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We investigate the dynamic fracture of heterogeneous materials experimentally by measuring
displacement fields as a rupture propagates through a periodic array of obstacles of controlled fracture
energy. Our measurements demonstrate the applicability of the classical equation of motion of cracks at a
discontinuity of fracture energy: the crack speed jumps at the entrance and exit of an obstacle, as predicted
by the crack-tip energy balance within the brittle fracture framework. The speed jump amplitude is
governed by the fracture energy contrast and by the combination of the rate dependency of the fracture
energy and the inertia of the medium, which allows the crack to cross a fracture energy discontinuity at a
constant energy release rate. This discontinuous dynamics and the rate dependence cause higher effective
toughness, which governs the coarse-grained behavior of these cracks.
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Many biological materials, e.g., bone, nacre, and tooth,
have intricate microstructures that are responsible for
remarkable macroscopic mechanical properties [1,2].
Carefully designed microstructures combined with
advances in microfabrication techniques allow for the
development of new materials with unprecedented proper-
ties [3–8]. Understanding how to harness small-scale
heterogeneities is, however, necessary to achieve the desired
macroscopic properties. For fracture properties, recent
research has focused either on disordered microstructures,
where randomly located obstacles distort the crack front and
cause toughening by collective pinning [9–12], or on elastic
heterogeneities, where compliant inclusions provide tough-
ening by effectively reducing the energy flow into the crack
tip [13,14]. However, a complete and fundamental theory
for effective material resistance against fracture remains
missing, and experimental observations, which are key for
establishing such theoretical knowledge, are scarce.
Theoretical fracture mechanics, based on the seminal

work of Griffith [15,16], states that a crack will propagate
as soon as the released elastic energy per unit increment of
crack length GS ¼ −∂lΩ, where Ω is the elastic energy in
the medium and l the crack length, balances the local
fracture energy Γ (i.e., the energy necessary for creating
two unit surfaces). During dynamic crack propagation, the
energy balance further includes the inertia of the surround-
ing medium and the possible rate dependence of the
fracture energy ΓðvÞ, where v ¼ _l is the crack speed.
Using linear elastic fracture mechanics (LEFM) theory
[17], one can derive the equation of motion of a crack from
this energy balance by assuming steady-state crack

propagation in an unbounded homogeneous domain.
Under these circumstances, the crack has no inertia (there
is no term involving ̈l in the equation of motion), and its
speed adapts abruptly to accommodate changes in fracture
energy. However, it remains unclear if these idealized
conditions are valid at discontinuities within heterogeneous
materials or how they affect the coarse-grained behavior of
the crack during dynamic propagation.
In this Letter, we analyze these questions in depth

through the experimental investigation of crack propaga-
tion in heterogeneous media with fracture energy disconti-
nuities. Usually, fracture mechanics experiments are based
on global measurements and thus only capture averaged
quantities. In contrast, our experimental setup and simpli-
fied 2D geometry with periodic heterogeneities allow
local measurements of the near-crack-tip fields, which
support the uncovering of fundamental mechanisms.
While the elastic energy release rate is constant as the
crack faces a fracture energy discontinuity, the speed at
which the crack propagates is observed to vary discontin-
uously. We study the amplitude of the speed jumps as the
crack crosses the interface between regions of different
fracture energy and show that it stems from the combina-
tion of the rate dependency of the fracture energy and the
inertia of the medium. Rate-dependent effects result from
the nonequilibrium nature of fracture problems and are
prevailing in materials. Thus, rate-dependent fracture
energy applies to a wide range of materials and has been
observed, for instance, on rock [18,19], glassy polymers
[20–25], and metals [26]. The discontinuous dynamics and
the rate-dependent effects significantly affect the effective
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toughness of heterogeneous materials, as we will show with
our experimental observations.
Our experimental setup [see Fig. 1(a)] consists of a

tapered double cantilever beam made of multimaterial
3D-printed polymers (Stratasys Objet260 Connex3), a
high-speed camera (Phantom v2511), and an electro-
mechanical testing machine (Shimadzu AG-X Plus). The
matrix material is VeroClear with static fracture energy
ΓM
0 ≈ 80 J=m2 and Young’s modulus EM ≈ 2.8� 0.2 GPa.

