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We introduce tensor-network stabilizer codes which come with a natural tensor-network decoder. These
codes can correspond to any geometry, but, as a special case, we generalize holographic codes beyond those
constructed from perfect or block-perfect isometries, and we give an example that corresponds to neither.
Using the tensor-network decoder, we find a threshold of 18.8% for this code under depolarizing noise. We
show that, for holographic codes, the exact tensor-network decoder (with no bond-dimension truncation)
has polynomial complexity in the number of physical qubits, even for locally correlated noise, making this
the first efficient decoder for holographic codes against Pauli noise and, also, a rare example of a decoder
that is both efficient and exact.
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Tensor networks are a powerful tool in several branches
of physics [1], so it is not surprising that they are also useful
in quantum error correction. An early example of this was
the use of matrix-product states to approximate the maxi-
mum likelihood decoder (the optimal decoder) for the
surface code [2]. This algorithm (with modifications) was
applied to biased noise [3,4] and correlated noise [5] on the
surface code. Another approach using tensor networks to
decode the surface code involved representing code states
by projected entangled pair states and then finding the
effective channel due to noise on the logical degrees of
freedom [6,7]. This allowed one to go beyond Pauli noise
and consider less-studied but important error models. A
general method for decoding using tensor networks
involved representing the encoding unitaries by a tensor
network [8,9].
Tensor networks also arose in holographic error cor-

recting codes, which are toy models of the AdS=CFT
correspondence [10–18]. The idea is that the bulk degrees
of freedom of a system in two-dimensional hyper-
bolic space (logical qubits) are encoded in the boundary
degrees of freedom (physical qubits). This is analogous to
AdS=CFT, where a strongly coupled gravity theory in
the bulk is equivalent to a conformal field theory on
the boundary [19]. Holographic error correcting codes
can reproduce much of the entanglement structure
expected in AdS=CFT [10], e.g., the Ryu-Takayanagi
formula [20].
The holographic codes of [10] were constructed from a

strongly constrained isometry called a perfect tensor.
Afterwards, this class of tensors was replaced by the
larger class of block perfect tensors (or equivalently per-
fect tangles) [21,22], leading to the construction of

Calderbank-Shor-Steane (CSS) holographic codes [21].
One example was constructed from the seven-qubit
Steane code [23], which was decoded with an integer
optimization algorithm [24] for Pauli noise (though the
decoder is not efficient).
In this Letter, we introduce tensor-network stabilizer

codes, which allow us to construct larger stabilizer codes
out of smaller ones. These codes naturally come with a
tensor-network decoder (which is different but can be
related to the tensor-network decoder of [8]), which
calculates the relevant probabilities for the maximum
likelihood decoder. Special cases of tensor-network codes
include concatenated and holographic codes. Here, we use
tensor-network codes to generalize holographic codes
beyond perfect or block-perfect isometries. We give an
example corresponding to neither perfect nor block perfect
isometries and which we decode using the tensor-network
decoder to find a threshold of 18.8% under depolarizing
noise. This compares quite well to the threshold for the
surface code of 18.9% [25]. Our key outcome is that the
exact tensor-network decoder is computationally efficient
for holographic codes, with a polynomial runtime in the
number of physical qubits, making it the first efficient (and
exact) decoder for holographic codes against uncorrelated
(or even weakly correlated) Pauli noise.
Stabilizer codes.—In stabilizer codes [26–29], logical

operators and stabilizers are elements of the n-qubit
Pauli group Gn, which consists of all operators like
zσi1 ⊗ � � � ⊗ σin , where z ∈ f�1;�ig. Here, σ0 ¼ 1,
σ1 ¼ X, σ2 ¼ Y, and σ3 ¼ Z, which are the single-qubit
identity operator and three Pauli operators, respectively.
We consider Pauli noise on the physical qubits, so errors

are elements of Gn. For the example holographic code, we
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will consider depolarizing noise on the physical qubits,
where each physical qubit is subject to the quantum channel

