHY ¼ R

drϵLHY½niðrÞ�, with
niðrÞ ¼ jΨiðrÞj2. This leads to three coupled Gross-
Pitaevskii (GP) equations for fΨiðrÞg (i ¼ 1, 2, 3):

i∂tΨi ¼
�
−

∇2

2mi
þ
X
j

gijjΨjj2 þ
∂ϵLHY
∂ni

�
Ψi: ð4Þ

The ground state can be approached by the imaginary time
evolution of Eq. (4).
In this work, to facilitate discussions while keeping the

essence of physics, we consider the equal mass case mi ≡
m and the coupling strengths with the following symmetry:

g11 ¼ g22 ≡ g; g13 ¼ g23 ≡ g0: ð5Þ
Mean-field stability.—We first analyze the mean-field

stability against density fluctuations of three-component
(ternary) bosons, and compare it with the two-component
(binary) cases. The stability is determined by the second-
order variation of ϵmf with respect to a small change of local
densities δni: δ2ϵmf ¼

P
ij

1
2
gijδniδnj, which gives

δ2ϵmf ¼
g−g12

2
δn2−þ

gþg12
2

δn2þþg33
2
δn23þ

ffiffiffi
2

p
g0δn3δnþ;

ð6Þ

with δn� ≡ ðδn1 � δn2Þ=
ffiffiffi
2

p
the diagonalized fluctuation

modes for components 1 and 2. Equation (6) clearly shows
that the fluctuation of component 3 will interfere with δnþ
and result in two new eigenmodes, while δn− is left
unchanged. The mean-field stability requires δ2ϵmf > 0
for any δni, which leads to the following condition for a
stable ternary system:

g > jg12j; g33 >
2g02

gþ g12
: ð7Þ

Note that the first condition ensures the stability of the
(1&2) system, while the second one is due to the

interference between components 3 and (1&2) and ensures
the stability of (1&2&3). Importantly, compared to the
stability condition g02 < gg33 for (2&3) or (1&3), the
requirement in Eq. (7) is more stringent. Therefore, there
exists a finite parameter window

g02

g33
∈
�
gþ g12

2
; g

�
; ð8Þ

such that all binary subsystems are stable against density
fluctuations while (1&2&3) is not.
The intensified mean-field instability of ternary bosons,

as compared to all binary subsystems, can be attributed to
the additional attractive force brought by the third compo-
nent. To see this efficiently, let us consider a special case
with g12 ¼ 0 and start from the subsystem (1&3) whose
stability condition is g02 < gg33. This condition can be
reformulated as g33 þ gind > 0, with gind ¼ −g02=g the
induced interaction (to component 3) by the density
fluctuation of component 1 [49]. Now if add the component
2 to (1&3), the fluctuation of component 2 will induce an
additional attraction to component 3 and now gind ¼
−2g02=g is doubled. Thus g33 needs to be more repulsive
than in (1&3) case in order to stabilize (1&2&3). For a
finite g12, the fluctuations of 1 and 2 will couple together
and give gind ¼ −2g02=ðgþ g12Þ, again more attractive than
the binary cases. We have checked that such enhanced gind
in the ternary system robustly applies for more general
coupling strengths beyond component (5).
In Fig. 1, we plot out the mean-field phase diagram of

(1&2&3) system in the (g0; g12) plane taking a fixed

/gg′

FIG. 1. Mean-field phase diagram for three-component bosons
under couplings (5) and g33 ¼ g. The gray area marks the mean-
field stable region (“S”), smaller than that for binary subsystems
(bounded by a red square). After incorporating the LHY
repulsion, a Borromean droplet can take place in regions I and
II(A). The dashed lines separating II(A) and II(B) are determined
by Cmin ¼ 0 at the droplet-gas transition (see text).
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g33 ¼ g. The mean-field stable region, as required by
Eq. (7) and labeled “S”, is shown to be smaller than the
stable region of binary subsystems (bounded by a red
square). For other regions in the diagram, a homogeneous
(1&2&3) system will undergo a collapse or phase separa-
tion due to density fluctuations, as determined by the
eigenmodes of Eq. (6) (Supplemental Material [50]).
Among them, there are four regions, labeled I, II, III, IV
in Fig. 1, where all three components undergo collapse
simultaneously. This offers a possibility for droplet for-
mation when further incorporating the repulsive force from
quantum fluctuations. Of particular interest are regions I
and II, as analyzed below.
Borromean droplet.—It is obvious that in region I, which

