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For the typical quantum many-body systems that obey the eigenstate thermalization hypothesis (ETH),
we argue that the entanglement entropy of (almost) all energy eigenstates is described by a single crossover
function. The ETH implies that the crossover functions can be deduced from subsystem entropies of
thermal ensembles and have universal properties. These functions capture the full crossover from the
ground-state entanglement regime at low energies and small subsystem size (area or log-area law) to the
extensive volume-law regime at high energies or large subsystem size. For critical one-dimensional
systems, a universal scaling function follows from conformal field theory and can be adapted for nonlinear
dispersions. We use it to also deduce the crossover scaling function for Fermi liquids in d > 1 dimensions.
The analytical results are complemented by numerics for large noninteracting systems of fermions in d ≤ 3

dimensions and have also been confirmed for bosonic systems and nonintegrable spin chains.
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Introduction.—A fundamental concept in modern phys-
ics and information theory is quantum entanglement.
Specifically, the entanglement entropy quantifies quantum
correlations and the utility of a given state for quantum
information processing [1,2]. It is also used to guide tensor
network state simulations and to bound their computation
costs [3–5]. Henceforth, consider the entanglement entropy
S for the bipartition of a d-dimensional quantum many-
body system into a compact subsystemA of volume ld and
the rest B, which is much larger or infinite. Ground states
have been studied intensely [6–8] and one generally finds
an area law, where S is proportional to the surface area of
A, or an area law with a logarithmic correction. In contrast,
for random states and highly excited states, one generally
finds S to be proportional to the volume ofA. The transition
from the ground-state scaling to the extensive scaling and,
more generally, the distribution of S in excited states, have
been largely unexplored.
The long-range physics of typical quantum many-body

systems is captured by a field theory with local interactions.
Then the ground-state entanglement entropy in gapped
systems obeys an area law Sgs ∝ ld−1 [5,9–16]. Intuitively,
only the vicinity of the boundary between A and B
contributes to Sgs due to the finite correlation length
induced by the energy gap. In critical systems, the
correlation length diverges and the scaling of Sgs depends
on the dimension d and particle statistics. Critical 1D
systems are usually captured by conformal field theory
(CFT), giving Sgs ∝ lnl [9,11,17–21]. For critical fer-
mionic systems, Sgs generally obeys a log-area law [22–25]

Sgs ∝ ld−1 lnl: ð1Þ

For critical bosonic systems in d > 1 dimensions, Sgs still
obeys the area law [9,17,24,26,27].
Our previous understanding of excited states is rather

limited. Area, log-area laws and subleading corrections
were found for states with few-particle excitations (vanish-
ing excitation-energy density) [28–34] and for special rare
excited states which are often ground states of other
Hamiltonians [28,34–36]. For broad classes of highly
excited states, the entanglement volume law has been
found in Refs. [35,37–39]. Extensive scaling of the average
eigenstate entanglement was shown in Refs. [40–44].
In this Letter, we address the long-standing question

about the scaling of S in excited states and its transition
from the ground-state scaling to an extensive scaling S ∝
ld at higher energies. We argue and demonstrate that,
generally, the eigenstate thermalization hypothesis (ETH)
[45–54] implies the existence of crossover functions that
capture the entanglement entropies of (almost) all eigen-
states. Moreover, for system parameters and energies
corresponding to the quantum critical regime of a system,
the crossover function has universal scaling properties. For
critical 1D systems, the result follows from CFT. We also
derive the crossover scaling function for Fermi liquids. In
addition, we discuss the scaling in gapped systems and the
eigenstate entanglement distribution. The general argu-
ments and derivations are confirmed numerically for
systems in d ¼ 1, 2, 3 dimensions.
ETH and excited-state entanglement.—According to the

strong ETH, local expectation values of all energy eigen-
states approach those of corresponding microcanonical
ensembles with the same energy, where deviations decrease
with increasing system size. Weak ETH allows for an
exponentially small number of untypical energy eigenstates
[48,50,55].
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While strong ETH is difficult to establish in a general way,
weak ETH [48,56,57] can be understood rather easily and, in
contrast to strong ETH, also applies to integrable systems:
Consider an observable Ôwith finite spatial support and the
microcanonical ensemble D−1P

n jEnihEnj for a small
energy window E − ΔE ≤ En ≤ E containing D energy
eigenstates jEni. The weak ETH bounds the variance

