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Multipartite entanglement is a key resource allowing quantum devices to outperform their classical
counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only
scalable certification scheme relies on entanglement witnessing, typically effective only for special
entangled states. Here, we focus on finite sets of measurements on quantum states (hereafter called
quantum data), and we propose an approach which, given a particular spatial partitioning of the system of
interest, can effectively ascertain whether or not the dataset is compatible with a separable state. When
compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at
hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a
lattice and on mapping the compatibility problem onto an inverse statistical problem, whose solution is
reached in polynomial time whenever the classical field theory does not describe a glassy system. Our
results pave the way for systematic entanglement certification in quantum devices, optimized with respect
to the accessible observables.
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Introduction.—Preparing and processing strongly
entangled many-body states, in both a controlled and
scalable way, is the goal of all quantum simulators and
computers. Indeed, as the efficient representation of generic
entangled many-body states is impossible on classical
machines, entanglement represents the key computational
resource of these devices [1,2]. As a consequence, deve-
loping generic and scalable methods to certify entangle-
ment in multipartite systems stands as a grand challenge of
quantum information science. Even more fundamentally,
entanglement certification is a central task to probe the
resilience of quantum correlations from the microscopic
world to the macroscopic one [3].
Any practical method must circumvent the tomographic

reconstruction of the full density matrix [4,5] (which
implies a number of measurements scaling exponentially
with system size), and it should instead infer entanglement
from the partial information contained in a given dataset of
measurement results (hereafter referred to as quantum
data). When one adopts this data-driven strategy, the goal
of entanglement certification is to establish whether or not

the quantum data are compatible with a separable state
[5–7]. Given an extended quantum system composed of
Ntot degrees of freedom, grouped together into N ≤ Ntot
clusters [see Fig. 1(a)], the state ρ̂ of the system is
separable [8] if it can be written in the form

ρ̂p ≔
Z

dλpðλÞρ̂prodðλÞ; ð1Þ

where ρ̂prodðλÞ ¼⊗N
i¼1 jψ iðλiÞihψ iðλiÞj is a product state of

the partition, jψ iðλiÞi being the state of the ith cluster,
parametrized by parameters λ ¼ ðλ1;…; λi;…; λNÞ, dis-
tributed according to pðλÞ ≥ 0 [Fig. 1(b)]. The distribution
p fully specifies classical correlations across the partition.
A multipartite entangled state ρ̂, on the other hand, cannot
be written in the above form. Given a set of observables Âa
(a ¼ 1;…; R), multipartite entanglement is therefore wit-
nessed by the quantum dataset fhÂaiρ̂gRa¼1

[where hÂaiρ̂ ¼
TrðÂaρ̂Þ] if one proves that the latter cannot be reproduced
by any separable state. This task is accomplished by
proving that the quantum data violate an entanglement
witness (EW) inequality, hŴiρ̂p ¼

P
a WahÂaiρ̂p ≥ Bsep,

valid for all separable states ρ̂p [9]. Here, Wa are suitable
coefficients, and Bsep is the so-called separable bound.
EW operators Ŵ are generally defined based on the

properties of special entangled states (e.g., squeezed states,
total spin singlets, etc.) [9], and failure of a dataset to
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violate a given EW inequality does not exclude the
existence of a different violated inequality involving the
same data, yet to be discovered. This may erroneously
suggest that entanglement witnessing is limited by crea-
tivity and physical insight and that the entanglement
witnessing problem (“is a quantum dataset compatible
with a separable state?”) [5–7] is generically undecidable.
The goal of our work is to show that this is not the case and
that the entanglement witnessing capability of a quantum
dataset can be exhaustively tested. Our key insight is that
the problem of finding the distribution pðλÞ, which defines
the separable state reproducing at best the quantum data, is
a statistical inference problem; and, remarkably, it has the
structure of a convex optimization problem, whose solution
can be attained in a time scaling polynomially with the
partition size (under mild assumptions) and with the Hilbert
space dimension of the subsystems composing the parti-
tion. When the optimal separable state fails to reproduce the
quantum data, the distance between the quantum dataset
fhÂaiρ̂g and the optimal separable set fhÂaiρ̂pg allows one
to reconstruct the optimal EW inequality violated by the
quantum data [Fig. 1(c)]. We benchmark our approach by
establishing new EW inequalities satisfied by the low-
temperature states of the Heisenberg antiferromagnetic
chain and the quantum Ising chain; in the latter case,
our new EW inequalities outperform all previously known
EW criteria for multipartite entanglement. Our work
parallels the recent mapping of the Bell-nonlocality detec-
tion problem onto an inverse statistical problem [10], and it
offers an efficient scheme for entanglement detection in
state-of-the-art quantum devices within a device-dependent
scenario.
Quantum dataset.—For definiteness, we assume that, on

