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2Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, Roma 00185, Italy

3Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Roma 00185, Italy

(Received 24 December 2019; revised 21 April 2021; accepted 14 June 2021; published 19 July 2021)

We study the ground state of a system of spinless electrons interacting through a screened Coulomb
potential in a lattice ring. By using analytical arguments, we show that, when the effective interaction
compares with the kinetic energy, the system forms a Wigner crystal undergoing a first-order quantum
phase transition. This transition is a condensation in the space of the states and belongs to the class of
quantum phase transitions discussed in [M. Ostilli and C. Presilla, J. Phys. A 54, 055005 (2021).]. The
transition takes place at a critical value rsc of the usual dimensionless parameter rs (radius of the volume
available to each electron divided by effective Bohr radius) for which we are able to provide rigorous lower
and upper bounds. For large screening length these bounds can be expressed in a closed analytical form.
Demanding Monte Carlo simulations allow to estimate rsc ≃ 2.3� 0.2 at lattice filling 3=10 and screening
length 10 lattice constants. This value is well within the rigorous bounds 0.7 ≤ rsc ≤ 4.3. Finally, we show
that if screening is removed after the thermodynamic limit has been taken, rsc tends to zero. In contrast, in a
bare unscreened Coulomb potential, Wigner crystallization always takes place as a smooth crossover, not as
a quantum phase transition.
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The Wigner crystal (WC) [1], namely, the periodic
arrangement of electrons that minimizes the Coulomb
interaction energy in the presence of band motion effects
[2], has been investigated in several long-range repulsive
potential models [3–6]. Two dimensional [7–12] and one-
dimensional [13,14] electron gases at zero temperature
have been extensively studied from a theoretical point of
view. A recent experiment succeeded in imaging an
electronic WC in one-dimensional nanotubes [15].
The occurrence of a WC is often argued by comparing

the typical kinetic and Coulomb energies involved.
Roughly speaking, the kinetic energy can be evaluated
as ℏ2=ð2m�r2Þ, where m� is the effective electron mass and
r the radius of the volume available to each electron,
whereas the Coulomb energy can be taken as e2=r, where e
is the electron charge. These two energies have the same
value when rs ≡ r=aB, aB being the effective Bohr radius,
is equal to the “critical value” rsc ¼ 2. Then one concludes
that for rs > rsc a WC must show up.
The above argument can be, however, misleading.

Consider the case of the unscreened Coulomb potential
in a d-dimensional space with a fixed value of rs. For a gas
of Np electrons, the energy per particle of the bare d-
dimensional Coulomb potential scales as Np

d−1 for d > 1,
and as lnNp for d ¼ 1 [16]. On the other hand, at any
dimension d, the kinetic energy per particle is independent
of Np, so that the potential energy overwhelms the kinetic

one for Np large enough. In other words: in the thermo-
dynamic limit (TD-lim), rsc → 0þ and no quantum phase
transition (QPT) takes place, the system being trivially a
WC for any rs > 0; for finite Np, instead, the transition
from free electron motion to WC obtained by increasing rs
is just a smooth crossover, not a QPT.
Screening is, therefore, an essential ingredient [2]: the

ground-state (GS) energy per particle of the screened
potential scales linearly with Np and can fairly compete
with the kinetic term. It is only in this case that we can hope
to observe a QPT in the TD-lim by varying rs.
We are not aware of any conclusive study on the phase

transition nature of the Wigner crystallization, except for
the work of Brascamp and Lieb on the 1d plasma in a
neutralizing background [17]. Here, we study the ground
state of a system of spinless electrons interacting through a
screened 3d Coulomb potential in a lattice ring. By using
analytical arguments, we demonstrate that, for any finite
screening length, the Wigner crystallization is a QPT taking
place at a finite critical value rsc of the parameter rs. For rsc
we provide rigorous upper and lower bounds, which can be
cast in an analytical form in the limit of large screening
length. The QPT that we find is of first order (according to
Ehrenfest classification) and falls within the class of
condensations in the space of states introduced in [18].
Demanding Monte Carlo (MC) simulations based on an
advanced bias-free code [19] allow to estimate a value of
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rsc, which is well within the rigorous bounds. Finally, we
show that, removing the screening after the TD-lim has
been taken, we have rsc → 0þ, confirming that a nonzero
minimal screening is necessary to have a realistic physical
picture.
We briefly recall the mechanism of first-order QPT of

[18]. To be specific, let us consider a lattice model with N
sites and Np particles described by a Hamiltonian