satisfies Eq. (8), the ternary system (1&2&3) can form a
self-bound droplet while any binary subsystem cannot. By
definition, this is the Borromean droplet. Meanwhile,
because the actual droplet formation also depends on
particle numbers fNig, it is possible for such an intriguing
state to exist in other regions by properly tuning fNig.
Given the coupling symmetry in Eq. (5), we have N1 ¼ N2

for the ground state and there left two tunable parameters
for fNig: total number N ¼ 2N1 þ N3 and number
ratio C ¼ N3=N1.
To explore the essential properties of the Borromean

droplet, we carry out full simulations of the GP equa-
tions (4) to search for ground state with a fixed g0=g ¼
−

ffiffiffi
2

p
=2 and different g12=g in regions I and II, i.e.,

following the vertical line in Fig. 1. In Figs. 2(a)–2(c),
we show the area of droplet formation in the N − C plane
for three typical values of g12=g, where we also show the
value of C when the energy reaches a minimum for each N,
denoted as Cmin (dashed lines in Fig. 2). One can see that
for g12=g in region I [Fig. 2(a)], a ternary droplet can be
supported when N is beyond a critical number, Nt;c, where
a gas to droplet transition occurs. For all N > Nt;c, the
droplet can survive for C only within a narrow window
around Cmin. This characterizes the Borromean nature of

the droplet; i.e., its formation cannot extend to C ¼ 0
(when the third component is absent).
Interestingly, the Borromean droplet can extend to part

of region II. As an example, for the parameters considered
in Fig. 2(b), we can see that as N increases, a ternary
droplet first emerges at Nt;c with a finite C. As N is further
increased to Nb;c, the binary (1&2) droplet appears at
C ¼ 0. The Borromean droplet is then stabilized within the
number window N ∈ ðNt;c; Nb;cÞ, where N is large enough
to support a ternary droplet but still small for the binary
one. The Borromean droplet will vanish when go deep into
region II. As shown in Fig. 2(c) for large attractive g12, as N
increases the droplet solution first emerges at Nb;c with
C ¼ 0. In this case, a binary droplet is more favored than a
ternary one.
Given the different behaviors of droplet formation in

region II, we have separated this region into II(A) and II(B)
in Fig. 1: the former can support the Borromean droplet
(within a certain number window) while the latter cannot.
Their boundary (dashed line in Fig. 1) is determined by the
zero crossing of Cmin at critical Nt;c. In Fig. 3(a), we show
Cmin at Nt;c as a function of g12=g with a given
g0=g ¼ −

ffiffiffi
2

p
=2. We can see that Cmin continuously de-

creases as g12 becomes more attractive and decreases to
zero at g12=g ≈ −4, which separates region II(A) from II(B)

(a) (b) (c)

FIG. 2. Droplet region (colored) in the N − C plane for three
typical points (marked by *) on the vertical line in Fig. 1, which
have a fixed g0=g ¼ −

ffiffiffi
2

p
=2 and different g12=g ¼ −0.2ðaÞ;

−1.5ðbÞ;−5ðcÞ. Red dashed lines show Cmin when the system
has minimal total energy at given N. In (b), the yellow area marks
the regime for droplet phase separation.

FIG. 3. (a) Cmin (solid line) as a function of g12=g at the critical

number Nt;c, in comparison with Cð0Þ
min (dashed line) from Eq. (9).

