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Gravitational waves from a source moving relative to us can suffer from special-relativistic effects such
as aberration. The required velocities for these to be significant are on the order of 1000 km s−1. This value
corresponds to the velocity dispersion that one finds in clusters of galaxies. Hence, we expect a large
number of gravitational-wave sources to have such effects imprinted in their signals. In particular, the signal
from a moving source will have its higher modes excited, i.e., (3,3) and beyond. We derive expressions
describing this effect and study its measurability for the specific case of a circular, nonspinning extreme-
mass-ratio inspiral. We find that the excitation of higher modes by a peculiar velocity of 1000 km s−1 is
detectable for such inspirals with signal-to-noise ratios of ≳20. Using a Fisher matrix analysis, we show
that the velocity of the source can be measured to a precision of just a few percent for a signal-to-noise ratio
of 100. If the motion of the source is ignored, parameter estimates could be biased, e.g., the estimated
masses of the components through a Doppler shift. Conversely, by including this effect in waveform
models, we could measure the velocity dispersion of clusters of galaxies at distances inaccessible to light.
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Introduction.—In two recent papers [1,2] by some of the
present authors, we investigated several relativistic effects
due to a moving source of gravitational waves (GWs).
These effects share similarities with the beaming and
aberration of light, but differ significantly in fundamental
properties and distort the interpretation of the signal. We
also addressed in Ref. [1] the effect of source motion on the
wave polarization, and showed that this will lead to a
rotation that can affect the amplitude of the detector
response.
The effect of a time-dependent motion on the modes of

GWs has been studied in the context of gravitational recoil
by different authors. In Ref. [3], the authors studied the
effect that the kick imprints on numerical relativistic
waveforms and presented a scheme to extract this infor-
mation from the waveforms. Further, Ref. [4] showed that
gravitational kicks could be detected with high accuracy by
considering the anisotropic emission of GWs encoded by
higher modes. The effects of a constant source motion on
the modes of gravitational waves has also been studied in
previous works. In particular, Ref. [5] addressed the effect

of motion (velocity) on the modes, imposing the restriction
that the velocity is nonrelativistic and parallel to the line of
sight, and focused on modes with l ¼ 2. Recently, Ref. [6]
also looked into the role that motion can have on numerical
relativity waveforms as a numerical effect and how to
correct this.
In contrast to the case of kicks that induce a time-

dependent motion, so far the effect of the modes on the
detection of GWs for a constant velocity has not being
considered in LIGO and Virgo detections [7,8]. In fact,
because of Schutz’s seminal work from 1986 [9] it is
widely believed that a constant motion of the source only
induces a constant redshift which is degenerate with the
total mass of the source. However, in Schutz’s work only
the dominant quadrupole mode is considered and sub-
sequent works (including a recent paper by some of the
present authors [10]) have shown that this picture changes
when considering additional modes.
For the effect of the motion to alter the observation of the

GW, it is crucial that the source is moving relative to us at a
relatively large speed, of at least a few hundred kilometers
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per second. It is important to note that what matters is the
relative velocity of the center of mass (c.m.) of the source
relative to us and not how fast the binary components are
moving relative to the c.m. or us. Moreover, we are talking
about the peculiar velocities of the galaxies host to the GW
sources, and not the cosmological expansion, which is
already taken into account in current detections. This effect
will be present in all sources of GWs, but it will be most
relevant for sources of the Laser Interferometer Space
Antenna (LISA) such as extreme-mass-ratio inspirals
(EMRIs), because of the long signal duration and high
eccentricity [11].
Peculiar velocity of galaxies.—Measurements of the

bulk average motion we experience with respect to matter
outside our galaxy have shown that this motion grows as a
function of distance to us, going from about 300 km s−1 at
300 Mpc [12] to some 1700 km s−1 at 6000 Mpc [13]. This
is the radius within which most of the LIGO and Virgo
binaries will be located. This means about 40% of
the measured binaries will have bulk velocities above
1000 km s−1 relative to us.
In addition to the bulk dipole, about 20% of galaxies are

in rich galaxy clusters [14], orbiting around the c.m. of the
cluster with velocity dispersions of 1000 km s−1 [15]. In
Fig. 1, we show the velocity dispersion σ of several galaxy
clusters (a point is a large collection of galaxies, and each
galaxy harbors some 1011 stars) as a function of redshift z
we have made from the data from Refs. [16,17]. Rich
galaxy clusters contain a higher number of higher mass,
elliptical galaxies. This means that the percentage of GW
sources will be even higher; because the host galaxies are
larger, they contain more stars and compact objects.