DðρÞ ¼ ð1 − pÞρþ p
3

X3

i¼1

σiρσi; ð1Þ

where 0 ≤ p ≤ 1 is the probability of an error affecting
the qubit.
The subspace encoding logical information, the code

space, is fixed by an Abelian group of operators S ⊂ Gn
called stabilizers. For any state jψi in the code space,
Sjψi ¼ jψi for every S ∈ S. If S has r independent
generators Si, the code space has dimension 2n−r corre-
sponding to k ¼ n − r logical qubits [28].
Logical operators on the encoded qubits form a non-

Abelian group L ⊂ Gn. This group is generated by the k X-
type and k Z-type operators, which we may call Xα and Zα,
where α ∈ f1;…; kg. These commute with the stabilizers
and satisfy XαZβ ¼ ð−1ÞδαβZαXβ.
The final important (Abelian) group of operators

are pure errors E ⊂ Gn. This group is generated by
the n − k operators Ei which are chosen to satisfy EiSj ¼
ð−1ÞδijSjEi with E2

i ¼ 1. That such generators exist is
shown in Sec. A of [30]. The full Pauli group is generated
by all Ei, Si, Xα, and Zα.
To detect errors, we measure the stabilizer generators Si

giving eigenvalues si ¼ �1. The syndrome s⃗ is the col-
lection of these measurement outcomes. We denote the
pure error corresponding to syndrome s⃗ by Eðs⃗Þ, meaning
Eðs⃗Þ is the product of all Ei such that si ¼ −1. Eðs⃗Þ is not
the only error with syndrome s⃗. Any error E0 ¼ LSEðs⃗Þ, for
any L ∈ L and any S ∈ S, will have the same syndrome.
Deciding which operation to apply to correct whichever (if
any) error has occurred is called decoding, a difficult
problem in general [32,33].
Tensor-network error correcting codes.—Let us intro-

duce tensors describing arbitrary stabilizer codes. We
represent operators by strings of integers, e.g., the stabilizer
XZYYX1 ¼ σ1σ3σ2σ2σ1σ0 is represented by the string
(1,3,2,2,1,0). Then, for each logical operator L ∈ L, we
define the rank-n tensor (which is the indicator function for
all operators in the class L)

TðLÞðg1;…;gnÞ ¼
�
1 if σg1 ⊗ � � � ⊗ σgn ∈ SL

0 otherwise
; ð2Þ

where gj ∈ f0; 1; 2; 3g and SL is the set of all operators of
the form SL with S ∈ S. In other words, SL is the coset of
S with respect to the logical operator L. For example,
Tð1Þðg1;…;gnÞ is nonzero only when σg1 ⊗ � � � ⊗ σgn is a
stabilizer, so Tð1Þ describes the stabilizer group (except for
the signs of the stabilizers, but once these are fixed for the
generators, they are determined for the whole group).

Similarly, for a code with a single logical qubit,
TðXÞðg1;…;gnÞ describes the class of the logical X operator.
These tensors are not isometries, rather they describe the

code in a simple way. The tensors are agnostic about
encoding unitaries, but they can be related to encoding
unitaries and the tensors of [8] (see [30]).
For example, take the six-qubit code of [34], which

encodes one logical qubit into six physical qubits with
stabilizer generators and logical operators summarized in
Table I. The tensors for this code T1ðLÞðg1;…;g6Þ have 32
nonzero values for each possible L ∈ f1; X; Y; Zg, e.g.,
T1ðXÞð131300Þ ¼ 1. We can define another code with no
logical qubits (i.e., a stabilizer state) on seven physical
qubits by taking the six-qubit code plus an extra qubit 0
with all operators in Table I as stabilizers. Let us denote this
code tensor by T0

ðg0;…;g6Þ, so, e.g., T
0
ð3122100Þ ¼ 1.