each subsystem i ¼ 1;…; N,Mi local observables Ô
ðiÞ
m can

be measured (m ¼ 1;…;Mi; e.g., the Pauli matrices σ̂ðiÞa ,
a ∈ fx; y; zg for individual qubits taken as subsystems)
[Fig. 1(a)]. For convenience, we denote the local identity

operator by ÔðiÞ
0 ≔ 1. In order to reveal entanglement, these

local observables must be noncommuting (½ÔðiÞ
m ; ÔðiÞ

n � ≠ 0
for 1 ≤ m < n ≤ Mi) [11]. From these local observables,

we build p-body correlators of the form Ôm ¼⊗N
i¼1 Ô

ðiÞ
mi ,

wheremi ¼ 0 for N − p subsystems. Arbitrary observables
can be built as linear combinations of correlators—such as,

e.g., powers of collective spin variables [12,13] Ĵa ¼P
i σ̂

ðiÞ
a =2 (a ¼ x, y, z) for systems of qubits. Hence, we

shall assume that R observables of the form Âa ¼P
m xðaÞm Ôm can be measured, where the sum runs over

all strings m ¼ ðm1;…; mNÞ and xðaÞm are arbitrary real
coefficients. The quantum data fhÂaiρ̂gRa¼1 form the basis
for entanglement certification in our scheme. The problem
of entanglement certification based on a dataset has been
discussed in the past, but the proposed methods either lack
scalability [6] or are scalable only under some restrictive
assumptions (short-range correlations, low-dimensional
geometry) [7]. Our method aims at surpassing these
limitations.
Mapping onto an inverse statistical problem.—The key

aspect behind our approach is the limited information
content of separable states. The parameters λ specifying
the product state ρ̂prodðλÞ can indeed be chosen asP

ið2di − 2Þ ∼OðNÞ real parameters, where di is the
dimension of the local Hilbert space of the ith subsystem
[14]. The average of the Âa observable on a separable state
reads

hÂaiρ̂p ¼
Z

dλpðλÞAaðλÞ≕ hAaip; ð2Þ

where AaðλÞ ¼
P

m xðaÞm
Q

N
i¼1 o

ðiÞ
miðλiÞ and oðiÞmiðλiÞ ¼

hψ iðλiÞjÔðiÞ
mi jψ iðλiÞi. Given a product state, the calculation

of each term in the sum defining AaðλÞ is clearly an
operation scaling asOðNÞ. Once the quantum nature of the
state has been absorbed in AaðλÞ, the calculation of hÂaiρ̂p
[Eq. (2)] is a classical statistical average over the distri-
bution p which, from a statistical physics viewpoint, can
be regarded as the Boltzmann distribution pðλÞ≕
exp½−HðλÞ�=Z of a classical field theory on a lattice

FIG. 1. (a) Partition of a quantum device into N clusters, each of which is subject to Mi measurements. (b) A separable state of the
system is described as a probability distribution pðλÞ of local states defined by the fλig parameters. (c) Our algorithm builds a trajectory
of separable states [parametrized by couplings fKag defining pðλÞ] which converges to the optimal state approximating at best some
target quantum data. If the state fails to reproduce the quantum data exactly, the vector joining the optimal separable data and the
quantum data reconstructs the optimal EW inequality.
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(normalized by the Z factor), with a vector field λi defined
on each of the N clusters [Fig. 1(b)]. The complexity of
separable states is fundamentally inscribed in the effective
Hamiltonian HðλÞ, which is a priori arbitrary; namely, it is
specified by a number O½expðNÞ� of parameters.
Once the classical statistical structure of the expectation

values on separable states is exposed, the problem of
reproducing the quantum data with a separable state takes
the form of a statistical inference problem, whose solu-
tion is well known in statistical physics [15]. First of
all, applying a maximum-entropy principle [16], the
Hamiltonian can be parametrized without loss of generality
with as many parameters as the elements of the quantum
dataset [17]:

