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The lack of methods to experimentally detect and quantify entanglement in quantum matter impedes our
ability to identify materials hosting highly entangled phases, such as quantum spin liquids. We thus
investigate the feasibility of using inelastic neutron scattering (INS) to implement a model-independent
measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-tangle,
and quantum Fisher information (QFI). We perform high-resolution INS measurements on Cs,CoCly, a
close realization of the § = 1/2 transverse-field XX Z spin chain, where we can control entanglement using
the magnetic field, and compare with density-matrix renormalization group calculations for validation. The
three witnesses allow us to infer entanglement properties and make deductions about the quantum state in
the material. We find QFI to be a particularly robust experimental probe of entanglement, whereas the one
and two-tangles require more careful analysis. Our results lay the foundation for a general entanglement

detection protocol for quantum spin systems.
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Introduction.—Quantum entanglement is increasingly
considered a vital resource for novel effects and applica-
tions [1]. Entanglement is also central to our understanding
of many-body systems [2,3], where it forms a deep
connection between condensed matter physics and quan-
tum information. Phenomena such as quantum spin liquids
[4], topological order [5], quantum criticality [6,7], and
thermalization in quantum systems [8] are all inherently
related to entanglement properties. It is crucial to develop
experimental protocols to detect and quantify entanglement
in the solid state, in order to allow unambiguous and
rapid identification of quantum materials suitable for new
applications and novel insights into complex quantum
phenomena.

Because of the rich structure of many-body states, a
number of different entanglement measures have been
introduced. The most important example in condensed
matter theory is entanglement entropy (EE), used to
quantify bipartite entanglement. Yet there is no “EE
observable” that can be probed directly, which makes
experimentally quantifying entanglement in many-body
systems challenging [2,9]. Although EE has been measured
in cold-atom [10,11] and photonic systems [12], neither
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approach is suitable for probing entanglement in macro-
scopic condensed matter systems.

In special cases, entanglement can be inferred through
neutron scattering experiments. For instance, two-spin
entanglement within and between dimers [13,14] and
entanglement between two molecular magnet qubits [15]
have been characterized with neutrons. Also, certain low-
dimensional spin systems can be shown to have entangle-
ment via close comparison with theory [16—18]. However,
these approaches rely on tractable models, with either small
Hilbert spaces or special ground states, which are limited to
a handful of systems. For most strongly correlated systems,
such methods are not applicable, calling for model-
independent approaches.

A promising approach, which we explore in this Letter,
is using entanglement witnesses (EWs) [2,3,9], i.e., observ-
ables that can be used to identify some subset of entangled
states. We consider (i) one-tangle (z;) [19-21], (ii) con-
currence or two-tangle (z,) [13,15,19,20,22], and (iii) quan-
tum Fisher information (QFI) [23-25]. These EWs witness
(i) entanglement between a spin and the rest of the system,
(i1) pairwise entanglement, and (iii) multipartite entangle-
ment, respectively, and thus provide complementary

© 2021 American Physical Society


https://orcid.org/0000-0002-3525-4145
https://orcid.org/0000-0002-7450-5138
https://orcid.org/0000-0002-5133-8584
https://orcid.org/0000-0002-0493-7568
https://orcid.org/0000-0002-9575-3368
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.037201&domain=pdf&date_stamp=2021-07-13
https://doi.org/10.1103/PhysRevLett.127.037201
https://doi.org/10.1103/PhysRevLett.127.037201
https://doi.org/10.1103/PhysRevLett.127.037201
https://doi.org/10.1103/PhysRevLett.127.037201

PHYSICAL REVIEW LETTERS 127, 037201 (2021)

information. All three EWs are accessible to inelastic
neutron scattering (INS) experiments. 7; and 7, can be
obtained from ordered moments and spatial spin-spin
correlations [21], whereas QFI can be expressed as an
integral of the dynamical spin structure factor (DSF) [25]
S(k,hw). This powerful formulation of QFI has been
applied to experiments on Heisenberg spin chains
[26,27], but remains otherwise largely unexplored.