The obstacle material is VeroWhite-DurusWhite (ΓO
0 ≈

106 J=m2,EO ≈ 1.9� 0.2 GPa),which is tougher andmore
compliant. We prescribe a constant crack mouth displace-
ment rate _δ ≈ 25 mm=s. Hence, the elastic energy in the
system is gradually increased until a planar crack initiates
from a preexisting notch. The elastic energy release rate at
initiation is proportional to the bluntness of the notch, which
we can tune to explore a range of initial crack speeds from
moderate up to 350 m=s ≈ 0.4 cR, where cR ≈ 800 m=s is
the Rayleigh wave speed. The crack then propagates
dynamically through a series of periodic obstacles [see
Fig. 1(b)]. During crack propagation, no additional energy is

added to the system (δ is constant), and the tapered geometry
causes exponentially decaying released elastic energy
GS ∼ δ2e−l=lsys , where lsys ≈ 17.5 mm is a structural length
scale directly related to the sample size [27]. Thus, the crack
speed gradually decreases on average. All properties are
constant through the sample thickness, and the overall
behavior is quasi-2D. We analyze the crack dynamics by
measuring the near-tip displacement field u using digi-
tal image correlation. We apply a random speckle pattern
[see Fig. 1(c)] onto the surface of the specimen using
aerosol paint. The temporal evolution of the speckle is
tracked using high speed photography at 250 000 fps. The
autocorrelation length of the pattern corresponds to
4–6 pixels, where the pixel size is ≈45 μm. u [see color
in Fig. 1(c)] is found by minimizing the difference between
the pattern at a given time t mapped back to its precrack
configuration [28]. The resulting infinitesimal strain field
εyy is depicted in Fig. 1(d). An alternative approach [see
Fig. 1(e)] is the integrated digital image correlation [27,29],
which assumes the analytical solution for a singular crack in
an infinite elastic medium—the Williams eigenfunctions
expansion [30]—as the basis for u [28]. The first term of the
series has singular strains at the crack tip εij ∼ 1=

ffiffiffi
r

p
, where

r is the distance from the tip and its amplitude is related to
the stress intensity factorK. Note that, for both methods, the
amplitude of ε is similar. The integrated digital image
correlation has the advantages of precisely determining
the crack-tip position l and directly computing K, from
which one can find the dynamic energy release rate G ¼
ðK2=EÞAðvÞ that provides ameasure of the fracture energyΓ
at the crack tip [17,28,31]. The effects of elastic hetero-
geneity are minor in our setup but give rise to an interaction
between the size of the K-dominant region (r≲ 5 mm) and
the size of the heterogeneity. These effects are discussed
in [28].
Typical experiments are illustrated in Figs. 2(a) and 2(b).

The crack first propagates through the matrix material
with propagation speed v being maximum immediately
after initiation; then v gradually decreases as crack length
increases. v undergoes abrupt deceleration (acceleration) as
the front enters (leaves) an obstacle. Simultaneously, Γ also
abruptly increases (decreases). However, the relative jumps
of the dissipation rate are significantly smaller than the ones
observed on crack speed. We calculate the speed in the
obstacle vO and matrix vM by selecting the mean speed over
12 μs before and after the obstacle boundaries. All speed
jumps atmaterial discontinuitieswere studied for a collection
of 30 experiments with different periodsΔl ¼ wO þ wM and
constant obstacle densities β ¼ ðwOÞ=ðwO þ wMÞ ¼ 1=2.
Jumps as the crack enters (trapping) and leaves (untrapping)
an obstacle are shown in Figs. 2(c) and 2(d), respectively.
Results show that the crackdynamics at the interface between
matrix and obstacle is independent of obstacle width and is
symmetric with respect to the direction of propagation,
i.e., the jumps are the same for trapping and untrapping.

