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Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in
selected excited Bloch bands of an optical checkerboard square lattice. For the spin-polarized case, extreme
band lifetimes above 10 s are observed, reflecting the suppression of collisions by Pauli’s exclusion
principle. For spin mixtures, lifetimes are reduced by an order of magnitude by two-body collisions
between different spin components, but still remarkably large values of about 1 s are found. By analyzing
momentum spectra, we can directly observe the orbital character of the optical lattice. The observations
demonstrated here form the basis for exploring the physics of Fermi gases with two paired spin components
in orbital optical lattices, including the regime of unitarity.
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Optical lattices are synthetic arrays of bosonic or
fermionic neutral atoms or molecules trapped in laser-
induced periodic potentials [1]. Aside from their practical
use in atomic clock applications [2] they are celebrated as
an ideal toolbox for quantum simulation of lattice physics
[3–6]. Their usefulness in the context of quantum simu-
lation of electronic crystalline matter requires in particular
the use of fermionic particles, which assume the role of the
electrons tunneling and interacting in a lattice of ionic
cores. In fact, there is a promising strain of research devoted
to emulate the fermionic Hubbard model [7] and to
experimentally explore its phase diagram [8–14], which
on the theory side even with modern computational power
has remained an open challenge. However, many of the
intriguing functionalities of crystalline electronic con-
densed matter rely on orbital degrees of freedom, which
play a decisive role for metal-insulator transitions, super-
conductivity, and colossal magnetoresistance in transition-
metal oxides [15,16]. Orbital p-like single-particle wave
functions have been recently simulated with electrons in the
second band of an artificial square lattice formed by an
array of carbon monoxide molecules on a Cu(111) surface
[17]. It is however not obvious how this scenario could be
extended to emulate many-body physics. A natural but
insufficient approach to extend optical lattices with fer-
mionic atoms to include higher Bloch bands is to load
sufficiently many atoms [18]. This, however, requires
multiply occupied lattice sites and, hence, leads to del-
eterious collisions of more than two particles resulting in
excessive loss and heating in connection with molecule
formation [19,20].
An alternative approach, that was pioneered for bosonic

atoms, selectively excites the atoms from the lowest band
into a desired higher target band, thus keeping the site

occupation low [21–24]. The underlying strategy is that the
functionality of interest takes place in a higher band and
does not discriminate between a filled or an empty lowest
band. There is reason to assume that two-body collisions
would lead to immediate band relaxation. However, theo-
retical [25,26] and experimental [21,24] research has
shown that with appropriately designed lattice geometries
reasonably long lifetimes can be realized, which has
triggered widespread interest in optical lattices with orbital
character [27].
For the first time, similar techniques are used in this work

to form fermionic optical lattices with orbital degrees of
freedom, which should prove useful as an advanced
generation of quantum simulators for electronic matter
beyond s-band lattice physics. For spin-polarized samples
and mixtures of two spin components, the efficiency, with
which selected excited bands can be occupied, as well as
the corresponding lifetimes are shown to notably exceed
the previous findings for bosons. We present exemplary
results on the loading efficiency for the second, fourth, and
seventh bands, but also higher bands can be addressed. For
spin-polarized samples, we observe lifetimes above 10 s,
limited by technical heating processes. Binary collisions,
expected to be suppressed by Pauli’s principle, are
observed to play no role in this case. In contrast, for spin
mixtures, two-body collisions between different spin com-
ponents are observed to reduce the lifetimes. However,
reasonably large values on the order of 1 s are also found in
this case. Momentum spectroscopy confirms the orbital
character of the formed wave functions. The techniques
shown here form the basis for exploring the physics of
Fermi gases with two paired spin components in orbital
optical lattices, including the regime of unitarity, and
hence may provide new fundamental insights into
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fermionic superfluidity in the presence of orbital degrees of
freedom [28–37].
As the initial step in our experiments, a spin-polarized

degenerate Fermi gas of up to 2.5 × 105 potassium atoms
(40K) in the hyperfine state jF ¼ 9=2; mF ¼ 9=2i with a
temperature T ¼ 0.18TF is produced in an optical dipole
trap, formed by two crossed laser beams with a wavelength
of 1064 nm. Radio-frequency techniques can be optionally
applied to prepare balanced spin mixtures of jF ¼
9=2; mF ¼ −9=2i (spin-up) and jF ¼ 9=2; mF ¼ −7=2i
(spin-down) atoms (see Ref. [38] for details). The atoms
are adiabatically loaded into a bipartite optical square
lattice, formed by two mutually orthogonal optical standing
waves with the same wavelength λ ¼ 1064 nm and aligned
along the x and y axes, respectively. The optical standing
waves are formed in a Michelson-Sagnac interferometer
that provides precision control of the associated band
structure (see Ref. [38] for details). The resulting lattice
potential is composed of deep and shallow potential wells
arranged as the black and white squares of a checkerboard,
denoted A and B, respectively [24]. In the xy plane, the
lattice potential is approximated by