The benefit of describing codes by these code tensors is
that we can combine several tensors together by contracting
tensor legs to get new stabilizer codes, which come with a
natural tensor-network decoder. If the tensor network can
be efficiently contracted, the code can also be efficiently
decoded. We will see an example of this for holographic
codes, where the decoder is efficient without any approx-
imations. The following theorem explains how to join code
tensors to get new stabilizer codes (see, also, Fig. 1).
Theorem 1.—Consider two code tensors TðLÞðg1;…;gnÞ

and T 0ðL0Þðh1;…;hn0 Þ which have n and n0 physical qubits and
k and k0 logical qubits, respectively. We get new tensors
describing a new stabilizer code by contracting indices (for
simplicity, choose qubits 1 to l for both codes), i.e.,

TnewðL ⊗ L0Þðglþ1;…;gn;hlþ1;…;hn0 Þ

¼
X

j1;…;jl∈f0;1;2;3g
TðLÞðj1;…;jl;glþ1;…;gnÞT

0ðL0Þðj1;…;jl;hlþ1;…;hn0 Þ;

provided either one of these codes can distinguish any
Pauli error on qubits 1 to l. Tnew describes a stabilizer code
with nþ n0 − 2l physical qubits and kþ k0 logical qubits.
(Proved in [30].)

TABLE I. Stabilizer generators and logical operators for the
⟦6; 1; 3⟧ code from [34]. Their action on physical qubits is shown
in columns 1–6, and their action on the logical code space is
shown in column 0. We can also view these seven operators as
stabilizing a state on seven qubits 0–6.

Qubit 0 1 2 3 4 5 6

S1 1 Z 1 Z 1 1 1
S2 1 X Z Y Y X 1
S3 1 X X X X Z 1
S4 1 1 Z Z X 1 X
S5 1 X Y X Y 1 Z
X1 X X Z X Z 1 1
Z1 Z X Y Y X 1 1
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This means we can build larger codes using small tensors
as building blocks. The tensor network can have any
geometry and the component tensors can have any number
of logical qubits. It is simple to check if a tensor can be
contracted onto another tensor to get a new stabilizer code:
we just check if one of them can distinguish all different
Pauli errors on the qubits corresponding to the contracted
legs, which is equivalent to there existing an isometry from
those legs (plus logical qubits) to the rest [30]. Theorem 1
allows us to iteratively build up very large codes with
consistency guaranteed, and, as we will see, it is exactly
these tensors TðLÞ that are contracted in the tensor-network
decoder. Also, it is straightforward to find stabilizer gene-
rators and pure errors [30].
For example, we can contract index g6 of T1ðLÞðg1;…;g6Þ

and index h0 of T0
ðh0;…;h6Þ as shown in Fig. 1. The six-qubit

code can distinguish any single-qubit error on its sixth qubit
(see Table I), meaning the resulting tensor describes a
stabilizer codewith 11 physical qubits and one logical qubit.
Other examples are concatenated codes (or generalized

concatenated codes [35,36]), e.g., for the six-qubit code

TconcðLÞðh1;…;h36Þ
¼ T1ðLÞðg1;…;g6ÞT

0
ðg1;h1;…;h6ÞT

0
ðg2;h7;…;h12Þ

× T0
ðg3;h13;…;h18ÞT

0
ðg4;h19;…;h24ÞT

0
ðg5;h25;…;h30ÞT

0
ðg6;h31;…;h36Þ;

where repeated indices are contracted. An interesting
example of tensor-network codes will be holographic
codes.

Finally, these tensor-network codes should not be con-
fused with quantum tensor product codes [37], where
one constructs codes via tensor products of parity-check
matrices.
Maximum likelihood decoding via tensor networks.—

The optimal decoder for quantum error correction is the
maximum likelihood decoder, which finds the error cor-
rection operator that is most likely to return the system to
the correct code state, given the syndrome.
Any error corresponding to syndrome s⃗ has the form

Eðs⃗ÞSL for some L ∈ L and S ∈ S. Because Eðs⃗ÞSL has
the same effect on the code space for any S, we need to
calculate