Overall, given that the two motions we have described
should be uncorrelated, one would expect that about 60%
of all GW sources move with a velocity of 1000 km s−1 or
more relative to us. As we will show in the next section,
such high velocities induce an excitation of additional
modes for all sources of GWs. However, we focus in the
subsequent section on the impact for EMRIs, because they
have relatively high signal-to-noise ratios (SNRs), which
makes it easier to detect the velocity.
Excitation of modes.—As discussed in Ref. [1], a motion

of the c.m. of a GW source will affect the GWs emitted
through aberration. For light it is well known that aberra-
tion will affect the luminosity of the source [18] and that
this can be used to measure a relative velocity between the
observer and the source (see, e.g., Ref. [13]). For GWs we
do not measure the luminosity of the source but the wave’s
þ and × polarization, hþ;×. These two polarizations can
be combined to form the complex amplitude, Hðθ;ϕÞ ≔
hþðθ;ϕÞ − ih×ðθ;ϕÞ, which is conveniently decomposed
into its spherical modes Hl;m using spin-2 spherical
harmonics, −2Yl;mðθ;ϕÞ [19–21],

Hðθ;ϕÞ ¼
X∞
l¼2

Xl
m¼−l

Hl;m−2Yl;mðθ;ϕÞ; ð1Þ

where

Hl;m ≔
Z

Hðθ;ϕÞ−2Ȳl;mðθ;ϕÞdΩ; ð2Þ

θ and ϕ are the polar and azimuthal angles of the source,
and −2Ȳl;mðθ;ϕÞ denotes the complex conjugate of

−2Yl;mðθ;ϕÞ. The modes of the wave are related to the
spherical properties of the source or simply speaking to its
spherical “shape.” If the source is now moving, aberration
affects the shape of the source seen by a distant observer
and thus the observer sees modes that differ from those of a
source at rest. This difference in the modes can then
be used to detect a motion of the source relative to the
observer.
Here we derive briefly how the modes of a GW source

are affected through aberration up to linear order in the
velocity of the source relative to the observer, v ¼
ðvx; vy; vzÞ. A more extensive analysis and derivation of
the effect of the velocity on the modes of GWs has been
published by some of the present authors in Ref. [10]. We
use a coordinate system for which the z coordinate lies
along the Newtonian angular momentum of the source and
denote the polar angle measured relative to the z coordinate
by θ and the azimuthal angle measured from the x
coordinate by ϕ. Further, we will mark the quantities
measured in the rest frame of the distant observer that
sees the source moving by a prime.

FIG. 1. Velocity dispersion of galaxy clusters as a function of
the redshift z (bottom x axis) and the distance d (upper x axis)
from the data of Ref. [16] (blue squares) and Ref. [17] (red
circles). We add the error bars for both the velocity dispersion and
the distance, although the latter does not show up because it is
smaller in size than the symbols.
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Because of aberration a distant observer sees a ray
pointing in the direction m in the source frame to point
in his own frame in the direction [2]

m0 ¼ mþ hm; vim − v; ð3Þ

where h·; ·i denotes the three-dimensional Euclidean scalar
product and we only have considered contributions up to
linear order in the velocity. When expressed in spherical
coordinates that means that a ray pointing in the ðθ;ϕÞ
direction in the source frame points in the ðθ0;ϕ0Þ direction
in the observer frame, where

cosðθ0Þ ¼ ð1þ hm; viÞ cosðθÞ − vz; ð4Þ

tanðϕ0Þ ¼ tanðϕÞ þ 1

sinðθÞ cosðϕÞ ½tanðϕÞvx − vy�: ð5Þ

The complex amplitude is a scalar function of the
spherical coordinates. Therefore, aberration causes a mov-
ing observer to see the same complex amplitude but rela-
tive to the “new spherical coordinates”ðθ0;ϕ0Þ. Therefore,
we get