FIG. 1. (a) Model heterogeneous material made of multimate-
rial 3D-printed polymers in a tapered double cantilever beam
geometry with applied forces F. The displacement field u ¼
ðux; uyÞ is measured in the area within the blue box by digital
image correlation. (b) Closeup view shows two different materi-
als in a periodic stripe geometry. The transparent material
constitutes the matrix with width wM and the opaque (darker)
areas are obstacles of higher fracture energy ΓO=ΓM ≈ 1.3 with
width wO. (c) Closeup of crack tip at l ≈ 35 mm and v ≈ 50 m=s.
The crack interface is slightly visible running from left to center.
A random speckle pattern is applied onto the surface, which is
compared to its reference precracked configuration to find u.
(d) Infinitesimal strain εyy ¼ ∂yuy found by differentiating u.
Approaching the crack tip, εyy diverges. (e) εyy assuming the
Williams eigenfunctions as the basis for u.
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This implies that the crack dynamics only depends on local
fracture properties.
In order to understand the jumps and their effect on

effective material properties, we analyze the fracture
propagation with a crack-tip energy balance. In our experi-
ments, failure mechanisms occur at timescales 4 orders of
magnitude smaller than the viscous relaxation time typical
of the polymers used in this study [28] so that an elastic
response of the sample can be safely assumed. Moreover,
the failure mechanisms are too fast for a craze to develop
[32], making the fracture process essentially brittle. Thus,
we develop a theoretical model based on LEFM to interpret
the experimental observations.
As the crack advances, elastic energyGS is released from

the specimen and is in part dissipated as fracture energy Γ
to create new surfaces and in part radiated away as elastic
waves. Analyzing the near-tip fields of a steady-state
dynamic crack, Freund [17] showed that the energy release
rate of a dynamic crack Gðl; vÞ is related to the energy
release rate for a corresponding static crackGSðlÞ by gðvÞ, a
universal function of v. The crack-tip energy balance
provides the equation of motion for a crack [28]:

ΓðvÞ ¼ GSðlÞgðvÞ ≈GSðlÞð1 − v=cRÞ; ð1Þ

which implies that within the framework of LEFM, a sub-
Rayleigh crack in an infinite medium has no inertia and v

adjusts instantaneously to fluctuations in Γ orGS [28]. Note
that for rate-dependent materials, the fracture energy ΓðvÞ
is not constant.
We analyze the rate dependence of the matrix and

obstacle material by independently plotting Γ vs v (see
averaged data as dashed line in Fig. 3 or full data in Fig. S3
of [28]). We observe that our measurements are in good
agreement with a model [24] (solid line in Fig. 3) that
considers the actual dissipative mechanism taking place
within the process zone. Within the matrix or obstacle
material, the fracture energy follows this kinetic law. At the
material boundaries, however, the rupture needs to jump
from one kinetic law to the other. The jump amplitude is
governed by the equation of motion [Eq. (1)]. The jump
trajectory in the Γ − v space corresponds to the right-hand
side of Eq. (1), which, since GSðlÞ is constant across the
boundary, corresponds to a diagonal line GSgðvÞ (arrows
in Fig. 3).
Thus, at a discontinuity in material property the equation

of motion of a crack becomes

GS ¼ ΓMðvMÞ=gðvMÞ ¼ ΓOðvOÞ=gðvOÞ; ð2Þ

which captures the experimentally observed velocity dis-
continuity at trapping and untrapping with no fitting
parameter [see Figs. 2(c) and 2(d)]. Equation (2) cannot
be solved explicitly. However, assuming a linear rate-
dependent fracture energy ΓðvÞ ≈ Γ0 þ γv, for the purpose
of discussion, the velocity jump becomes

vM − vO ≈ ΔΓ0

1 − vM=cR
γ þ ΓM

0 =cR
; ð3Þ
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FIG. 3. Experimental results for the same specimens shown in
Figs. 2(a) and 2(b)—with same color code. Data points represent
crack speed and fracture energy at the moment of transition of
material property. ΓðvÞ is separated in two distinct clusters
corresponding to the matrix and obstacle material. Black dashed
lines are the average fracture energy measurements based on 30
heterogeneous and 10 homogeneous samples [28]. Solid black
lines are the rate-dependent fracture energy law [24] for the
obstacle ΓOðvÞ and matrix ΓMðvÞ materials. The transition from
one branch to the other is described by GSðlÞgðvÞ—the equation
of the gray arrows [Eq. (1)].