(b) Phase diagram in the N − g12 plane. The Borromean droplet
(“BD”) occurs in region I for N > Nt;c and in II(A) for
N ∈ ðNt;c; Nb;cÞ. For N < Nt;c the system is in the gas phase;
forN > Nb;c thebinarydropletcanalsoexist.Dashedlinesshowthe

function fits of Nð0Þ
t;c [Eq. (11)] and Nð0Þ

b;c (from Ref. [23]).

Here g0=g ¼ −
ffiffiffi
2

p
=2.
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on the vertical line in Fig. 1. In fact, Cmin can be estimated
from the minimization of ϵmf, which gives

Cð0Þ
min ¼

gþ g12 − 2g0

g − g0
: ð9Þ

In Fig. 3(a), we can see that Eq. (9) well fits Cmin in region I
but deviates visibly as entering region II(A) when the
system is far away from the mean-field collapse line.
In Fig. 3(b), we further map out the phase diagram

highlighting the Borromean droplet(BD) in the ðg12; NÞ
plane, taking a fixed g0=g ¼ −

ffiffiffi
2

p
=2. To summarize, the

Borromean droplet occurs at N > Nt;c in region I and N ∈
ðNt;c; Nb;cÞ in region II(A). We can see that both Nt;c and
Nb;c decrease as g12 gets more attractive.
Now we analytically estimate Nt;c. First, we investigate

the equilibrium density of the Borromean droplet by
enforcing the zero pressure P ¼ P

i ni∂ϵ=∂ni − ϵ ¼ 0,
where ϵ ¼ ϵmf þ ϵLHY. Utilizing ϵmf ¼ gn21f1 with f1 ¼
C2=2þ 2Cg0=gþ 1þ g12=g, and the LHY energy at the
mean-field collapse line (Supplemental Material [50])
ϵLHY ¼ 8=ð15π2Þðgn1Þ5=2f2, with f2¼ð1þg12=gþCÞ5=2þ
ð1−g12=gÞ5=2, we obtain the density of component i in the
ternary droplet

nð0Þt;i ¼ ηi
25π

1024a3

�
f1
f2

�
2

: ð10Þ

Here a ¼ mg=ð4πÞ, η1 ¼ η2 ¼ 1, and η3 ¼ Cð0Þ
min. Further,

based on Eqs. (9) and (10) and the single-mode assumption

ΨiðrÞ ¼
ffiffiffiffiffiffiffiffi
nð0Þt;i

q
ψðrÞ, the coupled GP equations (4) can be

reduced to a single one similar to that in the binary case
[23]. This results in the following critical number at the
transition between the ternary droplet and the gas phase:

Nð0Þ
t;c ¼ ð2þ CÞ5=2

�
3

2

�
3=2 4Ñc

5π2
f2
f21

; ð11Þ

with Ñc ¼ 18.65 (at the vanishing of droplet solution). In
Fig. 2(c), we show that (11) fits numerical Nt;c qualitatively
well over the parameter regime considered. When C ¼ 0,
Eqs. (10) and (11) recover the results for binary
droplets [23].
Droplet phase separation.—Outside the Borromean

regime, both the ternary and binary droplets can survive
and will directly compete with each other. Here we will
demonstrate an interesting phenomenon of droplet phase
separation.
We consider the region II(A) with a largeNð> Nb;cÞ, i.e.,

above the BD region in Fig. 3(b). In this case, as shown in
Fig. 1(b), the droplet solution can appear in a reasonably
broad range of C and its energy minimum occurs at
Cmin ≠ 0. Among these C values, C ¼ 0 and C ¼ Cmin

represent two typical solutions corresponding to, respec-
tively, the binary(1&2) and ternary(1&2&3) droplets. We
find that for certain intermediateC, two types of droplet can
coexist in the form of phase separation. As shown in Fig. 4,
it is manifested by two different plateaus in the density
profile that well fit the equilibrium densities of ternary and
binary droplets. Specifically, droplet (1&2&3) occupies the
center with C ∼ Cmin and a higher density, while droplet
(1&2) stays at edge with C ¼ 0 and a lower density. Such
a distribution is believed to lower the surface energy
the most.
Here we estimate the ðN;CÞ parameter regime to support