H0ðθ0;ϕ0Þ ⇔ Hðθ;ϕÞ; ð6Þ

where by the equivalence symbol we mean that H0 takes
relative to the coordinates ðθ0;ϕ0Þ the same values as H
takes relative to the coordinates ðθ;ϕÞ. Expanding
H0ðθ0;ϕ0Þ to linear order in the velocity of the source,
we get

H0ðθ0;ϕ0Þ ¼ Hðθ;ϕÞ

þ 1

sinðθÞ f½∂θHðθ;ϕÞ�½vz − hm; vi cosðθÞ�

þ ½∂ϕHðθ;ϕÞ�½vx sinðϕÞ − vy cosðϕÞ�g; ð7Þ

and because the right-hand side of this equation is only a
function of θ and ϕ, we can treat henceforth H0 as a
function of these two.
Using Eq. (1) and the differential properties of the spin-2

spherical harmonics [20], we find

H0ðθ;ϕÞ¼
X∞
l¼2

Xl
m¼−l

½1þfl;mðθ;ϕÞ�Hl;m−2Yl;mðθ;ϕÞ; ð8Þ

where Hl;m are the modes in the rest frame of the source
and we have defined

fl;mðθ;ϕÞ ≔ 1

sinðθÞ
�
im½vz − hm; vi cosðθÞ�

þ 1

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmþ 1Þ

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p
�

× ½vx sinðϕÞ − vy cosðϕÞ�
�
: ð9Þ

If we now decompose H0ðθ;ϕÞ in the same way as in
Eq. (2), we find for the modes of the moving source

H0l;m ¼ Hl;m þ ð−1Þmi
� X∞
l0¼maxf2;jmjg

C0ðl0;l; mÞHl0;m

þ
X∞

lþ¼maxf2;jmþ1jg
Cþðlþ;l; mÞHlþ;mþ1

þ
X∞

l−¼maxf2;jm−1jg
C−ðl−;l; mÞHl−;m−1

�
; ð10Þ

where C0, Cþ, and C− are coefficients proportional to the
magnitude of the velocity. This equation tells us that
the amplitudes of the different modes are changed due
to the motion of the source. The polarizations of the source
are the real and minus imaginary part of a combination of
these modes and hence altered by their change. Therefore,
the amplitude of the two polarizations can either increase or
diminish, depending on the particular combination of the
modes, the velocity and the direction from which the source
is observed. Moreover, because the different modes enter
with a different contribution to the phase of the wave [22], it
also will lead to a shift of the total phase of the wave. Since
the amplitude of the modes is time dependent both effects
on the polarizations are time dependent, too, even for a
constant velocity [10].
Measurability of the effect.—In the previous section, we

show that a constant motion of the source leads to an
excitation of the modes so that the GW signal from such a
source h0 differs from the signal of a source at rest h. This
difference in the two signals can in principle be distin-
guished if it is big enough. To understand the measurability
of this effect, we have performed an approximate data-
analysis study in the context of LISA.
We first introduce some standard definitions in GW

signal analysis. We treat the waveforms as vectors in a
Hilbert space [23], which allows us to define the noise-
weighted inner product,

