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We investigate the problem of an infinitely heavy impurity interacting with a dilute Bose gas at zero
temperature. When the impurity-boson interactions are short-ranged, we show that boson-boson interactions
induce a quantum blockade effect, where a single boson can effectively block or screen the impurity potential.
Since this behavior depends on the quantum granular nature of the Bose gas, it cannot be captured within a
standard classical-field description. Using a combination of exact quantum Monte Carlo methods and a
truncated basis approach, we show how the quantum correlations between bosons lead to universal few-body
bound states and a logarithmically slow dependence of the polaron ground-state energy on the boson-boson
scattering length. Moreover, we expose the link between the polaron energy and the spatial structure of the
quantum correlations, spanning the infrared to ultraviolet physics.
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The scenario of an infinitely heavy impurity in a
quantum medium is a fundamental problem in physics,
with relevance ranging from electron gases [1] to open
quantum systems [2]. The behavior is well understood in
the case of an ideal Fermi medium [3,4] where the problem
can be solved exactly. Here, Anderson famously demon-
strated that any interaction with the impurity leads to the
orthogonality catastrophe in the thermodynamic limit [5].
However, there is currently much debate over the nature of
the ground state for a fixed impurity strongly coupled to a
dilute Bose gas, which is of immediate importance to
ongoing cold-atom experiments [6–12].
The bosonic problem—termed theBose polaron—appears

straightforward at first glance, since there is the possibility of
describing the condensed ground state of the Bose gas as a
classical field, e.g., in the form of a coherent state [13–17], or
governed by an effective Gross-Pitaevskii equation [18–20].
Furthermore, when theBose gas is noninteracting, the ground
state corresponds to all bosons occupying the lowest single-
particle state in the system, making it even simpler than the
fermionic case [21]. However, this tendency of bosons to
cluster also means that, in the absence of boson-boson
interactions, the Bose polaron ground-state energy diverges
when the impurity-boson interaction is attractive enough to
support a bound state [19,22]. Thus, it is an important and
nontrivial question how this pathological behavior is cured by
boson-boson interactions, and whether the details of the
impurity-boson interaction play a key role. This is of
particular interest in the case of short-range resonant
impurity-boson interactions, where the scattering length
a → �∞ and there is the prospect of universal physics,
independent of the microscopic details.

In this Letter, we show that in order to describe the
ground state of the Bose polaron, it is crucial to go beyond
classical-field descriptions and include the quantum
“granular” nature of the Bose gas. Specifically, once the
boson-boson scattering length aB is comparable to or larger
than the range r0 of the attractive impurity-boson potential,
a single boson from the gas can effectively screen or
block the impurity potential, as illustrated in Fig. 1. For a
sufficiently attractive impurity-boson potential with r0 → 0,
we find that this quantum blocking effect leads to universal
few-body bound states involving the impurity, in agreement
with Refs. [23,24]. Using exact quantum Monte Carlo
(QMC) methods [25–27], we show that the polaron energy
in the many-body limit exhibits a logarithmic dependence
on aB in the unitary regime a → �∞. We further illustrate
the importance of quantum correlations between bosons by

FIG. 1. Bosons (circles) in the presence of an attractive
impurity potential. If the range of the potential r0 is comparable
to or smaller than the boson-boson scattering length aB, then a
single boson can block the potential (left). Conversely, if r0 > aB,
as for a Rydberg [9] or ionic [31] impurity, then many bosons can
interact with the potential at once (right).
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showing that the QMC results for the polaron ground-state
energy are well captured by a truncated basis variational
approach [28–30] across a range of interactions.
Model.—We consider the following Hamiltonian for a

single infinitely heavy impurity in a Bose gas:

Ĥ ¼
X
k

ϵkb
†
kbk þ

X
kk0q

VðqÞ
2

b†kb
†
k0bk0þqbk−q þ g

X
kk0

b†kbk0 :