ΔO2
ETH ≔ D−1

X
n

ðhEnjÔjEni − hÔimcÞ2 ≤ ΔO2
mc ð2Þ

for deviations between eigenstate and microcanonical
expectation values. The inequality follows from
hEnjÔjEni2 ≤ hEnjÔ2jEni. For a translation-invariant sys-
tem, jEni can be chosen as momentum eigenstates and we
can replace Ô by the sum Ô0 ≔ ð1=N ÞPN

i¼1 Ôi over all
lattice translates Ôi of Ôwithout changingmatrix elements in
Eq. (2). This yields

ΔO2
ETH ≤ ΔO02

mc ¼
1

N 2

X
i;j

ðhÔiÔji − hÔiihÔjiÞmc: ð3Þ

Thus, if connected correlation functions decay exponentially
or according to a sufficiently fast power law, ΔOETH indeed
vanishes in the thermodynamic limit, limN→∞ΔOETH ¼ 0.
Because of the equivalence of thermodynamic ensembles for
large systems [58–61], we can also use other canonical
ensembles. We will employ the grand-canonical ensemble
(GCE) ϱ̂gc with temperature and chemical potential chosen to
match the energy and particle number of the energy eigen-
states, i.e.,

ϱ̂gc¼e−βðĤ−μN̂Þ=Z with hĤigc¼E; hN̂igc¼N: ð4Þ

The coincidence of eigenstate expectation values with
thermal expectation values for all observables Ô supported
on A, implies the coincidence of the corresponding sub-
system density matrices, i.e.,

hEnjÔjEni ≈ hÔigc ⇒ ρ̂n ≔ TrBjEnihEnj ≈ TrBϱ̂gc

for typical eigenstates jEni. Hence, entanglement entropies
SnðlÞ ¼ −Trρ̂n ln ρ̂n of typical eigenstates are very close to
subsystem entropies of the GCE and become extensive for
large subsystems,

SnðlÞ ≈
typical

Sgcðl; βÞ!l≫ξ
ldsthðβÞ; ð5Þ

where sthðβÞ denotes the thermodynamic entropy density,
and ξ is the thermal correlation length. Equation (5) has
important implications: (a) As long as (weak) ETH applies,
the entanglement entropies of (almost) all eigenstates are
captured by a single crossover function, determined by
Sgc(l; βðEnÞ). (b) This function follows the ground-state

entanglement scaling for small l and crosses over to an
extensive scaling at large l. (c) If the system parameters
and energy (temperature) lie in a quantum critical regime of
the considered model, general principles dictate that the
entanglement entropies should follow a universal scaling
function [62–64]. Point (b) is due to a resolution limitation
effect: With observations on a subsystemA of linear size l,
one cannot resolve variations of momentum-space Green’s
functions below a scale ∼1=l. Hence, one can coarse-grain
accordingly and, for l below a crossover length lc, the
coarse-grained Green’s functions of excited states approach
that of the ground state. One recovers the extensive scaling
predicted by thermodynamics for l≳ lc, and lc increases
with decreasing energy (β−1). More detail is provided in the
Supplemental Material [65].
Crossover in critical 1D systems.—Let us now inves-

tigate crossover functions for specific classes of systems.
The long-range physics of critical 1D systems with linear
dispersion at low energies, interacting or noninteracting, is
described by 1þ 1D CFT. The GCE subsystem entropy
can be computed using the replica trick and analytic
continuation [11,66]. One obtains

SCFTgc ðl; βÞ ¼ c
3
ln

�
βv
πa

sinh

�
πl
βv

��
þ c0 ð6Þ

with the central charge c, group velocity v, ultraviolet
cutoff 1=a, and a nonuniversal constant c0. For small
subsystem size l or temperature β−1, one recovers the
log-area law ðc=3Þ lnðl=aÞ [Eq. (1)] as motivated above
with the resolution argument. The crossover to extensive
scaling S ∼ ðc=3Þl=lc occurs at lc ¼ βv=π and the uni-
versal scaling function is simply the leading term in