We contrast EE and the mentioned EWs in the spin-1/2
transverse-field XXZ chain. The one-dimensional setting
confers an enhanced susceptibility to fluctuations and a
higher degree of theoretical tractability, making it an
excellent proving ground for our EW protocol. The system
hosts two distinct quantum critical points (QCPs) and a
classical, minimally entangled point and thus provides a
range of interesting behaviors. We study this model
numerically using the density-matrix renormalization
group (DMRG) [28-30]. We also report high-resolution
INS data on the chain compound Cs,CoCl,, known to be an
excellent realization of the XXZ model [31-37]. We find
that QFI values extracted from experiment and simulation
show good agreement, demonstrating it is an experi-
mentally viable probe of entanglement. We also find the
experimental one-tangle to deviate from theory in a
potentially revealing manner, whereas the two-tangle
extraction requires spin-polarization-resolved experiments.

Transverse-field XXZ chain.—A particularly rich yet
simple system is found in the XXZ chain,

H = Z (SIS%, + SIS, + AS:S:,) + hSi. (1)

where S%, a € {x,y,z}, are spin-1/2 operators, A repre-
sents exchange anisotropy, and /4, is a uniform magnetic
field in the transverse (%) direction. For Cs,CoCl, we take
the parameters J = 0.23 meV and A = 0.25 [34], but we
note A ~0.12 has been proposed elsewhere [36,37]. (We
consider other A values in the Supplemental Material [38].)
The model is also relevant to quantum simulation using
cold atoms in optical lattices [46].

For i, = 0, the model can be solved exactly using the
Bethe ansatz [47-49]. However, a finite transverse field
breaks integrability and induces a new source of fluctua-
tions when A # 1. The model is particularly nontrivial in
the spin-flop region, —1 < A < 1 [50], where its phase
diagram contains two QCPs, as shown in Fig. 1(a). At the
first QCP, h, =0, it is equivalent to a gapless Luttinger
liquid, which is described by a conformal field theory
(CFT) with central charge ¢ = 1 [6]. At h, > 0, a gapped,
long-range Néel order develops, with a staggered magneti-
zation component my, along $ and a magnetization com-
ponent m* along X [38]. This order remains up to a critical
field h,, where the system is described by a ¢ = 1/2 CFT.
Above h,. a gapped, nondegenerate spin-polarized (para-
magnetic) phase develops and m* saturates asymptoti-
cally. There also exists a “classical” or factoring field
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FIG. 1. (a)Schematic phase diagram for —1 < A < 1. There are
two quantum critical points at #, = 0 and /., and a classical point
at a factoring field Ay, close to h.. For A =0.25, hy ~ 1.58J
and h.~1.6J. The distance h.~h; is exaggerated for clarity.
(b) Energy gap and (c) magnetization and staggered magnetiza-
tion [38] from DMRG for A = 0.25, J = 0.23 meV. Nonvanish-
ing AE;, m} at h, =0, and m} # 0 at h, > h,, are due to a
finite-size effect in the DMRG calculation.

hi(A) = J\/2(1 4 A), where the ground state is exactly of
the classical spin-flop Néel type [51,52]. At h;, quantum
fluctuations are precisely balanced by the field, and
entanglement estimators indicate an entanglement transi-
tion [21,53-55].

The model has previously been studied using Jordan-
Wigner fermion mean-field theory [50,56], exact diago-
nalization [57], DMRG [56,58,59], and quantum
Monte Carlo methods [21]. The real-frequency dynamics
were studied in Refs. [56,59], where the mean-field theory
[56] was found to give qualitatively different spectra to the
DMRG calculation [59] at h, < h.. Here we use a T =0
DMRG method described in the Supplemental Material
[38]. Care is taken to relate our finite-size (L = 100 unless
stated otherwise) results in the spin-flop region to the
thermodynamic limit [38,56,59]. There is a finite-size gap
between a unique ground state and the first excited state,
AE, = E| — E,, where E, is the energy of the nth state.
The physical excitation gap is given instead by AE, =
E, — E, > AE,, as shown in Fig. 1(b). Magnetization is
plotted in Fig. 1(c).