ð1Þ

The three terms correspond, respectively, to the kinetic
energy of the bosons, the boson-boson interaction, and the
boson-impurity interaction, where we have set the system
volume and ℏ to one. In this model, a boson of mass m and
momentumk is created by the operator b†k, and we consider
bosons with the quadratic dispersion ϵk ¼ jkj2=2m≡
k2=2m. Furthermore, we describe their interaction using
the short-range potential VðqÞ, which results in a low-
energy boson-boson scattering length aB > 0. The inter-
action between the impurity and a boson is taken to be
short-ranged and of strength g up to a momentum cut-
off Λ. The bare parameters g and Λ can be related to
the physical impurity-boson scattering length a via
m=2πa ¼ 1=gþPΛ

kð1=ϵkÞ. In the following, we take
the zero-range limit r0 → 0, which requires Λ → ∞. For
the QMC calculations, we solve the problem in real space,
using a Bethe-Peierls boundary condition for the impurity-
boson interactions, and taking the boson-boson potential to
be a hard-sphere potential, where the diameter of the sphere
coincides with the s-wave scattering length aB (see
Supplemental Material [32]).
Few-body bound states.—We first discuss the few-body

physics of an infinitely heavy impurity interacting with NB
identical bosons, where we assume that a > 0 such that the
impurity potential supports a bound state. For NB ¼ 1, we
simply have the impurity-boson bound state with energy
−εb ¼ −1=2ma2, while NB ¼ 2 corresponds to the min-
imal number of bosons where boson-boson correlations can
emerge. In Fig. 2(a) we display the QMC results for the
NB ¼ 2 energy for a range of aB. We find that a trimer (2-
boson) bound state only exists when the scattering length a
is above a critical value a� ≃ 10aB set by the boson
repulsion. Moreover, the trimer energy remains close to
−εb (i.e., the result for NB ¼ 1) for the plotted range of
aB=a spanning several orders of magnitude, and it only
slowly approaches the result for uncorrelated bosons, −2εb,
as we take aB=a → 0. A similar behavior is observed for
NB ¼ 3, since we see that the tetramer (3-boson) bound
state also only exists when a > a�, and the tetramer energy
lies well above the uncorrelated result, −3εb. Therefore, we
conclude that boson repulsion dominates the few-body
behavior.
Indeed, we find that we can reproduce these few-body

states when the bosons only block each other at the

impurity and are noninteracting otherwise. Such a scenario
is achieved with a bosonic Anderson model [23,24], where
the impurity-boson interaction features an open and closed
channel like in a realistic cold-atom scattering process [41].
Here, the impurity is unavailable for interactions with
other bosons once a boson enters the closed-channel state,
thus mimicking the quantum blockade effect in Fig. 1. We
previously solved the NB ¼ 2 problem exactly analytically
for this model and we obtained the critical scattering
length a� ¼ 3.1426jreff j, where reff is the (negative) effec-
tive range of the impurity-boson interactions [23,24].
Moreover, we found that a� corresponded to a multibody
resonance beyond which all NB > 1 bound states cease to
exist. We display the results of this two-channel model in
Fig. 2(a) and find good agreement with the QMC data. This
demonstrates two points: the few-body energies universally
depend on the ratio a�=a, and the behavior is determined by
quantum blocking at the impurity.

FIG. 2. (a) Trimer energy as a function of inverse scattering
length obtained from QMC (black circles), bosons with attractive
contact interaction (black dot dashed line), and the Anderson
model (purple dashed line). The inset compares the tetramer
energy in the QMC with those of the Anderson model. (b) Few-
body energy at a=aB ¼ 75 as a function of boson number
calculated within the QMC (black circles). We also show the
energy of uncorrelated bosons, E ¼ −NBεb (gray dashed line),
and that of interacting bosons in an effective potential that
accounts for three-body correlations, Eq. (2), with U ¼ 0.04εb ¼
1.5aB=ma3 (blue dotted line). Data for the Anderson model are
taken from Ref. [23].
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Such few-body universality also extends to models
with zero-range boson-boson interactions. In this case, a
finite positive aB requires an underlying attractive poten-
tial VðqÞ, which features Efimov physics as well as
deeply bound dimers [32]. Thus, the relevant few-body
states with effective boson-boson repulsion are actually
metastable excited states. Nonetheless, it is possible to
solve for the energy of the metastable trimer state [32]
and we see that it agrees well with the results of the
other models in Fig. 2(a). We also find the critical
scattering length to be a� ¼ 20.0aB, which differs slightly
from that estimated from the QMC simulations for a
hard-sphere potential, indicating that finite-range effects
are relevant in the relationship between a� and boson
repulsion.
Within QMC, we can extend our results to even larger

