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We numerically study the structure of the interactions occurring in three-dimensional systems of hard
spheres at jamming, focusing on the large-scale behavior. Given the fundamental role in the configuration
of jammed packings, we analyze the propagation through the system of the weak forces and of the variation
of the coordination number with respect to the isostaticity condition, ΔZ. We show that these correlations
can be successfully probed by introducing a correlation function weighted on the density-density
fluctuations. The results of this analysis can be further improved by introducing a representation of
the system based on the contact points between particles. In particular, we find evidence that the weak
forces and the ΔZ fluctuations support the hypothesis of randomly jammed packings of spherical particles
being hyperuniform by exhibiting an anomalous long-range decay. Moreover, we find that the large-scale
structure of the density-density correlation exhibits a complex behavior due to the superimposition of two
exponentially damped oscillating signals propagating with linearly depending frequencies.
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Introduction.—Amorphous packings of nearly incom-
pressible particles, such as marbles and pebbles, have been
the object of an intense investigation during the past
decades as they represent a suitable benchmark for studying
a broad range of dense-packing and optimization problems
[1,2]. This rising interest led to the development of many
experiments [3–5] and simulations [6–8] that made pos-
sible an extensive study of the features of these systems.
Moreover, this field appeared to be the perfect environment
to apply the theories of frustrated interactions [9]. In
particular, the application of the replica theory [10] led
to the elaboration of an exact analytical solution valid in the
limit of high-dimensional packings [11–13].
We focus on athermal packings of frictionless hard spheres

(HSs) compressed until particles come into mechanical
contact with their nearest neighbors. The trapped spheres
form a rigid network and cannot explore the surrounding
environment (ergodicity breaking). Under these conditions,
the system enters a phase of matter known as “jamming”
[14,15]. It has been hypothesized that saturated jammed
systems (no space to add another particle) are hyperuniform
[16], implying that their radial distribution function (RDF)
tends to zero from negative values as a power law [17]
gðrÞ − 1 ∝ r−4. Even though the tendency of jammed
packings to hyperuniformity has been observed (with devia-
tions from the postulated behavior) [18,19], such power-law
scaling of the pair correlation function has never been
directly measured.
In this framework, we find evidence of hyperuniformity

in the long-range correlation of the forces -between

adjacent particles and the deviation of the number of
contacts per particle from the average value ΔZ ¼
Z − hZi. On the one hand, jammed packings exhibit a
unique force network [20] whose long-range fluctuations
demand study. On the other hand, it has been shown that
ΔZ exhibits interesting features at jamming [21–23] and
that the fluctuations of the coordination number σ2Z for a
fixed ΔZ are similar to those of density hyperuniformity
[24]. The research for a static observable exhibiting a
nontrivial behavior close to jamming is motivated by the
existence of a corresponding long-ranged dynamical
response. It has been shown [21,25,26] that a local
perturbation to the position of a pair of adjacent particles,
i.e., breaking the contact between particles, produces a
response propagating through the system up to a maximum
length, the “response length,” ξR that diverges at jamming
[27]. The main hindrance to this analysis is represented by
the strong statistical noise exhibited by the correlation
functions in the long range and superimposing to the
(weak) signal of interest. To overcome this problem, we
define a suitable pair correlation function to point out the
long-range behavior of the observables by filtering out the
interfering signals. Moreover, we introduce a representa-
tion of the interparticle network based on the contact points
between particles instead of their centers of mass. We show
that the shift to a system of fictive particles improves
the resolution of the correlation function and is fundamen-
tal in identifying the long-range features of the jammed
packings.
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System Setup.—Given a system of N randomly distrib-
uted monodisperse HSs of diameter σ, let us introduce the
interaction via the dimensionless interaction potential