Experimental method—INS data on a high-quality 9 g
solution-grown Cs,CoCl, single crystal were collected
using the direct-geometry time-of-flight spectrometer
ING6 at Institut Laue-Langevin, with monochromatic inci-
dent neutrons of 2.35 meV. Cooling was provided by a
dilution refrigerator, and data were collected at 70 mK
(=0.026J ~ 6 ueV). The sample was oriented with crys-
tallographic b, c¢ axes in the horizontal scattering plane.
Magnetic fields up to 2.5 T were applied along the a axis
using a vertical field cryomagnet. For more details about
the experiments, see Ref. [60]. Raw neutron counts were
normalized by the integrated quasielastic incoherent scat-
tering to account in a first approximation for neutron
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absorption from the sample. The nonmagnetic background
was modeled and subtracted, and resulting counts were
divided by the squared spherical magnetic form factor for
Co?*, so resulting intensities are proportional to the purely
magnetic scattering cross section.

The Co?* ions in Cs,CoCl, form a Kramers doublet,
which can be described by an effective spin S = 1/2.
Magnetic interactions between Co’>* ions are quasi-1D
along the b axis, with exchange interaction much lower
than the energy gap to higher crystal field levels, resulting
in an effective spin-1/2 Hamiltonian with strong XXZ
anisotropy. Finite 3D interchain couplings (estimated to be
at least an order of magnitude smaller than J [33,37,61,62])
stabilize long-range order below 7y = 0.212 K with order-
ing wave vector ¢ = (0, 1/2, 1/2), where spins point near
the b axis. Transverse magnetic fields applied along the a
axis suppress this order at " = 2.10(4) T [34]. This field
direction is at an ~40° angle to the xy easy plane of the
spins. This angle—along with interchain couplings [62,63]
—is expected to renormalize transition fields compared to
the in plane field case considered in Eq. (1), but not to
change the qualitative content of the phase diagram. To
compare experimental and DMRG results, we scale fields
such that h”PMRG  1.604J = he'™P.

Spectra.—Figure 2 compares INS spectra for Cs,CoCly
with spectra calculated for Eq. (1). For more field strengths
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FIG. 2. (a),(d),(g),(j) INS spectra for Cs,CoCl, at four repre-
sentative field strengths. (b),(e),(h),(k) Calculated spectra for the
XXZ chain at matching fields, accounting for the experimental
polarization factor. (c),(f),(i),(1) QFI integrand at k = 7. White
dashed lines in (a) and (b) bound the two-spinon continua.
Throughout we designate the wave vector component k along the
chain in units of 1/b.

and processing details, see the Supplemental Material [38].
At low fields, the data qualitatively agree with simulations
of the ideal chain model, Eq. (1). Interchain couplings
become qualitatively important near /., where the field-
dependent gap is of similar strength to the interchain
exchange. Interchain couplings also produce a band split-
ting at high fields, as seen in Figs. 2(j) and 2(k), whereas the
DMRG spectrum reduces to a single magnon branch.
Hence, we conclude that Cs,CoCly is 1D-like for weak
and intermediate fields. Precise modeling of interchain
effects is beyond the scope of this work.

At zero field, the main contributions to the DSF come
from the two-spinon continuum [64,65], bounds of which
are drawn in Figs. 2(a) and 2(b). At finite field, the
excitation branches begin to split [Figs. 2(d) and 2(e)],
eventually decoupling the upper branch from the low-
energy excitations, forming a high-energy feature at
hw > 0.4 meV. As Ref. [59] noted, this feature is beyond
the mean-field prediction [56]. Here we see it is present in
the experimental material [Figs. 2(d) and 2(g)] and DMRG
[Figs. 2(e) and 2(h)]. The intensity of this high-energy
feature weakens as h,. is approached from below, and as
Figs. 2(j) and 2(k) show, it disappears above h.. To
understand its origin, it is instructive to consider the
factoring field. While the ground state at A is classical,
the dynamics cannot be fully described using linear spin
wave theory (LSWT) [52,66]. For Eq. (1), the dynamics is
LSWT-like only near k = x for $**(k, hw) and near k = 0
for $*V/%(k, hw) [52]. As Fig. 3 shows, this behavior agrees
well with DMRG. The high-energy feature vanishes at k
points where LSWT is exact, heavily suggesting its origin
is in multimagnon physics, as proposed in Ref. [59].