(a) (b)

(c) (d)

FIG. 2. (a),(b) Experimental results for three specimens with
Δl=lsys ¼ 0.57. (a) v undergoes abrupt deceleration (l ¼
f30; 40; 50g mm) and acceleration (l ¼ f35; 45; 55g mm) when
the crack front is trapped and untrapped, respectively, at the
interface. (b) Discontinuities in Γ occur at trapping and untrap-
ping with higher values within the obstacle. (c) Trapping: speed
prior to entering the obstacle vM is plotted vs speed immediately
after vO. When the approaching velocity vM < vc ≈ 130 m=s, the
front arrests. (d) Untrapping: speed after exiting the obstacle vM

is plotted vs speed immediately before exiting vO. (c),(d) Solid
black line is the theoretical model [Eq. (2)] with �10% variation
in Γ (dotted lines).
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where ΔΓ0 ¼ ΓO
0 − ΓM

0 is the jump in fracture energy. This
simple result highlights that (i) the jump amplitude is the
same for trapping and untrapping [Figs. 2(c) and 2(d)] and
(ii) during trapping the velocity right after the interface is
zero if vM is smaller than a critical incident velocity vc
below which the obstacle causes crack arrest,

vc ≈ ΔΓ0=ðγ þ ΓO
0 =cRÞ: ð4Þ

All these features are discernible from our experimental
data and are captured fairly well by the model. Equation (3)
and a parameter study of Eq. (2) (see Fig. S3 in [28]) reveal
that the speed jump and vc are proportional to the toughness
discontinuityΔΓ0. The latter is particularly noisy because of
variations of fracture properties of both matrix and obstacle
material, i.e., Var½ΔΓ0� ¼ Var½ΓM

0 � þ Var½ΓO
0 �, assuming

ΓO
0 and ΓM

0 are uncorrelated. In the limit of small rate
dependency γ ≪ Γ0=cR, inertia controls the speed jumps,
which are then given by vM − vO ≈ ðΔΓ0=ΓM

0 ÞðcR − vMÞ
and the corresponding condition for crack arrest becomes
v < vc ≈ ðΔΓ0=ΓO

0 ÞcR. Conversely, in the limit of large rate
dependency γ ≫ Γ0=cR and quasistatic propagation
v ≪ cR, inertia can be neglected and the speed jumps
become constant vM − vO ≈ ΔΓ0=γ ≡ vc.
How does such a trapping or untrapping dynamics affect

the effective fracture properties Γ̄ of heterogeneous materi-
als? We compute the homogenized fracture energy Γ̄ by
integrating over an interval Δl of uninterrupted crack
propagation starting at li, the beginning of each matrix
or obstacle period,

Γ̄ðv̄Þ ¼ 1

Δl

Z
liþΔl

li

Γ½vðl̃Þ�dl̃: ð5Þ

As Γ in each phase depends on crack speed, Γ̄ depends on
it, too. Thus, we report Γ̄ as a function of the apparent crack
velocity v̄ ¼ Δl=

R liþΔl
li

v−1dl.
First, we assume Δl ≪ lsys, i.e., a clear separation

between the microstructural scale and the specimen scale.
Hence, it is possible to define intrinsic homogenized
fracture properties, decoupled from the specimen size
and the details of applied boundary conditions. Under this
assumption, GS remains constant during the entire crack
propagation. Thus, v and Γ are constant within each
material phase [insets in Fig. 4(a)], which allows us to
calculate the dissipation rate from Eq. (5) as

lim
Δl=lsys→0

Γ̄ ¼ βΓOðvOÞ þ ð1 − βÞΓMðvMÞ ð6Þ

and the apparent crack speed as

lim
Δl=lsys→0

v̄ ¼ ½β=vO þ ð1 − βÞ=vM�−1; ð7Þ

with β ¼ 1=2. Note that Eq. (7) is a weighted harmonic
mean that is dominated by its lower argument vO, so v̄ is
effectively lower than the arithmetic mean ½hvi ¼
βvO þ ð1 − βÞvM�. As a result, the apparent kinetic law
Γ̄ðv̄Þ is shifted “horizontally” toward lower speeds in
comparison to Γ̄ðhviÞ. This leads, in practice, to a resistance
to failure Γ̄ larger than the toughness spatial average hΓi ¼
βΓOðv̄Þ þ ð1 − βÞΓMðv̄Þ but lower than the obstacle tough-
ness ΓO predicted by rate-independent theory (see Fig. 4).
However, when comparing the infinite system size