U ¼
X
hi;ji

�
1 −

jri − rjj
σij

�
; ð1Þ

where ri;j is the position of particles i, j and σij is the
distance between the centers of particles i and j when they
are in contact. Note that, for monodisperse HSs, σij ¼ σ
and that, for particles in kissing contact, r ¼ jri − rjj ¼ σ
so that the particles’ interaction potential is zero.
The system is controlled via the “packing fraction” ϕ,

defined as the fraction of the system volume occupied by
the spheres. The jammed phase is reached when the
packing fraction hits the critical value ϕJ ≈ 0.64 in
three-dimensional systems [28–31]. By starting in the
overjammed region ðϕ ≈ 2ϕJÞ, ϕ is gradually decreased
by gently shrinking the particles’ diameter until the system
reaches jamming. The jamming point is approached by
iteratively minimizing the potential energy [Eq. (1)] using
the FIRE algorithm [6] according to the protocol described
in [20] (Appendix B). The simulation ends when the
targeted precision is reached, i.e., when it is impossible
to distinguish between a kissing contact and a small
overlap.
At the end of this protocol, the particles form a network

of enduring contacts that is stable only if the isostaticity
condition holds [21,32–34], i.e., the average number of
contacts per particle satisfies (in a first approximation)
hZi≡ Ziso ≈ 2d, where d is the system dimension. As
shown in [35], this property depends on the system
mechanical stability being ensured by the exact balancing
between the affine and the nonaffine (negative) components
of the interparticle interactions over the whole network.
Within this picture, it is important to point out the existence
of “bucklers,” i.e., particles that still form part of the rigid
network but that are minimally constrained so that Z ¼
dþ 1 [20]. A notable exception to the isostaticity condition
is represented by “rattlers,” particles that are not part of the
contact network and freely move inside cages bounded by
particles permanently in contact. The identification and the
exclusion of rattlers are fundamental for obtaining reliable
results. By adopting this method, we generated 96 critically
jammed packings of N ¼ 16 384 particles in d ¼ 3.
Generalized RDF.—Given a generic observable O, we

defined the “generalized pair correlation function” as

Cs
OðrÞ ¼

gsOðrÞ
gðrÞ ; ð2Þ

where r is the distance between particle pairs, gðrÞ is the
usual RDF [36], and

gsOðrÞ ¼
1

C

X
i;j

δðjri − rjj − rÞOs
iO

s
j; ð3Þ

ri and rj being the positions of particles i and j, C the
normalization factor, and s ∈ ℜ a control parameter. Notice
that by choosing s ¼ 0 in Eq. (3), one gets the RDF
(additional details can be found in the Supplemental
Material [37]). We studied the two cases O ¼ f and
O ¼ ΔZ≡ Z − Ziso, f being the force exchanged between
particles and ΔZ the deviation of the number of contacts
per particle from isostaticity.
To study the long-range correlations with higher accu-

racy, we also introduced the jammed packings’ representa-
tion with respect to the contact points between particles
instead of the centers of mass. To do this, let us consider the
densest packing in which HSs can arrange (see the inset in
Fig. 1). Each contact point between the HSs can be seen as
the center of a fictive particle with radius σ0 ¼ σ=2. Thus,
given a system of N particles and Ziso ¼ 2d average
contacts per particle, the new contacts-based system will
be formed by N0 ≤ 2dN ¼ 6N particles.

FIG. 1. Contacts and original RDFs (in blue and red, respec-
tively) in d ¼ 3 as a function of the distance (expressed in the
respective diameter units r=σ0 and r=σ). Each peak (labeled with
a different letter) occurs in correspondence to a different
configuration of the fictive particles, as shown in the correspond-
ent representations (which, however, do not exhaust all the
possibilities), along with the distance at which each discontinuity
appears (red lines). Inset: Schematic representation of the con-
tacts-centered spheres model in d ¼ 3. Each fictive particle
(dashed black lines) results from the contact of two HSs and
has a diameter σ0 ¼ σ=2, being σ the diameter of the original HS.
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Contacts RDF.—Switching from the centers-of-mass-
based to the contact-points description of the network
allowed us to study the radial distribution function of
the contact-centered model (called “contacts RDF” in what
follows) with a much higher resolution. Figure 1 shows the
short-range behavior of the contacts RDF (blue line)
compared to the real spheres RDF (red dashed line). The
contacts RDF points out new features of the pair correlation
function at jamming, evidencing discontinuities that were
much smoother [peaks (e),(f),(g)] or completely absent
[peak (b)] in the original system description. The higher
accuracy of the contacts RDF is further reflected by the
enhanced sharpness of peaks (c) and (d). The origin of each
one of these discontinuities can be easily addressed. The
first peak (r ¼ σ0) is due to a nearest-neighbor contact,
while the others are determined by different possible
configurations of HSs forming a chain of contacts.
Notably, peaks (c) and (d) in Fig. 1 correspond to “real”
δ functions, i.e., to mechanically rigid configurations of
perfectly centrosymmetric particles with respect to the
transmission of forces. The local centrosymmetry ensures
a zero nonaffine component of the response and therefore
the full mechanical stability [38]. All the other peaks are the
result of a wide range of possible arrangements.
Interestingly, as shown in Fig. 2, the mid-range and
long-range behavior of the correlation function appears
to be exponentially damped as e−ar, with a ≈ 0.3. The
enhancement of such behavior by considering gðrÞ × ear