HðλÞ ¼ −
XR
a¼1

KaAaðλÞ: ð3Þ

The parameters K ¼ fKagRa¼1—the coupling constants of
the classical field theory—are Lagrange multipliers whose
optimization allows one to build the separable state ρ̂p
whose expectation values fhÂaiρ̂pg best approximate the

quantum data fhÂaiρ̂g. The optimization of K can be
efficiently achieved upon minimizing the cost function
LðKÞ ≔ logZðKÞ −P

a KahÂaiρ̂ [10,15]. The a-th com-
ponent of the gradient of L is ga ≔ ð∂L=∂KaÞ ¼ hAaip−
hÂaiρ̂, and its Hessian matrix is ð∂2L=∂Ka∂KbÞ ¼
hAaAbip − hAaiphAbip, namely, the covariance matrix
of the AaðλÞ functions. Since the latter is a semidefinite
positive matrix, L is a convex function. Therefore, a simple
gradient-descent algorithm, which consists in iterating the
update rule K0

a ¼ Ka − ϵ½hAaip − hÂaiρ̂� with ϵ ≪ 1, or
any improvement thereof, is guaranteed to reach the global
optimum of the problem. In practice, this requires one to
repeatedly compute hAaip as in Eq. (2), a task efficiently
accomplished, e.g., by Markov-chain Monte Carlo sam-
pling of pðλÞ, whenever the Hamiltonian H does not
describe a glassy system. The restriction to nonglassy
systems is the only practical limitation of our approach
[17] and is ensured in the examples considered below by
considering translationally invariant systems.
Construction of an optimal entanglement witness.—As

illustrated in Fig. 1(c), the algorithm converges to the
distribution p which minimizes jgj—the norm of the
gradient of L. If the minimal distance gðminÞ vanishes
(within the error on the quantum data), i.e., if hÂaiρ̂ðminÞ

p
¼

hÂaiρ̂ for all a ¼ 1;…; R, then entanglement cannot be
assessed from the available data. But in the opposite case,
the coupling constants Ka increase indefinitely along the

optimization, and the coefficients of the gradient gðminÞ
a ¼

hÂaiρ̂ðminÞ
p

− hÂaiρ̂ allow us to build a violated EW

inequality. First, we define the normalized coefficients

Wa ≔ −gðminÞ
a =jgðminÞj. The condition jgðminÞj2 > 0 is then

rewritten as

−
XR
a¼1

WahÂaiρ̂ < min
ρ̂p

�
−
XR
a¼1

WahÂaiρ̂p
�
≕Bsep: ð4Þ

The linear combination Ŵ ≔ −
P

R
a¼1 WaÂa is the data-

driven EWoperator. The separable bound Bsep, namely, the
minimal value of Trðρ̂ ŴÞ over separable states, is violated
by the dataset, ultimately proving that entanglement is
present among the subsystems. The operator Ŵ is optimal,
in that any other normalized linear combination Ŵ 0 ¼
−
P

a W
0
aÂa [with

P
aðWa

0Þ2 ¼ 1] defines an EW inequal-
ity whose violation cannot exceed the violation of the
inequality involving Ŵ. This property follows from the
convexity of the set of separable states.
Complexity of the algorithm.—If the quantum data

contain correlation functions involving up to k points,
the effective Hamiltonian H contains OðNkÞ terms; there-
fore, the computational cost of evaluating statistical aver-
ages of the kind of Eq. (2) with a precision of ϵ (using
Monte Carlo sampling) scales as Oðd2ϵ−2NkÞ, where
Oðd2Þ is the cost of evaluating the local observables

oðiÞmiðλiÞ when di ¼ d. The polynomial scaling of the
computational cost with the number N of parties and with
the local Hilbert space dimension is the central asset of our
approach.
Ensembles of qubits.—Hereafter, we shall specify our

attention to the case of systems of N qubits partitioned into
subsystems consisting of single qubits; and quantum data
will be assumed to consist of one- and two-point correla-

tions, hσ̂ðiÞa iρ̂ and hσ̂ðiÞa σ̂ðjÞb iρ̂ (a; b ¼ x; y; z), respectively,
fully specifying all one- and two-qubit reduced density
matrices. Product states are parametrized by the orienta-
tions fλig ¼ fnðiÞg of each qubit on the Bloch sphere
(where nðiÞ are unit vectors), so that the effective
Hamiltonian H describes classical Heisenberg spins
(namely, rotators), coupled via bilinear interactions and
immersed in an external field:

HðfnðiÞgÞ ¼ −
XN
i¼1

X
a¼x;y;z

KðiÞ
a nðiÞa −

X
i<j

X
a;b

KðijÞ
ab nðiÞa nðjÞb :

Heisenberg antiferromagnetic chain.—The first example
of entangled states that we study with our approach is the
thermal equilibrium state of the S ¼ 1=2 Heisenberg chain
Ĥ ¼ J

P
N
i¼1 Ŝ

ðiÞ · Ŝðiþ1Þ, where ŜðiÞ are S ¼ 1=2 spin
operators, J is the exchange energy, and periodic boundary
conditions (PBCs) are assumed. Thermal equilibrium states

ρ̂ (∝ exp½−Ĥ =kBT�) give hσ̂ðiÞa iρ̂ ¼ 0 and hσ̂ðiÞa σ̂ðjÞb iρ̂ ¼
δabCðji − jjÞ, due to rotational invariance of the spin-spin
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couplings and translational invariance. These elementary
symmetries of the quantum data are directly inherited by
the classical Hamiltonian defining separable states aimed at
reproducing them. The Hamiltonian takes the form of a
classical long-range Heisenberg model HðfnðiÞgÞ ¼
−
P

i<j Kji−jjnðiÞ · nðjÞ with Kr ¼ KN−r. The most effective
existing multipartite entanglement criterion for these quan-
tum data is based on the collective spin, namely, hĴ2i ¼P

ijhŜðiÞ · ŜðjÞi < N=2 [26,27], which is verified for
t ¼ T=J ≲ 1.4. This criterion is a permutationally invariant
EW (PIEW), treating correlations at all distances on the
same footing, and it cannot be optimal at sufficiently high
temperatures, namely, when the correlation length ξ
becomes of the order of a few lattice spacings.
As a first validation of our approach, we search for the

optimal EW based on two-body correlations hσ̂ðiÞa σ̂ðjÞa i by
using as input quantum data the correlations [obtained via
quantumMonte Carlo (QMC) calculation [17] ] at t ¼ 1 for
N ¼ 64 spins, at which ξ ¼ 0.72. Because of their finite
range, we used correlations only up to a distance rmax ¼ 10.

Figure 2 illustrates the results of our approach. The
saturation to a finite value of the distance between the
quantum data and those of the optimized separable state
[measured by the norm of the vector g; see Fig. 2(a)] and
the divergence of the couplings Kr [Fig. 2(b)] clearly
indicate the success of entanglement witnessing. The
optimal EW operator can be reconstructed, in principle,
from the asymptotic value of the gradient vector gð∞Þ

as Ŵ ¼ −
P

N
i¼1

P
a∈fx;y;zg

Prmax
r¼1 wrσ̂

ðiÞ
a σ̂ðiþrÞ

a with wr ¼
−gð∞Þ

r =jgð∞Þj. In practice, we found a more strongly
violated EW inequality using the asymptotic couplings

of the effective Hamiltonian, namely, wr ¼ Kð∞Þ
r =jKð∞Þj—

which display a clear spatial structure, shown in Fig. 2(c)
(see [17] for the numerical values). The final step of the
approach consists in determining the separable bound
Bsep ¼ minρ̂pTrðρ̂pŴÞ. The latter can be obtained as the
solution of a set of algebraic equations [28,29]; here, we
rather obtain it by finding the ground-state energy of the
classical Hamiltonian Wcl ¼ −

P
N
i¼1

Prmax
r¼1 wrnðiÞ · nðiþrÞ

via temperature annealing [30] [Fig. 2(d)]. We observe
that Bsep=N ¼ −0.5032, while the quantum data reach

hŴiρ̂=N ¼ −0.6089. In contrast, the best PIEW—properly
normalized [17]—is violated by an amount of 0.04552.
This result is not incremental, because the EW inequality
we find is optimal among all those containing two-body
correlators. Interestingly, for temperatures t≳ 1.4 (at which
the PIEW ceases to work), we found it numerically
impossible to prove that ρ̂ðTÞ is entangled solely based
on two-point correlators. This, in turn, shows that the
maximal set of thermal states whose entanglement can be
witnessed using two-point correlators is essentially cap-
tured by the PIEW. This will not be the case in our next
example, in which our approach significantly extends the
range of witnessed entangled thermal states.
Quantum Ising chain.—Our final example is the quantum