FIG. 1. Entanglement entropies of randomly sampled eigen-
states for a fermionic tight-binding chain with half filling (μ ¼ 0,
v ¼ 2), system size L ≈ 4 × 106, excitation energy densities
e ≔ ðE − EgsÞ=jEgsj, and window size ΔE ¼ 1. The main panel
confirms the data collapse to the crossover scaling function (7).
The inset asserts the validity of the ETH by comparison to GCE
subsystem entropies (lines).
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SCFTgc ðl; βÞ ¼ c
3
lnðsinhl=lcÞ þOðl0Þ: ð7Þ

It applies whenever CFT does, including critical fermionic,
bosonic, and spin systems.
To confirm this numerically, we sample energy eigenstates

jEni from small windows of widthΔE around energiesE for
fermionic tight-binding chains Ĥ¼−

P
iðĉ†i ĉiþ1þH:c:Þ¼P

k εkn̂k at half filling [65]. These obey weak ETH and are
captured by a CFT with c ¼ 1. Figure 1 shows the results.
Thevariances of the sampledSnðlÞ aremuch smaller than the
symbol sizes. The inset asserts perfect agreement with the
corresponding GCE subsystem entropies. The main plot
shows the data collapse to the universal scaling function (7)
after subtraction of C1DðβÞ ≔ ðc=3Þ lnðβv=πaÞ and proper
rescaling of l with β ¼ βðEÞ.
Critical fermions in d > 1.—For higher-dimensional

critical systems, it is more complex to extract crossover
functions. Let us first discuss translation-invariant systems
of noninteracting fermions with a (d − 1)-dimensional
Fermi surface and consider interactions later on.
Employing the Widom conjecture [67], Gioev and Klich
found the coefficient in the log-area law (1) for the ground-
state entanglement as an integral over the Fermi surface ∂Γ
and the boundary ∂A of the subsystem [23,68]. To leading
order,

SgsðlÞ ¼
lnl
12

Z
∂A

Z
∂Γ

dAxdAk

ð2πÞd−1 jnx · nkj ð8Þ

with the normal vectors nx and nk on ∂A and on ∂Γ as
indicated in Fig. 2. Equation (8) can be interpreted as an
integral over entanglement contributions of lines
perpendicular to the Fermi surface [69,70].
For the case of finite temperatures (energies), we can use

the latter intuition and will involve the chord length as
indicated in Fig. 2(b) to correctly capture all temperature
scales: First consider the trivial example of uncoupled critical
1D chains oriented in a fixed direction nk with density ρ⊥ in
the perpendicular direction. To get the entropy Sgcðl; βÞ of a
subsystemA, we simply need to add the contributions from
all chains. For convexA and the continuum limit, this gives
SA ¼ ðρ⊥=2Þ

R
∂A dAxjnx · nkjS1Dðlx;kÞ, where ρ⊥jnx · nkj

is the density of chains piercing ∂A at point x and lx;k is the
chord length acrossA in directionnk.We nowwant to reduce
the case of true d-dimensional systems with couplings in all
directions to that of uncoupled chains as follows. Consider a
patch P of size Δkd−1 around k ∈ ∂Γ on the Fermi surface
and let us group wave vectors around that point into lines in
direction nk as indicated in Fig. 2(a). We know that, at
sufficiently low temperatures, modes far away from the
Fermi surface are irrelevant for the long-range physics and
can be disregarded. The dispersion is linear in direction nk,
corresponding to chiral fermions, but the dispersion is flat in
the perpendicular directions. Let us parametrize these

directions by kk and k⊥. Because of the flat dispersion with
respect to k⊥, any unitary transformation (basis change)
among the single-particle states corresponding to k⊥ ∈ P
does not generate any coupling of these modes. In particular,
we can use this to transform to single-particle states that are
spatially localized around points with spacingsΔy ¼ 2π=Δk
in the (d − 1)-dimensional perpendicular plane. A sub-
sequent inverse Fourier transform with respect to kk then
yields uncoupled chains in direction nk and density 1=Δy in
the directions perpendicular to nk. This is the situation we
considered initiallywith ρ⊥ ¼ 1=Δyd−1, andwe hence know
how patch P contributes to the subsystem entropy. For
S1Dðlx;kÞ, we can plug in the finite-temperature CFT result
(6), where we substitute l by the chord length lx;k and use
c ¼ 1=2 because of chirality. Finally, we need to integrate
over the entire Fermi surface to take into account the
contributions from all patches, resulting to leading order
in the subsystem entropy