Vðx; yÞ ¼ −V0½cos2ðkxÞ þ cos2ðkyÞ�

−
1

2
ΔV cosðkxÞ cosðkyÞ; ð1Þ

with the wave number k ¼ 2π=λ. Along the z direction the
atoms are weakly confined by an approximately harmonic
potential, such that the lattice wells acquire a tubular shape.
The potential depth V0 ≥ 0 and the potential difference
between A wells and B wells, ΔV ∈ V0 × ½−4; 4�, can be
controlled much faster than all relevant dynamical time-
scales. The lattice geometry in the xy plane is sketched in
Fig. 1(a) forΔV ¼ 0 andΔV < 0 in the left- and right-hand
panels, respectively. In Fig. 1(b), sections through the
lattice potential along the dashed lines in Fig. 1(a) are
shown. For ΔV ¼ 0, a monopartite lattice (i.e., with equal
A and B wells) is formed. Negative ΔV indicates deep A
wells and shallow B wells and vice versa for positive ΔV.
After the atoms (spin-polarized or spin mixtures) are

loaded to the lowest Bloch band of the optical lattice by

slowly ramping up V0 from zero to 5 − 15Erec in 150 ms, a
quench protocol similar to that previously applied to
bosonic atoms is used to transfer them into a selected
higher Bloch band. Here, Erec ≡ ℏ2k2=2m denotes the
single-photon recoil energy and m the atomic mass. The
central step is to rapidly tune ΔV from negative to positive
values in typically 100 μs. This technique has been
summarized for bosons in Ref. [24] and a more detailed
explanation adapted to the present work with fermions is
provided in Ref. [38]. The populations of the Bloch bands
are observed by means of a standard technique referred to
as band mapping (cf. Ref. [38]).
In Fig. 2(a) band mapping images for spin-polarized

samples are shown without excitation to higher bands
[Fig. 2(a1)] and after the excitation protocol is applied to
selectively excite the atoms to the second, fourth, and seventh

(a)

(b)

FIG. 1. (a) Lattice geometry in the xy plane for ΔV ¼ 0 (left)
and ΔV < 0 (right). The gray squares denote the unit cell of the
lattice. (b) Sections of the lattice potential along the dashed lines
in (a).
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FIG. 2. (a) Band mapping images showing the population of the
nth band in the nth Brillouin zones (BZs). Panel (a1) shows the
case if no excitation is applied; the other panels [(a2)–(a4)] show
the cases of excitation to the second, fourth, and seventh bands,
respectively. (b) The map of BZs is shown with (from left to right)
the first, second, fourth, and sixth and seventh BZs highlighted.
(c) Regular momentum spectra corresponding to the band
mapping images in (a). The color map on the left edge shows
the normalized optical density. (d) Horizontal (red line graphs)
and diagonal (blue line graphs) sections through the momentum
spectra in (c) along the red dashed and blue dashed lines in (c1),
respectively. (e) Momentum spectra for completely filled first,
second, fourth, and seventh bands (from left to right) calculated
for the same parameters as used in (c). The particle numbers in (c)
and (e) are normalized to unity and parametrized with the same
color map, shown in (c). In all plots in (a),(c)–(e) V0 ¼ 12Erec.
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band [Figs 2(a2)–2(a4)]. These images were recorded after
the atoms were held in the lattice for 50 ms with V0¼12Erec
and ΔVf=V0∈f−1.24;0.314;0.995;1.703g. The choices of
Vf adjusted for populating the second, fourth, and seventh
bands, according to an exact band calculation, provide
optimal selectivity since they maximize the gaps between
the target band and adjacent bands (cf. Ref. [38]). A
comparison with the theoretically expected Brillouin zones
(BZs) in Fig. 2(b) shows that in Figs. 2(a2) and 2(a3) the
second and fourth BZs are selectively populated, respec-
tively, with remarkable efficiency. In Fig. 2(a4), the sixth and
seventh BZ shows population in accordancewith the expect-
ation of a band crossing between the sixth and seventh band
occurring during the band mapping procedure, as predicted
by an exact band calculation (cf. Ref. [38]). The total
fractions of atoms prepared in the first, second, fourth,
and seventh bands, normalized to the total number of atoms
initially loaded into the lattice, are 0.67, 0.67, 0.57, 0.62,
respectively. Note that due to quantum pressure of the
fermionic atoms, finite temperature, and the trap potential,
without excitation, only 2=3 of the atoms are prepared
in the first band, while the rest is found in higher bands
[cf. Fig. 2(a1)]. If we account for this circumstance and
normalize the number of particles in the target bands after
excitation by the number of atoms loaded to the first band, if
no excitation is applied, one obtains remarkable fractions of
0.996, 0.84, and 0.92 for population of the second, fourth,
and seventh bands, respectively. Very similar results are
found for spin mixtures.
In Fig. 2(c), we show regular momentum spectra