H ¼ K þ gV; ð1Þ

where K and V are Hermitian noncommuting operators,
and g a free dimensionless parameter, which, without loss
of generality, can be taken to be non-negative. Regardless
of the details of K and V, we represent H in the eigenbasis
of V and it is natural to call V the potential operator, and K
the hopping operator. To exclude trivial behaviors, we
suppose that the eigenvalues of K and V scale linearly with
the number of particles Np. Since in the two opposite limits
g → 0 and g → ∞, the GS of the system tends to the GS of
K and V, respectively, we wonder if, in the TD-lim, this
transition occurs as a QPT taking place at some critical
value gc.
A quite general kind of QPT is the condensation in the

space of states. We decompose the Hilbert space F of the
system as the direct sum of two mutually orthogonal
subspaces, denoted condensed and normal, namely,
F ¼ F cond ⊕ Fnorm. The definition of these subspaces is as
follows. We write F ¼ spanfjnigMn¼1, where fjnig (later on
called configurations) is a complete orthonormal set of
eigenstates of V, i.e., we have Vjni ¼ Vnjni,
n ¼ 1;…;M, where we assume ordered, possibly degener-
ate, potential values V1 ≤ V2 ≤ … ≤ VM. Given an integer
Mcond < M, we then define F cond ¼ spanfjnigMcond

n¼1 and
Fnorm ¼ spanfjnigMn¼Mcondþ1 ¼ F⊥

cond. This definition essen-
tially relies on the choice of the dimensionMcond, which, in
view of the ordering of the potential values, marks the
maximum potential value included in the condensed sub-
space

maxVcond ¼ maxfVn∶jni ∈ F condg ¼ VMcond
: ð2Þ

Consider the GS energies of the system, the condensed, and
normal subspaces:

E ¼ inf
jui∈F

hujHjui=hujui; ð3Þ

Econd ¼ inf
jui∈F cond

hujHjui=hujui; ð4Þ

Enorm ¼ inf
jui∈Fnorm

hujHjui=hujui: ð5Þ

We are interested in the situations whereMcond=M ≪ 1 and,
as a consequence, Mnorm=M ≡ ðM −McondÞ=M ≃ 1. This

justifies the names condensed andnormal assigned to the two
subspaces and suggests the following dichotomy argument:
since F ≃ Fnorm, we have E ≃ Enorm—unless—it is energeti-
cally more convenient to “freeze” into the infinitely smaller
subspace F cond, where we get E ≃ Econd.
The above heuristic argument can be cast in rigorous

terms as follows. The TD-lim is defined as the limit N,
Np → ∞ with Np=N ¼ ϱ constant. Consider the rescaled
energies:

ϵðgÞ ¼ TD- lim EðN;Np; gÞ=Np; ð6Þ

ϵcondðgÞ ¼ TD- lim EcondðN;Np; gÞ=Np; ð7Þ

ϵnormðgÞ ¼ TD- lim EnormðN;Np; gÞ=Np; ð8Þ

which are finite in view of the assumed scaling properties of
K and V (dependence on ϱ is left understood). In [18] we
have proved the following general theorem:

if TD- lim Mcond=M ¼ 0; ð9aÞ

then ϵ ¼ minfϵcond; ϵnormg: ð9bÞ

This theorem establishes the possibility of a QPT between a
normal phase characterized by the energy per particle ϵnorm,
obtained by removing from F the infinitely smaller sub-
space F cond, and a condensed phase characterized by the
energy per particle ϵcond, obtained by restricting the action
of H onto F cond. The situation is particularly simple for
systems characterized by a single parameter as in the case
of Eq. (1). If Eq. (9a) holds and, moreover, the functions
ϵnormðgÞ and ϵcondðgÞ are such that the equation

ϵnormðgÞ ¼ ϵcondðgÞ ð10Þ
admits a unique finite solution g ¼ gc, Eq. (9b) provides

ϵðgÞ ¼
�
ϵnormðgÞ; g < gc;

ϵcondðgÞ; g > gc:
ð11Þ

Equations (10) and (11) imply the existence of a first-
order QPT at the critical point gc. In fact, although
in general ϵcondðgÞ and ϵnormðgÞ are separately analytic in
g ¼ gc, on observing that ϵcondðgÞ and ϵnormðgÞ are different
functions, we conclude that, while ϵðgÞ is continuous at
g ¼ gc, its first derivative undergoes the discontinu-
ity jϵ0condðgcÞ − ϵ0normðgcÞj > 0.
Whereas Eq. (9a) can be checked easily, the existence of

a finite solution to Eq. (10) can be difficult to prove. A
practical approach can be as follows. For N, Np finite with
Np=N ¼ ϱ constant, we evaluate gcrossðN;NpÞ as the value
of the parameter g, if any, solution of the equation