Sgcðl; βÞ ¼
1

12

Z
∂A

Z
∂Γ

dAxdAk

ð2πÞd−1 jnx · nkj

× ln

�
βvk
πa

sinh

�
πlx;k

βvk

��
; ð9Þ

where vk is the Fermi velocity at point k ∈ ∂Γ.
This formula for the subsystem entropy is remarkable:

For zero temperature, we recover the ground-state result
(8). For large subsystems, the logarithm approaches
πlx;k=βvk such that the integral over ∂A gives the sub-
system volume volA and we are left with

1

6
volA

Z
∂Γ

dAk

ð2πÞd−1
π

βvk
¼ π2gðμÞ

3β
volA: ð10Þ

This is the well-known extensive thermodynamic entropy
due to the Sommerfeld expansion [71] with the density of
states gðμÞ at the Fermi energy. Further, if we move the β
factor in the logarithm of Eq. (9) to a subleading area law
term and replace lx;k ≡ l · λx;k, where volA ¼ ld as
before, the leading order term of S=ld−1 is just a function
of l=β. In this way, we obtain the desired scaling function

(a) (b)

FIG. 2. (a) Fermi surfaces ∂Γ for the 2D tight-binding model
(11) with fillings 1

4
, 1
2
, and 3

4
. (b) Real-space bipartition and chord

lengths lx;k for direction nk.
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for the crossover from ground-state to extensive subsystem
entropies.
It is nontrivial to make the arguments leading to Eq. (9)

totally rigorous. The limit l; β → ∞ has been captured
using the theory of semiclassical trace formulas [72–75].
Equation (9) should be treated as a conjecture. Our
numerical tests in Fig. 3 show, however, that it is very
precise for all l and β. The figure shows the data collapse of
sampled eigenstate entanglement to the scaling function for
fermions on a square lattice,

Ĥ − μN̂ ¼ −
X
hi;ji

ðĉ†i ĉj þ H:c.Þ − μ
X
i

ĉ†i ĉi; ð11Þ

with μ ≈ −1.44 (quarter filling at zero temperature).
Deviations at large l=β are due to the finite bandwidth
of the model, i.e., due to a nonlinear dispersion at higher
energies, differing from the assumptions of CFT. The inset
shows that this can be fixed by replacing β in Eq. (9) by βeff.
Specifically, we define an effective temperature by match-
ing the exact thermodynamic entropy density and the large-
l limit (10) of Eq. (9), i.e., sthðβÞ≕ π2gðμÞ=3βeffðβÞ such
that βeffðβÞ → β at low temperatures. For the model (11) in
two dimensions at half filling, vk is zero at some points on
the Fermi surface. Hence, CFT and Eq. (9) are not
applicable, but the described rescaling procedure works
nevertheless. Equation (9) works without problems in three
dimensions. Both cases are discussed in the Supplemental
Material [65].
The crossover scaling function (9) also applies to

interacting metals described by Fermi liquid theory,
because the quasiparticle lifetime diverges when approach-
ing the Fermi energy. The scaling function is universal in
the sense that the only remnant of microscopic details is the

dependence on the Fermi surface shape and vk as pointed
out for other quantities in Ref. [64].
Crossover in gapped systems.—If one adds a mass term

to a critical theory, the resulting gap ∼m represents an
additional energy scale. At zero temperature, the entangle-
ment entropy should then be determined by a function of
ml [26,76–80]. So far, very few works investigated
excited-state entanglement entropies in gapped systems
[38] and, to our knowledge, the crossover from area law to
extensive scaling and its universal properties have not been
addressed.
As argued before, a crossover function should exist and

now depend on subsystem size l, mass m, and β. However,
we expect that it can be expressed in terms of a scaling
function that only depends on the parameters ml and mβ,
characterizing the full crossover behavior. For fermionic
systems, in particular, it follows a log-area law as in
Eq. (1) for ml ≪ minð1; mβÞ and a volume law for
ml ≫ minð1; mβÞ. Moreover, at low temperatures,
mβ ≫ 1, one has the typical behavior of thermally activated
excitations, and the growth of the entropy density sth in
Eq. (5) as a function of temperature changes from exponen-
tial to linear around mβ ∼ 1.
Figure 4 shows the data collapse of GCE subsystem

entropies to the two-parameter scaling function for the
staggered tight-binding chain