Ising model with Hamiltonian Ĥ ¼ −J
P

N
i¼1ðŜðiÞz Ŝðiþ1Þ

z þ
gŜðiÞx Þ, where J is the interaction strength and Jg the
transverse field. In the ground state, the system displays
a quantum critical point (QCP) at g ¼ gc ¼ 1=2 between a
ferromagnetic phase (g < gc) and a paramagnetic phase
(g > gc) [31]. At finite temperatures around the QCP, the
system is known to exhibit robust entanglement [32–34].
Given the symmetries of the correlation functions

(hσ̂ðiÞa iρ̂ ¼ 0 for a ¼ y, z; hσ̂ðiÞa σ̂ðjÞb iρ̂ ∼ δab), the classical
Hamiltonian tailored to reproduce them is of the form

HðfnðiÞgÞ ¼ −Kx
P

N
i¼1 n

ðiÞ
x −

P
a¼x;y;z

P
i<j K

ji−jj
a nðiÞa nðjÞa .

As input quantum data, we consider the correlation fun-
ctions of a chain of N ¼ 64 spins with PBCs at a temper-
ature t ¼ T=J ¼ 0.28 for g ¼ 0.5—obtained as well via
QMC. Given the finite correlation length, we used corre-
lators only up to a distance rmax ¼ 20. Following the same
procedure as the one described for the Heisenberg

(a)

(c) (d)

(b)

FIG. 2. Data-driven entanglement witness for the Heisenberg
chain at T=J ¼ 1. (a) Distance between the quantum data (all
spin-spin correlators) and the optimized separable state (g,
gradient of the cost function), as a function of optimization steps
in a Nesterov accelerated gradient descent (ϵ ¼ 0.01). Each step
contains 105 − 107 Monte Carlo steps to achieve a relative
precision of 10% on the modulus of the gradient [17]. (b) Nor-
malized coupling constants Kr in the classical Hamiltonian
defining the separable state (solid lines, left axis) and overall
amplitude jKj (dashed-dotted line, right axis). (c) Normalized
couplings Kr at the end of the algorithm. (d) The separable bound
can be obtained via simulated annealing [30] by calculating
hWcliðβÞ against exp½−βWcl�, ramping β from 0 to 1000. The

minimum WðminÞ
cl is actually the lowest value recorded for Wcl

throughout the ramp.
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chain, we find an optimal EW operator which is spati-

ally structured, of the form Ŵ ¼ −wx
P

N
i¼1 σ̂

ðiÞ
x −P

a¼x;y;z

P
i<j w

ðji−jjÞ
a σ̂ðiÞa σ̂ðjÞa (coefficients and separable

bound in the Supplemental Material [17]). In Fig. 3, we
show that this new EW criterion, optimal for the thermal
state at t ¼ 0.28 and g ¼ 0.5, allows one to prove entan-
glement for a larger set of thermal states than all the
existing criteria in the literature (namely, the nearest-
neighbor concurrence [35], the PIEW [12], and the quan-
tum Fisher information [32]—see [17] for further details).
Conclusions.—We introduced a data-driven method to

probe multipartite entanglement in many-body systems.
This method relies on mapping separable states onto
Boltzmann distributions for a classical field theory on a
lattice. The classical degrees of freedom of this field theory
are dictated by the considered partitioning of the system.
The structure of the corresponding classical Hamiltonian is
dictated by the quantum data at hand, and its parameters are
optimized in order to fit at best the quantum data. This
method allows one to exhaustively test the entanglement
witnessing capability of a set of quantum data in a time
scaling polynomially with the number of parties in the
partition (if the size of quantum data is also polynomial);
this is guaranteed whenever the classical field theory is not
a model of a glass (namely, when it does not feature
disorder and frustration). This opens the way to the
systematic certification of entanglement in intermediate-
scale quantum devices.
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