NB complexes. Fixing a�=a < 1, we observe in Fig. 2(b)
that the energy strongly deviates from the uncorrelated
result E ¼ −NBεb (dashed gray line) and appears to
saturate to a finite value with increasing NB. Moreover,
this does not match the energy of interacting bosons in a
potential, E ¼ −NBεb þ UNBðNB − 1Þ=2, for any inter-
action energy U. We expect this behavior to also hold for
a nonzero range r0 as long as we satisfy the blocking
condition r0 ≲ aB, illustrated in Fig. 1. This condition is
equivalent to requiring that the boson interaction energy,
∼aB=mr30, exceeds the depth of the potential, ∼1=mr20,
assuming that the potential is close to resonance and using
the fact that bosons within the potential interact over a
volume set by r30 [42].
We can understand the result of Fig. 2(b) by considering

instead NB − 1 bosons moving in the longer-ranged poten-
tial originating from the infinitely heavy dimer consisting
of the impurity and a boson. In this case, the range of the
effective potential is ∼a and the energy of interacting
bosons is

E ¼ −εb − ðNB − 1ÞεT þU
2
ðNB − 1ÞðNB − 2Þ; ð2Þ

where εT is the trimer binding energy. In Fig. 2(b), where
a ≫ aB and εT ≪ εb, we see that the small-NB behavior is
well captured by Eq. (2) usingU ∼ aB=ma3. This illustrates
the importance of three-body correlations as well as
demonstrating the role of the potential range.
Many-body limit.—We now turn to the behavior of an

impurity in a Bose gas of finite density n. In the absence of
the impurity and in the limit of vanishing boson-boson
interactions, the ground state is a Bose-Einstein condensate

(BEC): jΦi ¼ e
ffiffi
n

p ðb†0−b0Þj0i, where j0i is the vacuum state
for bosons. Thus, we can replace operators b†0 and b0 in the
Hamiltonian (1) by

ffiffiffi
n

p
. Introducing the impurity and

turning on interactions, the polaron ground state can be
written in the general form [29],

jΨi¼
�
α0þ

X
k≠0

αkb
†
kþ

1

2

X
k1;k2≠0

αk1k2
b†k1

b†k2
…

�
jΦi; ð3Þ

where the complex coefficients αj are associated with
different numbers of bosons excited out of the condensate,
and αk1k2

¼ αk2k1
. In principle, one could write the

expansion in Eq. (3) in terms of Bogoliubov excitations
rather than bare bosonic excitations [28,44]. However, this
only modifies the operators at low momenta k < 4

ffiffiffiffiffiffiffiffiffiffiffi
πnaB

p
,

and this is not expected to affect the leading order behavior
of the polaron energy in the extremely dilute limit
n1=3aB ≪ 1 [29]. It is also likely that the Bogoliubov
approximation breaks down in the regime of strong
impurity-boson interactions [45,46].
Applying the Hamiltonian (1) to the state (3) and keeping

only the leading order boson-boson interaction terms in
the limit n1=3aB ≪ 1, we obtain the ground-state polaron
energy [32]:

E ¼ n

�
m
2πa

þ
X

k

�
1

ϵk þGk
−

1

ϵk

��
−1
: ð4Þ

Crucially, we find that it depends on the repulsive corre-
lations between bosons via the positive function

Gk ¼ g
ffiffiffi
n

p �X
k0

αkk0=αk −
X
k0

αk0=α0

�
: ð5Þ

Note that the case of uncorrelated noninteracting bosons
corresponds to αkk0 ¼ αkαk0=α0, which givesGk ¼ 0, such
that the polaron energy E ¼ 2πna=m, in agreement with
previous work [19,22]. Thus, the presence of correlations is
necessary to ensure that the ground-state energy remains
finite in the unitarity limit 1=a → 0.
This behavior is confirmed in Fig. 3, where we display

the polaron ground-state energy obtained using exact
QMC methods for two different densities differing by 2
orders of magnitude. For weak impurity-boson attraction
1=n1=3a ≪ −1, we recover the mean-field uncorrelated
result E ¼ 2πna=m, which corresponds to the leading
order dependence of Eq. (4) on a. However, as anticipated,
the energy becomes sensitive to boson-boson correlations
as we increase the interactions toward unitarity. This
behavior is not just limited to zero-range impurity-boson
interactions since the same result is obtained for a finite-
range potential when r0 < aB [25]. Note that this behavior
goes beyond the few-body results discussed previously
since the impurity-boson bound state is either absent (when
a < 0) or larger than the interparticle spacing (n1=3a≳ 1).
To further characterize the correlations, we also calculate