χðL; s⃗Þ ¼
X

S∈S
prob½Eðs⃗ÞSL� ð3Þ

for each L ∈ L, where prob½Eðs⃗ÞSL� is the probability that
the error Eðs⃗ÞSL occurred on the physical qubits. Then
the correction operator we should apply is L̄Eðs⃗Þ, where
L̄ ¼ argmaxLχðL; s⃗Þ.
Calculating χðL; s⃗Þ for many physical qubits is

difficult in general [33]. Luckily, sometimes it is possible
to write χðL; s⃗Þ as a tensor network that can be contracted
efficiently. This idea was introduced for the surface
code in [2] and for other codes via a circuit description
in [8]. Writing an error as Eðs⃗ÞSL ¼ σa1 ⊗ � � � ⊗ σan

with ai ∈ f0; 1; 2; 3g, then, for the case of indepen-
dent noise on each qubit, probðσa1 ⊗ � � � ⊗ σanÞ ¼
p1ðσa1Þ × � � � × pnðσanÞ, where piðσaiÞ is the prob-
ability that σai will act on qubit i due to the noise.
For independent and identically distributed depolari-
zing noise, which we have already defined in Eq. (1),
pðσaiÞ ¼ ð1 − pÞδ0ai þ p=3ð1 − δ0aiÞ. If we write Eðs⃗Þ ¼
σe1 ⊗ � � � ⊗ σen , then we have

χðL; s⃗Þ ¼
X

r1;…;rn∈f0;1;2;3g
TðLÞðr1;…;rnÞ

Yn

i¼1

piðσeiσriÞ; ð4Þ

where TðLÞðr1;…;rnÞ is the code tensor defined in Eq. (2).
This tensor network contraction is sketched in Fig. 1. We
should think of pðσeiσriÞ as a one-leg tensor associated to
physical qubit i, with index ri, as in Fig. 1. Index ei is fixed
because the pure error Eðs⃗Þ is fixed by the syndrome. For
correlated noise

Q
n
i¼1 pið·Þ will be replaced by probð·Þ,

though for the tensor network to be efficiently contractible,
restrictions on probð·Þ would be necessary, like finite
correlation length, e.g., factored noise [5].
For large codes, TðLÞðr1;…;rnÞ can be extremely complex

and contraction quickly becomes difficult with increasing
n. In [2], for the surface code, the strategy was to
decompose the tensor TðLÞ (which described a code with
only one logical qubit) into smaller tensors. In [5],
maximum likelihood decoding was recast as a calculation
of partition functions via tensor networks, which is also

FIG. 1. Tensor-network codes: (a) the tensor T1ðLÞðg1;…;g6Þ
describing a six-qubit code, where L denotes logical operators.
(b) Applying Theorem 1 to build a new code tensor by
contracting the sixth index of T1ðLÞðg1;…;g6Þ with the first index
of T0

ðh0;…;h6Þ to get a ⟦11; 1; 3⟧ code. (c) A tensor-network

decoder calculates a probability for each logical operator L
(the correction operator is determined by finding the maximum of
these probabilities) by contracting the code tensor with rank-one
tensors pðσeiσriÞ for each physical qubit i, with index ri (ei is
fixed by the syndrome and, so, is not summed over). This is an
implementation of maximum-likelihood decoding.
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applied to the surface code. In [8], the encoding unitary
circuit was represented by tensors, but the method can be
related to Eq. (4) [30]. Our approach is to build tensor-
network codes out of many smaller code tensors (with any
number of logical qubits) with the goal that contraction be
efficient. Now, we will consider an example for holo-
graphic codes.
Holographic codes as tensor-network codes.—Using

tensor-network codes, we can generalize previous incar-
nations of holographic codes, which relied on perfect [10]
or block-perfect tensors or perfect tangles [21,22]. Let us
use the six-qubit code as a building block, which is
neither perfect nor block perfect (for any ordering of the
indices).
We start with a central six-qubit code tensor T1ðLÞ as in