hh0jhi ≔ 2

Z
∞

0

df
h̃0ðfÞh̃ðfÞ� þ h̃0ðfÞ�h̃ðfÞ

SnðfÞ
; ð11Þ

where h̃ðfÞ is the Fourier transform of the time domain
waveform hðtÞ. In this expression, SnðfÞ is the one-sided
noise power spectral density of LISA [24–26].
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In the long-wavelength approximation, LISA data can
be postprocessed to give two noise-orthogonal channels
dI;II ¼ hI;II þ nI;II, where hI;II are the projections of h onto
each channel, and nI;II are the noise realizations in each
channel. For this simple analysis, we will find it convenient
to consider only the GW polarizations hþ;× at the Solar
System barycenter instead of hI;II (these are related through
a time-evolving and Doppler-shifted linear combination
that encodes the detector motion). If we adopt the
assumption that LISA noise is stationary, Gaussian, and
characterized by SnðfÞ, the optimal SNR when filtering the
data against h is given by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhþjhþi þ hh×jh×i

p
: ð12Þ

Given two different waveforms h0 (the observed one) and
h (the putative one), the usual way to quantify their
difference is to evaluate their overlap, or match:

M ≔
hh0jhiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh0jh0ihhjhip ; ð13Þ

so that M ¼ 1 when there is a perfect match between the
putative and the observed waveform.
While the match shows the similarity between two

waveforms, whether we can distinguish these two wave-
forms depends additionally on how strong the signal is.
One way of estimating this is to require that the shift in
recovered parameters when using a waveform h to measure
a signal h0 exceeds the expected statistical error due to
detector noise (when using h0 to measure h0). Through
analyses such as in Ref. [27], we can derive a rough rule-of-
thumb criterion for the two waveforms to be distinguish-
able: ρ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=½2ð1 −MÞ�p

. Here, D represents the number
of parameters to be measured in the analysis, which for a
typical LISA source can be set to D ¼ 10.
If the two waveforms can be distinguished, another

question is how precisely the parameters of the source λ
can be extracted from the signal. This question can be
addressed using a Fisher matrix analysis [28], which
provides a linearized estimate for the measurement errors
that asymptotes to the true errors in the high-SNR limit.
The Fisher matrix can be calculated as

Fij ≔
�∂hðλÞ

∂λi ;
∂hðλÞ
∂λj

�
: ð14Þ

The inverse of the Fisher matrix, C ¼ F−1, approximates
the sample covariance matrix of the Bayesian posterior
distribution for the parameters given the observed signal.
A more detailed study of the detection of a c.m. velocity

and its effect on parameter estimation would take into
account parameter correlations in realistic waveforms (see,
e.g., Ref. [29]) and involve analyses such as in Ref. [27] or
full posterior sampling. However, in this work we only

intend to show that the velocity can, in principle, be
detected and measured. Thus we stick to simple analytic
waveforms and the analysis introduced above.
As an example, we examine an EMRI of two non-

spinning black holes (BHs) on a circular orbit in the LISA
band for simplicity. We note, however, that EMRIs form at
very high eccentricities [11], and any residual eccentricity
very likely will enhance the effect we describe in this work.
A circular orbit represents the most conservative scenario,
since higher modes are more prominent for eccentric
orbits [30].
We construct the putative EMRI waveform hðtÞ follow-

ing the post-Newtonian prescription of Ref. [22]. This
allows us to easily generate waveforms containing the most
important modes up to ðl; jmjÞ ¼ ð5; 5Þ. We analyze the
representative case of a stellar mass BH (m2 ¼ 10 M⊙)
inspiraling into a supermassive BH (m1 ¼ 106 M⊙), where
the signal is observed for the final 2 years before plunge
(see Ref. [31] for a similar case). For the observed wave-
form h0, we use the same conditions but distort the modes
according to Eq. (10), where we assume a c.m. velocity of
1000 km=s pointing along the Newtonian angular momen-
tum of the source. Note also that we set the masses of the
BHs to be the same in the observer frame, to correct for the
Doppler effect.
In Fig. 2 we show the mismatch, 1 −M, between the two

waveforms and the SNR that would be required to detect
the respective mismatch (using the above rule-of-thumb
criterion) for different viewing angles of the source. The
highest values of the mismatch of several times 10−3 occur
for viewing angles of 80°–120°. Such mismatches could be
resolved for a relatively low SNR of 20–30. For higher