the polaron energy using a variational approach [29],
where we truncate the number of bosonic excitations in
the polaron ground state in Eq. (3) [32]. Here we again use
the Anderson model to mimic the blockade effect at the
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impurity, and we use an effective range reff ≃ −3aB. This
ensures that the value of the three-body parameter a� that
quantifies the boson-boson repulsion matches the one from
the QMC simulations. As shown in Fig. 3, we find that the
truncated basis approach accurately reproduces the QMC
results across a wide range of n1=3a� (up to 2 orders of
magnitude) when we include up to three excitations only.
This suggests that the boson-boson repulsion suppresses
impurity-induced excitations of the condensate, and that
this suppression is universal, i.e., independent of the
microscopic origin of a�. We stress that this is a highly
quantum effect that cannot be captured by a classical mean-
field description [47].
At unitarity 1=a ¼ 0, the polaron energy takes the

universal form,

E ¼ −fðn1=3aBÞn2=3=m; ð6Þ

where fðxÞ is a dimensionless function. When aB → 0 at
fixed density, we know that E → −∞, while in the zero-
density limit n → 0, we must have E → 0 since there are
no bound states. Thus, in the limit n1=3aB → 0, we require
fðxÞ → ∞ slower than ∼1=x2. Indeed, our QMC results
reveal a logarithmically slow dependence fðxÞ ∼ − lnðxÞ,
as shown in Fig. 4. This behavior is difficult to fully capture
within the truncated basis approach [32] since it requires
an increasingly larger number of boson excitations as
n1=3aB → 0. On the other hand, if we use a coherent-state
ansatz [13] with an infinite number of excitations but only
the approximate mean-field repulsion of the Bogoliubov
Hamiltonian, then we have fðxÞ ¼ ffiffiffiffiffiffiffiffiffiffi

π=4x
p

, which drasti-
cally overestimates the change in energy (see Fig. 4).
The classical-field approach in Ref. [20] also predicts a

power-law behavior fðxÞ ∼ 1=x1=3, but this is only valid
when r0 ≫ aB, which is different from the regime consid-
ered here [48].
Indeed, the polaron energy is intimately connected to the

spatial structure of the boson-boson correlations via the
function Gk in Eq. (4), which can be viewed as an effective
interaction potential between two excited bosons. In the
infrared limit k → 0, where the bosons are at large
separation, we should recover the behavior of uncorrelated
bosons. Here, we expect that the difference in energy
between one and two excited bosons is their mean-field
interaction with the condensate, 8πaBn=m. This large-
distance infrared behavior is correctly captured by the
coherent state ansatz [13], which, however, fails at shorter
length scales since it predicts a constant Gk ¼ 8πaBn=m
for all k and a [32]. In reality, we expect the blockade effect
to dominate at short distances such that αkk0 → 0, and in
this case one can show that Gk → −E as k → ∞ [32]. This
short-distance ultraviolet behavior is captured by a “Chevy-
type” ansatz with a single boson excitation [44,50,51],
but this ansatz does not describe the large-distance physics
since it has Gk ¼ −E at all momenta. However, the
momentum dependence of Gk can be well approximated
within a truncated basis approach that includes more boson
excitations [32], as considered in this work. In particular,
our results indicate that quantum blocking at short distances
dominates the behavior of the polaron energy while the
infrared physics only provides a small correction.
Conclusion.—To conclude, we have shown that the

ground state of the Bose polaron exhibits strong quantum
correlations between bosons when the impurity-boson
potential is short-ranged. This is due to a quantum blockade
effect at the position of the impurity, which gives rise to
universal few-body bound states and a logarithmically
slow dependence of the polaron energy on boson-boson

FIG. 4. Bose polaron ground-state energy in the unitarity
regime of impurity-boson interactions, 1=a ¼ 0. The QMC
results (symbols) are consistent with a logarithmic dependence
of the form EQMC ≃ 0.36 lnð0.019n1=3aBÞn2=3=m (solid line). The
dashed red line is the prediction of the coherent state ansatz
within the Bogoliubov approximation [13].

FIG. 3. Ground-state energy of the infinitely heavy Bose
polaron as a function of inverse impurity-boson scattering length
at fixed n1=3a� ¼ 0.215 (purple dashed line) and n1=3a� ¼
0.00215 (green solid line). We show the results of the QMC
(symbols) together with the results of the truncated basis
approach in the Anderson model with up to three excitations
(lines). The mean-field result, E ¼ 2πna=m, is depicted as a
dotted line.
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interactions in the unitarity limit 1=a → 0. Our results
should be directly applicable to cold-atom experiments,
where typically r0 ∼ aB [41], and they should also extend to
a heavy but finite impurity massmI since Efimov physics is
exponentially suppressed as a function ofmI=m [52]. More
generally, the Bose polaron scenario could provide a route
to probing and engineering quantum correlations in other
bosonic systems such as photons in microcavities [53,54].
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