Entanglement.—We now investigate the quantum phase
transition (QPT) of Eq. (1) and Cs,CoCl, using entangle-
ment measures. Figure 4(a) shows half-chain von Neumann
EE. At QCPs, in a system of length L with open bound-
aries, it is expected to follow the CFT expression [7]

S(k, hw) (arb. units)

FIG. 3. Theoretical DSF for J =0.23 meV, A = 0.25, and
h, = 1.58114J % 2.07T = hy. Dashed white lines show linear
spin wave energy predictions [52]. Agreement with DMRG is
excellent at k = 7 in (a) and k = 0 in (b),(c). Elsewhere in the
Brillouin zone, the dispersion is significantly modified by
anharmonic terms in the full spin wave Hamiltonian. Note that
the experimental polarization factor has not been applied [see
[38], Eq. (S5)].
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FIG. 4. (a) Entanglement entropy S,y from DMRG as a

function of h,. The vertical line indicates the factoring field,
where S,y =~ In2 (horizontal line). For 4, > h, there is a steep
drop in entropy as the system enters a polarized phase with a
nondegenerate ground state. Inset: EE near /.. (b) The approxi-
mate one (r;) and two-tangles (z,) reach a minimum at /.
(c) QFI from INS and DMRG S(k, iw). Above the horizontal
dashed line, QFI indicates the presence of at least bipartite
entanglement. Below it, QFI cannot be used to distinguish
separable and entangled states. The PF-corrected INS f line
is obtained by scaling flgs by the ratio between the two DMRG
fo values [38].

Sy = (¢/6) In[L/z] + C, where C is a nonuniversal cor-
rection. We observe approximately logarithmic scaling at
the QCPs and saturation of S,y for most noncritical fields
[6]. Notably, we find at h; that S,y =In2 to good
approximation, consistent with a twofold classical ground-
state degeneracy.

Another sharp signature of the classical state has
previously been found using entanglement estimators
[21,54,55]. We consider one-tangle 7z;, which quantifies
entanglement between a single site and the rest of the
system, and two-tangle 7,, which quantifies the total
pairwise entanglement in the system and satisfies 7, <
7; [19,67]. For translation-invariant S = 1/2 systems, 7,
can be defined in terms of spin expectation values at a given
site j, 7 = 1-4 37, ((89))*. Tt is useful for interpreting
experiments, with the caveat that it is only strictly defined
at T = 0. We approximate 7; by keeping only ferro- and
antiferromagnetic ordered moments [38]. The theoretical
prediction is shown in Fig. 4(b), along with experimental
results obtained [38] using 80 mK (=0.03J) data from
Ref. [34]. At zero field, the experimental 7, is reduced from
the theoretical value due to magnetic ordering at low
temperature, but still indicates substantial entanglement.
We discuss the high 7; at B > 2 T later.

Next, two-tangle is defined as 7, =23 C?, where
C, is the concurrence for separation r. C, for the § =

1/2 XXZ model absent spontaneous symmetry breaking
(m3, = 0) can be defined [20-22,53] C, =2max{0,C},C/},
where

: 1 2
C;' = |<S: S¥+r> + <Sf lz'+r>| - \/<Z+ <S/1rSf+r>> - (mx)Z’
(2)
- 1

This definition acts as a lower bound for pairwise
entanglement in the symmetry-broken state [68,69].
While such correlation functions are straightforward to
compute theoretically, for anisotropic systems they require
spin-polarization-resolved techniques to measure experi-
mentally. Since we have not conducted such experiments,
we plot only the theoretical 7, in Fig. 4(b). (In the
Supplemental Material [38], we simulate a polarized INS
experiment by using DMRG to correct for polarization
factors (PFs) and estimate concurrence and 7, from
unpolarized data. We find rough agreement between experi-
ment and theory at low fields, suggesting 7, could be a
reliable EW with carefully performed experiments.)