EnormðN;Np; gÞ ¼ EcondðN;Np; gÞ: ð12Þ
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Assuming a smooth limiting behavior, we expect

gc ¼ TD- lim gcrossðN;NpÞ: ð13Þ

Even if this limit cannot be exactly evaluated, as in the case
of numerical simulations, Eq. (13) can be used to provide
strict upper and lower bounds to gc as shown ahead.
To recapitulate, if we find a partition F ¼ F cond ⊕ Fnorm

such that Eq. (9a) and Eq. (10) are satisfied, then a first-
order QPT of the type introduced in [18] occurs at g ¼ gc.
In general, such a partition is not unique. In fact, for
Eq. (10) to admit a solution with condition (9a) satisfied,
F cond can invariantly be chosen provided that it is not too
small and not too large in such a way that neither of the two
restrictions of H, to F cond and to Fnorm, have a QPT. In this
case, ϵcond and ϵnorm are both analytic functions of g at
g ¼ gc, whereas ϵ is not. Note that, for finite sizes, different
partitions of F lead, in general, to different values of both
EcondðgÞ and EnormðgÞ. Only in the TD-lim different
invariant partitions of F lead to the same values of
ϵcondðgÞ for g > gc and ϵnormðgÞ for g < gc, namely, ϵðgÞ,
as indicated by Eq. (11). We will exploit this invariance to
get rigorous bounds to gc.
We apply the above general strategy to a system of Np

electrons interacting in a ring of N sites. As usual, for
simplicity and saving computational efforts, we consider
spinless particles. The electronic Hamiltonian He cast in
the dimensionless form (1) by He=t ¼ H ¼ K þ gV,
t ¼ ℏ2=ð2m�a2Þ being the hopping coefficient with m�
the effective electron mass and a the lattice constant [14], is
given by

K ¼ −
XN
i¼1

ðc†i ciþ1 þ c†iþ1ciÞ; ð14Þ

V ¼
XN
i¼1

XN
j¼iþ1

vi;jc
†
i cic

†
jcj; ð15Þ

where the fermionic annihilation operators obey the peri-
odic condition ciþN ¼ ci. We consider a screened Coulomb
interaction [2]

vi;j ¼
1

di;j
e−adi;j=R; ð16Þ

R being the screening length and di;j ¼ minðj − i;
N þ i − jÞ, j > i, the dimensionless distance between sites
i and j in the ring. Screening takes into account the many-
body effects not explicitly considered in H and allows for
the interaction energy to scale linearly with the number of
particles Np, as physically expected. The value of R
depends on the microscopic details of the system consid-
ered. However, whereas the minimum of V has a loga-
rithmic dependence on R, see later, the associated GS has a

universal structure [2] under conditions on vi;j [3,4,6] that
are fulfilled by Eq. (16) for any R. With the above choice
for the potential, the dimensionless coupling g in Eq. (1)
takes the form of the following Seitz radius [20]

g ¼ 2a=aB; aB ¼ ℏ2=ðm�e2Þ: ð17Þ

Now we determine a partition F ¼ F cond ⊕ Fnorm which
satisfies the conditions (9a) and (10). We recall that,
according to Eq. (2), a partition is defined by specifying
the maximum potential value allowed in F cond.
As we show in [21], in the TD-lim the distribution of the

potential values (15) divided by Np tends to a Dirac delta
centered at V=Np, namely, the mean classical value of the
potential per particle. This implies that, whenever
maxVcond=Np < V=Np, we have Mcond=M → 0 in the
TD-lim, i.e., Eq. (9a) is satisfied.
To comply with Eq. (10), consider that E, Econd, and