pointed out a superposition of two oscillatory functions of
type

fiðrÞ ¼ cieair cosðpirþ ψ iÞ; ð4Þ

where ci, ai, pi, ψ i are the function parameters and i ¼ m, l
denotes the mid- and long-range regions, respectively. By

performing the resulting eight parameters fit [37]
gðrÞ ¼ fmðrÞ þ flðrÞ, we found pm ≈ 2pl ¼ 7.514�
0.003 and am ≈ 2al ¼ 0.70� 0.01. This result proves that,
because the contribution of the long-range oscillations is
small compared to the mid-range ones, the flðrÞ can be
considered as Oð2Þ correction to the Oð1Þ mid-range
leading term fmðrÞ.
Weak forces correlation.—At the jamming point, each

particle of the system gets trapped in a fixed position by
mechanical contact with its nearest neighbors. The stability
of the resulting configuration is ensured by the balance of
all the forces exchanged in these contact points, determin-
ing the formation of a complex forces network spreading
through the whole system [5,39,40]. Within this picture, it
is possible to distinguish between “strong” forces, which
form a backbone crossing the whole system, and “weak”
forces spreading only in small subregions of the system
confined by branches of the main network (see the
Supplemental Material [37]). Let us consider Eq. (3) with
O ¼ f. By choosing s < 0, the resulting gsfðrÞ will be
“weighted” on the weak forces so that the smaller the force,
the bigger its contribution to the correlation. Note that not
any value of s can be chosen. In fact, as shown in [20], the
force distribution can be described as function PðfÞ ∝ fθ,
with θ ≈ 0.4, Thus, the average force (raised to the power s)
can be estimated as

hfsi ∼
Z

dffsPðfÞ ¼
Z

dffsfθ ∝
1

1þ θ þ s
; ð5Þ

which diverges unless s > smin ≡ −1 − θ ≈ −1.4. Figure 3
shows the weak forces correlation Cs

fðrÞ for s ¼ −1 and
s ¼ −1=2. In both cases, the local density-density oscil-
lations appear to be not completely damped, propagating
up to large length scales and masking any power-law decay.
Therefore, we introduced the correlation function averaged
over the period T of the short-range oscillations hCs

fðrÞiT
(orange circles), filtering out most of the additional periodic
component. The period T is roughly equal to the particle
diameter but is tuned for each dataset. By fitting in the mid-
and long-range region ½7∶23�r=σ0 and the resulting corre-
lation functions to the power law fðrÞ ¼ Ar−γ

s
f þ C for s ¼

ð−1;−1=2Þ (red line in the insets) with C ≈ 0, we respec-
tively found γs¼−1

f ¼ 0.7� 0.3 and γs¼−1=2
f ¼ 4.1� 0.3.

These results prove that the fluctuations of the weak force
correlation function at large length scales decay with the
power law expected by the hyperuniformity theory, with the
only constraint being a fine tuning of the selected (weak)
forces. In fact, for s ¼ −1, the fluctuations rapidly go to
zero in the short range, whereas for s ¼ −1=2 they exhibit a
long-ranged anomalous decay with the measured nontrivial
exponent.
Contacts correlation.—It has been proven that, at jam-

ming, the coordination number per particle Z plays an

FIG. 2. Contacts density-density correlation gðr=σ0Þ multiplied
by the factor ear=σ