Fig. 2. Then, we contract with the six tensors T0 at radius
two, each of which has one ingoing leg contracted with an
outgoing leg of the central tensor, getting a radius-two
code. To get a radius-three code, we contract T0 tensors
with each outgoing leg of the radius-two tensors, but now,
some radius-three tensors have two legs contracted with
two neighboring radius-two tensors, as shown in Fig. 2.
This pattern repeats until we reach the code radius R, where
any external legs correspond to physical qubits. From
Theorem 1, we know that this is a valid stabilizer code,
because T0 can distinguish two-qubit errors on the qubits
corresponding to the ingoing legs. (We choose the index
ordering so that each tensor T0

ðg0;…;g6Þ at radius rþ 1 has
either index g6 contracted with one tensor at radius r or
indices g5 and g6 contracted with two tensors at radius r.)
To decode, we contract the tensor network to calculate

χðL; s⃗Þ for each L ∈ f1; X; Y; Zg. As shown in Fig. 2, we
contract from the outside of the network in. The bond
dimensionD½r� of the tensors at radius r obeysD½r� ¼ 4R−r

as we contract inwards. Even without bond-dimension

truncation, this contraction method is efficient, meaning
the number of operations is polynomial in the number
of physical qubits n. The total number of operations N
satisfies [30]

N ¼ bnmaxðnmat=c;1Þ; ð5Þ

where c and b are constants, and we have assumed the
complexity of multiplying two N × N matrices isOðNnmatÞ,
so nmat ≃ 2.37 in the best case [38]. For holographic codes
with tensors having more than seven legs (as in this case),
c ≥ 1. Otherwise, 0 < c ≤ 1. This should be contrasted
with the method of [2] for the surface code, which is also
polynomial in the number of physical qubits, but relies on
bond-dimension truncation as an approximation.
We applied this contraction algorithm to our example

holographic code in the presence of depolarizing noise.
Monte Carlo simulation results are shown in Fig. 3. We see
a threshold for the code at 18.8% [30], which compares
well with the threshold for the surface code of 18.9% [25].
The rate of this code in terms of distance d is estimated to
be 1=n ∝ 1=d1.64 [30], which scales slightly better than the
surface code (∝ 1=d2).
Conclusions.—We described stabilizer codes by tensors

and showed that we can combine codes by contracting
tensor legs to get larger stabilizer codes. These tensor-
network stabilizer codes come with a natural tensor-
network decoder. We applied this to holographic codes
generalizing previous constructions and found a new code
with a threshold of 18.8% under depolarizing noise. We
showed that the computational complexity of decoding
holographic codes via the maximum likelihood decoder is
polynomial in the number of physical qubits even in the
exact case, with no bond-dimension truncation. Thus, the
decoder is a rare example of an exact and efficient decoder.

FIG. 2. (a) Tensor network for a radius-four holographic code. The central tensor T1ðLÞ (with one logical qubit) has six legs, whereas
all other tensors T0 with no logical qubits have seven legs. (b) Contraction order: starting from the outside, contract inwards. After the
first contractions (c), we have tensors at radius four, which are enclosed inside the blue boxes. After the next contraction (d), we have
tensors at radius three, enclosed in green boxes. After another round of contractions (e), we have the tensor enclosed in the brown box.
Finally, these tensors are contracted with the central tensor, colored blue in (b). (f) Generic form of a tensor contraction: MðkÞ are the
results of previous contractions, with bond legs marked by dashed lines.

PHYSICAL REVIEW LETTERS 127, 040507 (2021)

040507-4



(Other examples are concatenated [39] and convolutional
codes [40].) Furthermore, even for a single contraction of
the tensor network, many operations can be done in
parallel, greatly speeding up decoding. These results are
a key step toward using holographic codes in practice,
especially for CSS holographic codes [21], which have a
cluster state construction [41], making them suitable for
photonic systems. Finally, the efficiency of our contraction
scheme suggests the method may be useful for calculating,
e.g., partition functions of locally interacting systems on
hyperbolic tilings.
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