Enorm, are monotonously increasing functions of g convex
upward [21] and suppose that the critical point is unique. It
follows that gc is finite if and only if (i) ϵnormð0Þ < ϵcondð0Þ
and (ii) limg→∞ϵcondðgÞ=g < limg→∞ϵnormðgÞ=g.
Condition (i) is equivalent to saying that in the TD-lim

min Knorm=Np < min Kcond=Np. Here and in the follow-
ing, we use a notation as in Eq. (2), for example, min Kcond
is the smallest eigenvalue of the operator K restricted to the
condensed subspace, and so on. It’s easy to prove [21] that,
if Eq. (9a) is satisfied, the TD-lim of min Knorm=min K is
1, therefore, condition (i) is satisfied if in the TD-lim
max Vcond=Np < V=Np, i.e., max Vcond ≤ V − δV, with
δV > 0 being an arbitrary OðNpÞ term.
Condition (ii) is equivalent to saying that in the TD-lim

min Vcond=Np ¼ min V=Np < min Vnorm=Np. Since in
the TD-lim we have min Vnorm=Np ¼ max Vcond=Np, the
condition amounts to require max Vcond=Np > min V=Np,
i.e., max Vcond ≥ min V þ δV, δV > 0 being an arbitrary
OðNpÞ term.
In conclusion, the existence of any one of the partitions

F ¼ F cond ⊕ Fnorm obtained choosing min V þOðNpÞ ≤
max Vcond ≤ V −OðNpÞ allows us to say that, provided
the screening length R is finite, both Eqs. (9a) and (10) are
satisfied. It follows that the Hamiltonian H ¼ K þ gV of
Eqs. (14)–(17) undergoes a Wigner crystallization in the
form of a first-order QPTof the type introduced in [18], i.e.,
as a condensation in the space of states. About the critical
parameter gc, at this level we just know that it is finite. The
following of the Letter is devoted to the construction of
upper and lower bounds of gc and, in order to do so, we
shall exploit the invariance of the TD-lim (13) under
different partitions of F .
For finite N and Np, since Econd and Enorm are monoto-

nously increasing functions of g convex upward, we have

g−cross ≤ gcross ≤ gþcross; ð18Þ
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where gþcross is the intersection point of two curves which
are, respectively, a majorant of Econd and a minorant of
Enorm, whereas g−cross is the intersection point of two curves
which are, respectively, a minorant of Econd and a majorant
of Enorm. Indicating with g�c the TD-lims of g�cross, we then
have g−c ≤ gc ≤ gþc . The more accurate are the approxima-
tions to Econd and Enorm, the tighter are the bounds g�c .
However, we also want to choose these approximations to
Econd and Enorm sufficiently simple to allow for an ana-
lytical evaluation of the TD-lim of g�cross.
Let us examine the following inequalities:

EcondðgÞ ≤ gmin Vcond; ð19Þ

EnormðgÞ ≥ min Knorm þ g min Vnorm; ð20Þ

and

EcondðgÞ ≥ min Kcond þ g min Vcond; ð21Þ

EnormðgÞ ≤ min Knorm þ g max Vnorm: ð22Þ

Equations (20), (21), and (22) are Weyl’s inequalities [26]
for the lowest eigenvalue of H ¼ K þ gV restricted to the
condensed and normal subspaces. Equation (19) follows
from Econd ≤ hujHjui=hujui, ∀ jui ∈ F cond, choosing
jui ¼ jni, where jni is any GS of V, and observing that
hnjKjni ¼ 0. From the first and second pair of inequalities
we obtain, respectively,

gþcross ¼
−min Knorm

min Vnorm −min Vcond
; ð23Þ

g−cross ¼
min Kcond −min Knorm

max Vnorm −min Vcond
: ð24Þ

Consider Eq. (23). We have min Vcond ¼ min V relying
only on the filling ϱ and the screening length R, the other
quantities depend also on the choice of the condensed space.
Wechoose F cond in order tomake gþcross as small as possible.A
way is to make the denominator, therefore min Vnorm,
as large as possible. We assume min Vnorm=Np ¼
max Vcond=Np → V=Np. In the numerator of (23) we use
min Knorm=K0 → 1 [21], where K0 is the GS energy of K,
namely,

K0 ≡min K ¼ −2 sinðπNp=NÞ= sinðπ=NÞ: ð25Þ

We thus obtain

gþc ¼ −K0=Np

V=Np −min V=Np
: ð26Þ

Consider Eq. (24). We have already discussed min Vcond,
as for max Vnorm ¼ max V, it is the potential

corresponding to the configurations in which the Np

electrons are as tighter as possible, i.e., they occupy Np

consecutive lattice sites. Thus the denominator of Eq. (24)
only depends on the filling ϱ and the screening length R.
Now we choose F cond as small as possible, namely,
max Vcond → min Vcond. As before, min Knorm=K0 → 1.
We can also put min Kcond=Np → 0 as the number of
allowed hoppings in F cond is, with this choice of max Vcond,
at most Oð1Þ. Therefore

g−c ¼ −K0=Np

max V=Np −min V=Np
: ð27Þ

Equations (26) and (27) provide rigorous bounds to gc.
From Table I, it follows that, at filling ϱ ¼ 3=10 and
screening length R ¼ 10a, a QPT takes place, in terms of
the parameter rs [20], at a critical value rsc ¼ gc=4ϱ in the
range 0.7 ≤ rsc ≤ 4.5.
In principle, gc could be estimated numerically by