0
with a ≈ 0.3. Two sets of distinct oscillations

given by Eq. (4) appear to be superimposed. The first one, fmðrÞ,
propagating in the middle range ½4∶9�r=σ0 and the second, flðrÞ,
in the long-range region ½9∶22�r=σ0. By fitting the resulting
function (red line), we found that pl ≈ 7.5 and pm ≈ 3.8. The
distance is expressed in diameter units.
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essential role in determining the system features [24]. The
study of the fluctuations σ2ΔZ led to the definition of a
structural relaxation length ξΔZ ∝ ΔZ−ν, where
ΔZ ¼ Z − 2d, d is the system dimension, and ν is a
nontrivial exponent. Here we point out that the ΔZ
correlation also exhibits the expected anomalous behavior.
As previously discussed, changing to a contacts-based

system representation also implies changing from a system
of N particles to one of N0 ¼ 2dN fictive particles. In this

framework, we defined the number of contacts per (fictive)
particle as

Z0
l ¼

Zi þ Zj

2
; ð6Þ

where l ¼ ð1;…; N0Þ and i; j ¼ ð1;…; NÞ with i ≠ j.
Thus, we chose O ¼ ΔZ0 ¼ Z0 − 2d and s ¼ 1 in
Eqs. (3) and (2). The resulting correlation function
Cs¼1
ΔZ0 ðrÞ (shown in Fig. 4) clearly exhibits a nontrivial

behavior in the middle and long range superimposed onto
some oscillations as a result of the incomplete damping of
the density-density correlations. As described above, this
power-low trend can be seen by fitting the period T of the
density-density oscillations and eventually recomputing
Eq. (3) by considering spherical shells of thickness T
(orange circles in Fig. 4). Analogously to the previous case,
we fit the resulting function according to the power law
fðrÞ ¼ Ar−γΔZ0 þ C in the range [4:23], finding a nontrivial
exponent γΔZ0 ¼ 3.9� 0.2.
Conclusion.—We studied the mid- and large-scale spatial

correlations in HS packings at jamming by defining the
correlation functions [Eqs. (3) and (2)] for the weak forces
f and the variation of the coordination number per particle
ΔZ0. We found that the correlation functions exhibit a long-
range anomalous behavior, supporting the hyperuniformity
hypothesis and marking the transition to the jammed phase.
In fact, both the weak forces and the ΔZ0 correlation
exhibit a power-law decay with nontrivial exponents
γs¼−1
f ≈ γΔZ0 ≈ 4. Moreover, we introduced a representation
of the system based on the particles’ contact points instead

FIG. 3. (a) Weak force correlation function Cs¼−1
f ðrÞ in d ¼ 3

and enlargement of the long-range region in log-log scale (inset).
The density-density correlations propagating at long range have
been filtered by introducing the average over the oscillation
period T, hCs

fðrÞiT (orange circles). The log-log scale in the inset
points out a long-range power-law behavior (red line) decaying
with an exponent γs¼−1

f ¼ 0.7� 0.3 in the range [7:23]. (b) Weak

forces correlation function Cs¼−1=2
f ðrÞ in d ¼ 3. The fluctuations

analysis points out a power-law decay with an exponent
γs¼−1=2
f ¼ 4.1� 0.3 in the range [7:23]. Notice that both insets
show the modulus of the correlation function. The distances are
expressed in diameter units.

FIG. 4. Contact correlation function Cs¼1
ΔZ0 ðrÞ in d ¼ 3. The

density-density oscillations at short range (blue line) have been
filtered by introducing the correlation averaged over the oscillation
periodT, hCs¼1

ΔZ0 ðrÞi (orange circles). Inset: Enlargement of themid-
and long-range regions of the modulus of theCs¼1

ΔZ0 ðrÞ (blue line) in
log-log scale. The correlation function exhibits a power-law decay
(red line) propagatingwith a nontrivial exponent γΔZ0 ¼ 3.9� 0.2.
The distance is expressed in diameter units.
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of their centers of mass. This change pointed out new
features of the density-density correlation function, which
appears to be a sum of two different oscillating signals
propagating in the middle and long range. A theoretical
explanation for this two-terms form could be recovered by
writing integral equations of the hypernetted chain kind
[41] for the correlation function. However this problem has
not been explored yet. It would be of great interest to obtain
such proof. Changing to the contacts-based representation
of the system also increased the sensitivity of the corre-
lation function at long range.
These results show that static observables other than the

density can be used to characterize the main features of
jammed systems, marking (expected) theoretical behaviors
that remained hidden by studying the density fluctuations
of the pair correlation function. A further step in this
analysis would involve the study of bigger systems, i.e.,
systems with a larger number of particles N, implying
easier isolation of the power-law decay with respect to the
local oscillations. Moreover, it would be of great interest to
characterize these correlation functions at a packing frac-
tion ϕ < ϕJ close to jamming and varying it up to the
jamming point.
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