Ĥ ¼ −
X
i

ðtĉ†2i−1ĉ2i þ t0ĉ†2iĉ2iþ1 þ H:c:Þ ð12Þ

at half filling. The dispersion relation is εk ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ t02 þ 2tt0 cos k

p
with mass m ¼ jt − t0j and

v ¼ ffiffiffiffiffi
tt0

p
. It takes the relativistic form �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðvpÞ2

p
for small p ¼ k� π. The inset displays scaled entropy
densities sth which show the thermally activated exponen-
tial behavior at low temperaturesmβ ≫ 1 and linear scaling
for higher temperature.

FIG. 4. Subsystem entropies Sgcðl; βÞ in the staggered tight-
binding chain (12) with half filling (μ ¼ 0), massm, and L ≈ 106.
We only use odd l because of odd-even effects.

FIG. 3. Eigenstate entanglement entropies for the critical 2D
model (11) with size 4096 × 4096 and μ ≈ −1.44 collapse onto a
scaling function after subtraction of a subleading area-law term
C2DðβÞ. The latter corresponds to the factor β=πa in the logarithm
of Eq. (9) with β ¼ βðEÞ.
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Entanglement distribution.—Recently, interesting results
were derived for the entanglement entropy averaged over
all energy eigenstates [40–44]. In particular, bounds on the
average entanglement for chaotic local Hamiltonians and
quadratic fermionic systems were given. As long as one
only considers the case of small subsystems, we can get
much more—the entire distribution of eigenstate entangle-
ment. We have shown that the eigenstate entanglement
entropies are given by certain crossover functions. To
obtain the entanglement distribution, we only need to
multiply these with the many-body density of states. For
many purposes, the latter can be approximated by a
Gaussian that describes well the bulk of the spectrum [81].
From this, properties of the average entanglement follow

rather easily. For example, Ref. [40] addresses for non-
interacting translation-invariant fermions how the average
entanglement between a subsystem of fixed size ld con-
verges to the maximum hSi ¼ ld in the thermodynamic
limit. This can also be explained as follows. With the same
arguments as in the derivation for the weak ETH above, we
can bound the deviation of expectation values hEnjÔjEni of
a local observable from the infinite temperature value
hÔi∞ ¼ TrðÔÞ=D, averaged over all energy eigenstates,
by ΔO2

avg≔D−1PD
n¼1ðhEnjÔjEni− hÔi∞Þ2 ≤ΔO2

∞,
where D ¼ dimH. And ΔO∞ decays with OðN −1=2Þ in
the thermodynamic limit. Hence, almost all energy eigen-
states look locally like the infinite temperature ensemble
and their entanglement entropies are maximal.
Discussion.—In conclusion, ETH can be employed to

understand the full crossover of eigenstate entanglement
entropies from the ground-state scaling at small subsystem
sizes and low energies to the extensive scaling at large sizes
and higher energies. With increasing system size, the
entanglement entropies of all (strong ETH) or almost
all (weak ETH) energy eigenstates converge onto a
single crossover function, which can be determined from
corresponding subsystem entropy of corresponding
thermodynamic ensembles—also in integrable systems.
Importantly, for the quantum critical regime, one obtains
universal scaling functions that capture large classes of
microscopic models [62–64]. For critical 1D systems and
fermions in d > 1 dimensions, analytic forms for the
scaling functions were given and numerically confirmed.
We substantiate the scaling properties further for bosonic
systems in Ref. [87] and for interacting integrable and
nonintegrable spin chains in Ref. [88]. These results
generalize immediately to Rényi entanglement entropies
and can, for example, be used to derive upper bounds on
computation costs in tensor network simulations [89,90].
Scaling functions for thermal subsystem entropies are so

far largely unexplored. The connection to eigenstate
entanglement makes them very interesting and it will be
an exciting endeavor to derive crossover functions for
specific lattice models and field theories, similar to efforts
on ground-state entanglement. Furthermore, the accuracy

of the d > 1 scaling function (9) for fermions suggests an
extension of the famous Widom formula for ground-state
entanglement to finite temperatures.
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