Finally, we come to the quantum Fisher information. The
QFI density fo can be expressed as [25]

Folk.T) =2 A " d(hw) tanh <2ZZ’T> 7k o, T),  (4)

T

where the dynamical susceptibility y” is linked to the DSF
through the fluctuation-dissipation theorem y” (k, hw, T) =
tanh(hw/2kT)S(k, hw), and S(k, hw) is normalized
per site (i.e., intensive) according to the sum rule
Y acliye) [ d(hw) [77 dkS (k,hw)=S(S+1). We are
interested in fo(k = x), which witnesses entanglement
associated with the antiferromagnetic ordering [38].
Importantly, one can derive bounds for f that can only
be met by certain classes of entangled states [70-72]. For
unpolarized neutron scattering and S = 1/2 systems,
fo > 3n, with n a divisor of L, indicates the system is
at least n + 1-partite entangled [38].

Figure 4(c) shows QFI determined from INS data nor-
malized against DMRG [38], and from DMRG with and
without PF applied. All QFI integrals used 7 = 70 mK. In
all cases, maximal f o occurs at i, = 0. Unlike 7|, QFl is
insensitive to zero-field magnetic order since elastic peaks
are suppressed by the tanh factor in Eq. (4). The results
indicate the experimental PF suppresses QFI below the
lower bound required to observe bipartite entanglement.
Using DMRG intensities, we can obtain PF-corrected values
[38], which do witness at least bipartite entanglement at the
lowest measured fields. This finding highlights that it is easy
to underestimate the underlying QFI due to resolution effects
and calls for higher resolution in future experiments.
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Additionally, it would be valuable to derive tighter bounds
on fo, even if they do not apply in general [73,74].

There is qualitative and reasonably quantitative agree-
ment between DMRG and INS QFI at intermediate fields
(3 1.75 T), but not at high fields, where interchain cou-
pling causes deviations from ideal 1D behavior. In par-
ticular, interchain coupling raises the field required for full
polarization, which may explain the observed increase in
fo above h.. As h, - oo we expect fo to vanish. In
addition, the f2MRS minimum occurs at /., while the f3°
minimum appears at a lower field, likely due to deviations
from ideal 1D behavior.

Another deviation from 1D behavior is seen in the large
7, at B> 2 T [Fig. 4(b)], which could naively be inter-
preted as a sign that the system has entered a highly
entangled state. However, this scenario seems unlikely
given the observed f, behavior and suppression of
magnetic fluctuations at high field. Instead, z; is likely
overestimated in this region due to spin correlations not
captured by the ferro- and antiferromagnetic ordered
moments used to evaluate z;, induced by the small but
finite interchain couplings, which become relevant for
fields near &., where the spin gap is small and the system
is near critical. Capturing such 3D effects is beyond the
scope of the current Letter.

On its face, the low fo values at A, may seem
incompatible with the prediction that CFTs have both large
bipartite and multipartite entanglement [75]. QFI near 4. is
low because the Néel order parameter becomes vanishingly
small near the transition to the polarized state, such that
there is little spectral weight available for entanglement
[76], and so fo(k = x) is not an effective witness at this
QCP. We generically expect QFI associated with antifer-
romagnetic ordering vectors to demonstrate significant
entanglement only away from paramagnetic transitions.
This illustrates a general limitation of EWs: they are not
universal [9]. Thus additional EWs would be required to
experimentally characterize the entanglement properties of
the transverse-field XXZ chain in the entire field range.

Conclusion.—We have contrasted several entanglement
measures by applying them to Cs,CoCl, and the trans-
verse-field XXZ chain. Although we are unable to directly
witness genuine multipartite entanglement in Cs,CoCly,
the strong agreement between DMRG and INS QFI
suggests QFI is already a useful tool for qualitative
investigations of entanglement properties, potentially even
for topological phases [77-79]. With improved resolution
and bounds it can also prove valuable for directly quantify-
ing local entanglement in materials. QFI can be used in
combination with other EWs, to infer entanglement proper-
ties as a control parameter is tuned. Such combinations may
be required since paramagnetic QPTs remain inaccessible
to fo(k=m). We find both one-tangle and QFI to be
useful measures for inelastic experiments in general,
whereas two-tangle requires polarization analysis. We
expect the model-independent approach we outline here,
which applies to many spectroscopic techniques and
also to higher-dimensional systems, will prove useful in

identifying materials with entangled states and highly
quantum properties. As the search for materials realizing
exotic quantum states continues, EWs can allow clear
discrimination between truly entangled and disordered
nonentangled states.

Access to the data reported in this paper will be made
available from Ref. [80].
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