prediction [Eqs. (6) and (7)] to our experimental measure-
ments,we observe higher effective toughness [see Fig. 4(b)].
The interplay between the size of the heterogeneity Δl and
the structural length scale lsys makes homogenization of
fracture properties particularly challenging. The emerging
effective toughness depends on the ratioΔl=lsys, andEqs. (6)
and (7) only represent a lower bound of Γ̄ðv̄Þ. The larger
Δl=lsys, the higher Γ̄ðv̄Þ, which can even exceedΓOðv̄Þ of the
obstacle material. This additional toughening, related to the
structural problem with Δl ≈ lsys, is quantitatively captured
by the theoretical solutions for Γ̄ðv̄Þ, which we derive from
Eqs. (5) and (1), assuming GS ∼ e−l=lsys . Note that as we
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0 100 200
50

100

150(a)
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FIG. 4. Homogenization of fracture energy Γ̄ vs average
velocity v̄. (a) Γ̄ assuming the scale separation condition
Δl ≪ lsys. Blue and red dots represent the state of the crack
within the two materials, which are related by Eq. (2), depicted as
a gray arrow. The black dot is the corresponding homogenized
state ðΓ̄; v̄Þ computed using Eqs. (6) and (7). By varying GS, one
can derive the entire homogenized fracture energy law Γ̄ðv̄Þ
[black solid line in (a),(b)]. (b) Γ̄ðv̄Þ, measured experimentally
using Eq. (5), is depicted as colored circles for a range of
Δl ≈ lsys. Colored solid lines are the theoretical solution for
Δl ≈ lsys derived using Eqs. (5) and (1) [28] (theory and
experiment colors correspond). (a),(b) Dash-dotted line and
dashed line are ΓOðvÞ and ΓMðvÞ from Fig. 3.
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approach Δl ≪ lsys, the experimental toughness converges
toward the theoretical one, and for Δl ≫ lsys the rupture
arrests before reaching the Δl required for homogenization
of fracture properties.
How do these observations translate to macroscopic

measurements? While measurements from total elastic
energy input (see Fig. S5 in [28]) present increased
toughness compared to the matrix material, they do not
exceed the obstacle material. This is because the additional
toughening observed at the small scale is a “horizontal
shift” of the kinetic law. However, we observe that the
macroscopic fracture energy is independent of Δl and
corresponds to the average of matrix and obstacle material,
which validates Eq. (6). Furthermore, crack arrest, as
described by Eq. (4), may play an important role in further
increasing the macroscopic toughness. Even very thin
obstacles may cause the crack to arrest, which raises
interesting questions of practical importance for material
design. How to design flaw insensitive materials whose
resistance to crack propagation—or ability to prevent a
crack from growing indefinitely—is directly proportional
to the obstacle toughness but independent of its size? What
are the strategies to translate this local toughening to the
macroscale and improve the mechanical integrity of struc-
tures through the use of damage-tolerant composites?
In summary, our study shows that the classical LEFM

equation of motion of cracks quantitatively predicts crack
dynamics at toughness discontinuities. The crack arrests if
it is slower than a threshold speed that is primarily
dependent on the toughness contrast and independent of
the characteristic size of the microstructure (i.e., obstacle
thickness), i.e., Eq. (4). When the crack penetrates the
tougher or weaker obstacle, it reacts by instantaneously
adapting its speed, which is mediated by the rate-dependent
fracture energy combined with inertia, i.e., Eq. (3). Finally,
the heterogeneous material presents an increased effective
(homogenized) toughness because of high fluctuations in
crack speed between obstacles and matrix and the rate-
dependent nature of the fracture energy. Direct experimen-
tal validation of Eqs. (3) and (4) is challenging due to
the limited temporal resolution and fluctuations in Γ,
but an increased toughness contrast and a focus on a
single interface could provide a path to overcome these
limitations.
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