FIG. 2. Mismatch 1 −M between the putative waveform of an
EMRI at rest and the observed waveform of an EMRI moving
with a typical c.m. velocity of 1000 km s−1 (dotted blue line, left
y axis) and the SNR ρ required to detect this mismatch (red
continuous line, right y axis). Both are shown for different
viewing angles of the source θ, where θ ¼ 0° corresponds to the
source seen face on.
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SNRs of a few 100, we would be able to resolve smaller
mismatches down to 10−5, extending the range of viewing
angles between 70° and 130°. These numbers all fall within
the plausible range of EMRI SNRs (ρ≲ 103) for a variety
of astrophysical models [31].
We estimate how precisely the parameters of the sources

can be extracted using a Fisher matrix analysis for a
detection with a SNR of 100. In Fig. 3, we plot the
confidence ellipses at the 1σ level for the masses of the
components and the velocity of the source. The velocity of
the source can be detected with a precision of about
40 km s−1, corresponding to a few percent of the c.m.
velocity of the source. In Fig. 1, where the velocities were
measured using light, we see that the errors are of the order
10%. For the velocity dispersion it is necessary to average
over several sources and hence it is not surprising that the
errors are bigger than for a single source, as we are
considering here. However, this simple comparison indi-
cates that the accuracy of the velocities measured with GWs
is at least comparable to measurements with light.
From Fig. 3 we, further, see that the two masses can be

measured with an accuracy of around 10−6, independent of
whether the source is at rest or moving. The c.m. velocity is
weakly correlated with the mass parameters, at least in the
case of this simple circular model. Nevertheless, it should
be noted that the accuracy refers to the masses as seen in the
observer frame. For the moving source the masses in the
source frame differ by a Doppler shift, which for a velocity
of 1000 km s−1 corresponds to a difference of ∼10−4.
Therefore, an observer unaware of the Doppler shift would

be estimating the masses with an error of around 10−4, and
only when knowing the magnitude of the velocity can an
accuracy of the order 10−6 be reached.
In the future, electromagnetic (EM) counterparts to the

moving EMRIs could serve to further calibrate and to study
potential systematic errors of the technique presented in
this work. Such EM counterparts could be detected as
precursors in the x-ray band [32] for EMRIs formed in the
disks of active galactic nuclei [33–35]. Further, EM
counterparts could be studied by comparing the velocity
dispersion of a galaxy cluster measured with GWs to
measurements with light [16,17]. However, the viability
of both methods might be restricted by our ability to resolve
the location of EMRIs in order to locate their host systems
with enough accuracy [36].
Conclusions.—In this work, we have shown that a large

number of host galaxies will have dispersion velocities of
∼1000 km s−1. We have also derived general expressions
for the excitation of higher modes in a moving source,
which depend on the modes of the source in its own rest
frame and on the c.m. velocity of the source relative to the
observer. This effect applies to all sources of gravitational
waves, but in this work we focus, as an example, on its
measurability for an important class of LISA source: an
EMRI of a stellar-mass BH falling into a supermassive one
(assuming that it is circular). We find that a peculiar
velocity of 1000 km s−1 could be detected for EMRIs with
a SNR of more than 20, and in the case of a high but
plausible SNR of around 100 the magnitude of the velocity
could be measured with an accuracy of just a few percent.
Our findings are also conservative, since we expect EMRIs
to have residual eccentricity when they enter the LISA
band, which will increase the presence of higher modes.
A detailed derivation of the excitation of the modes by a

c.m. velocity has been published by some of the present
authors in Ref. [10]. The investigation of data analysis
implications is being analyzed in more detail, and will be
presented soon elsewhere. We conclude by remarking that
since the effect may be significant for EMRIs, its inclusion
in waveform models can be used to measure peculiar
motions of the host galaxies to distances which are
inaccessible to light, and hence to obtain a mapping of
galaxy cluster dispersions to redshifts as high as we can
detect (circular) EMRIs with a SNR≳ 20. For eccentric
EMRIs, the distances should be significantly larger.
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