Eqs. (12)–(13), allowing also for a direct evidence of the
invariance of the choice of F cond. In fact, for different values
of max Vcond in the range allowed, we should observe
different gcrossðN;NpÞ converging to the same gc in the TD-
lim. However, due to the growing speed of the Hilbert
space, this program appears hopeless by standard numerical
methods unless one uses ad hoc MC simulations.
We wrote a highly parallelized version, see [21] for

details, of the bias-free MC algorithm derived from an exact
probabilistic representation of the quantum evolution oper-
ator [19,28], and run it in a computer farm with thousands
of nodes. This allowed us to reach the remarkable size
Np ¼ 417, N ¼ 1390 with a computation time of several
days per point, a point being the evaluation of EcondðgÞ or
EnormðgÞ for a single value of g and for a chosen system
size. The resulting values of gcrossðN;NpÞ, at constant
filling ϱ ¼ Np=N ¼ 3=10 and screening length R ¼ 10a,
are shown in Fig. 1 as a function of Np for different choices
of max Vcond. Despite the very slow convergence of
gcrossðN;NpÞ to gc, note that the plot is shown in a log-
log scale, all data sets appear to converge to a common gc
whose value is within the rigorous bounds given before. To
estimate gc, we fit the simple curve Aþ B=Np to the data
obtained for large values of Np, separately for each
max Vcond. The found values of A suggest convergence
to gc ¼ 2.76� 0.24 (i.e., rsc ¼ 2.3� 0.2). The first-order
nature of the QPT is made evident in the inset of Fig. 1,

TABLE I. TD-lim of the energies entering Eqs. (26) and (27)
and resulting bounds g�c obtained at filling ϱ ¼ Np=N ¼ 3=10
and screening length R ¼ 10a [27].

min V=Np V=Np maxV=Np K0=Np gþc g−c

0.3846 0.7056 2.3518 −1.7168 5.4 0.84
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where we report d(EðN;Np; gÞ=Np)=dg versus g for
different values of Np. By increasing Np, we observe a
developing discontinuity around the above estimate of gc.
As a further signal of consistency, the derivatives of the GS
energy tend to intersect toward a common point g close to
gc [29].
Finally, we consider the limit R ≫ a in which screening

becomes negligible. In this limit we are able to express
the characteristic potential values, namely, min V=Np,
max V=Np, and V=Np in a closed analytical form [21].
We stress that these expressions are derived by first taking
the TD-lim and then picking the leading term for R ≫ a.
By plugging these expressions together with K0=Np≃
−2 sinðπϱÞ=ðπϱÞ, obtained from Eq. (25) for R ≫ a, into
Eqs. (26) and (27), we find [20]

sinðπϱÞ=ð2πϱ2Þ
lnðR=aÞ − ϱ lnðϱR=aÞ ≤ rsc ≤

sinðπϱÞ=ð2πϱ2Þ
−ϱ lnðϱÞ : ð28Þ

Equation (28) allows us to estimate the dependence of rsc
on ϱ in the range a=R < ϱ ≤ 1, which, in virtue of the
condition R ≫ a, as a matter of fact coincides with the
whole filling range.
In the limit R=a → ∞, the lower bound of Eq. (28)

vanishes whereas the upper bound remains finite. This is
compatible with, but does not prove that rsc → 0 in the
limit of infinitely large screening length. However,

from Weyl’s inequality min Vðgþmin K=min VÞ ≤
min H ≤ min Vðgþmax K=min VÞ and using the
R ≫ a expressions of K0 and min V, we find

lim
R=a→∞

TD- lim
EðgÞ
Np

¼
�þ∞; g > 0;

−2 sinðπϱÞ
πϱ ; g ¼ 0.

ð29Þ

We conclude that, if the TD-lim is taken first, the Wigner
crystallization is always realized as a first-order QPT of the
type [18] but the critical parameter rsc → 0þ in the limit in
which the potential becomes unscreened, R=a → ∞.
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