the droplet phase separation. For given N and C, we have
N3 ¼ NC=ðCþ 2Þ and N1 ¼ N2 ¼ N=ðCþ 2Þ. Since the
full number of component 3, together with part of (1&2)
components, occupy at the center to form droplet (1&2&3)
with number ratio Cmin, the total number of ternary droplet
is Nt ¼ N3ðCmin þ 2Þ=Cmin. The remaining components 1
and 2 are left to form the binary droplet with number
Nb ¼ 2N1 − 2N3=Cmin. The appearance of two types of
droplets thus requires Nt > Nt;c and Nb > Nb;c, setting the
constraint for allowed N − C values. For any given
Nð> Nb;cÞ, the allowed C is within a certain window
ðCL; CHÞ, as shown by yellow region in Fig. 2(b). For very
large N, we have CL ∼ 0 and CH ∼ Cmin, and thus the
droplet phase separation can occur for any C ∈ ð0; CminÞ.
Summary and discussion.—In summary, we have shown

that droplet formation in three-component bosons can
exhibit much richer physics than that in binary systems,
including the enhanced density fluctuations toward mean-
field collapse, the occurrence of the Borromean droplet, as
well as the competition and phase separation between
different types of droplets. Though we have focused on

(0)
b,2

(0)
b,1

(0)
t,3

(0)
t,2

(0)
t,1

3

21

nn

n

nn

n

nn

=

=

=

FIG. 4. Density profile displaying the phase separation between
ternary (1&2&3) and binary (1&2) droplets. Here g0=g¼−

ffiffiffi
2

p
=2,

g12=g ¼ −1.5, N ¼ 105, C ¼ 0.2, corresponding to the triangular
point in Fig. 2(b). Horizontal lines show function fits to the
equilibrium densities of ternary [Eq. (10)] and binary (from
Ref. [23]) droplets. The length and density units are, respectively,
a and 1=a3 ½a ¼ mg=ð4πÞ�.

PHYSICAL REVIEW LETTERS 127, 043002 (2021)

043002-4



the equal mass case with certain coupling symmetries (5),
the underlying physics revealed here is robust and can be
extended to the more general case of mass ratios and
coupling strengths.
For the experimental detection of our results, especially

regions I and II(A) in Fig. 1, one would need the three-
component bosons to hold (i) all repulsive intraspecies
couplings and (ii) at least two interspecies couplings to be
attractive. A good starting point is to first find j1i and j2i
that may support a binary droplet, such as two jF ¼ 1i
hyperfine states jmF ¼ 0i and jmF ¼ −1i of the 39K atom
[51,52] used to observe quantum droplets near B0 ∼ 57G
[31–33]. Then a third component j3i is required to own a
repulsive coupling itself and interact attractively with j1i or
j2i near B0. Key observations would include the emergence
of a ternary droplet without any binary ones, and the
spontaneous phase separation when they coexist. As more
and more Feshbach resonances are explored between
heteronuclear bosons, such as 41K-87Rb [53], 39K-87Rb
[54], 23Na-87Rb [55], 39K-133Cs [56], etc., it would be
promising in the future to find the proper three-component
mixtures and detect the droplet physics therein.
Finally, we discuss the possibility of droplet formation

with high-order Borromean structure, i.e., following the
Brunnian ring [57–59]. We remark that it is possible to
form the nth order Brunnian droplet, where only the n-
component bosons together can form a self-bound state
while any mð< nÞ. component cannot. The underlying
mechanism resembles that of the Borromean droplet
revealed in this work; i.e., an extra component brings an
additional attractive force to the system via density fluc-
tuations. Consider a simple case in which gii ¼ g
(i ¼ 2;…n) and all zero interspecies couplings except
g1i ¼ g0, the nth order Brunnian droplet will occur if
gg11=g02 ∈ ðn − 2; n − 1Þ. This shows the power of a
collective many-body effect in engineering bound states
with a diversely fascinating structure.
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