(cf. Ref. [38]), recorded after the atoms have dwelled for
50 ms in the lattice, which exhibit direct signatures of the
orbital character of the optical lattices formed in the second,
fourth, and seventh bands. The shown images directly
correspond to the band mapping images in Fig. 2(a). These
momentum spectra are expected to display squared abso-
lute values of the Fourier transforms of the prevailing
Wannier functions. For the case of Fig. 2(c1), the atoms
reside in the local s orbitals of the lowest band, in
accordance with the observation of a perfectly isotropic
momentum distribution. In Fig. 2(c2), the second band is
populated and, hence, the atoms populate both s orbitals in
the shallow wells and p orbitals in the deep wells. In fact,
the momentum distribution appears as a superposition of a
large s-like component as in Fig. 2(c1), however less
localized, and a small p-like component that displays
a cloverleaf structure with an extra node in the center.
This is better seen in the sections through the images
Figs. 2(c1)–2(c4) shown in Fig. 2(d). The red (blue) line
graphs show sections along the red dashed horizontal (blue
dashed diagonal) line indicated in Fig. 2(c1). The super-
position of s and p contributions explains the nearly flat top
seen in the sections below Fig. 2(c2). In Fig. 2(e),
calculated momentum spectra are shown, which reproduce
the main features of the observations in Figs. 2(c1)–2(c4).

The images in Fig. 2(e) result from an exact
band calculation for the lattice parameters applied in
Figs. 2(c1)–2(c4), neglecting the finite system size, the
effect of the trap potential, and assuming that exclusively
the target band is completely filled.
The lifetime for bosonic quantum gases in higher bands

is limited by two-body s-wave collisions [24,26,27,42]. In
Ref. [43], it has been shown that specific parameter
configurations can be found, where different scattering
processes destructively interfere with the result of remark-
ably long lifetimes on the order of several 100 ms. In the
following, we explore the band decay dynamics after
exciting a large fraction of fermionic atoms to the second
band. In the case of spin-polarized samples, s-wave
scattering is suppressed by Pauli’s principle, and the first
higher order scattering contribution, i.e., p-wave scattering,
is negligible at the given low temperatures well below
100 nK. At the same time, collisions with hot background
atoms are negligible on the few 10 s timescale, investigated
here, as confirmed by the observation of lifetimes in the
dipole trap of several minutes. Hence, interaction is
expected to be practically irrelevant for band relaxation
of spin-polarized samples. This gives rise to extreme band
lifetimes, which are about 2 orders of magnitude longer
than what has been observed with bosons. The main
limitation is expected to arise through heating processes
due to shaking of the lattice potential resonant with
interband transitions. Heating with respect to the z direc-
tion, confined by a weak harmonic potential, is expected to
be comparatively small. For a minimal model of the band
decay dynamics, we consider the populations of the first
and second bands, N1 and N2, respectively, and in addition
the population NL of all other bands, that are assumed not
to be confined by the lattice potential and are hence
considered as lost from the system. Heating couples the
populations N1 and N2 by balanced transfer rates g12. In
addition, N2 loses atoms toward NL at a rate gL, which
gives rise to the two equations,

_N1 ¼ g12ðN2 − N1Þ;
_N2 ¼ g12ðN1 − N2Þ − gLN2: ð2Þ

This minimal rate equation model is illustrated in Fig. 3(a).
At t ¼ 0 about 105 spin-polarized fermions are prepared in
the second band such that N2ð0Þ=N1ð0Þ ≈ 5. The band
mapping image in Fig. 3(a) shows the initial distribution of
atoms across the BZs at t ¼ 10 ms, confirming predomi-
nant occupation of the second BZ. The observed time
evolution of N1ðtÞ (red symbols) and N2ðtÞ (blue symbols)
is shown in Fig. 3(b). The model in Fig. 3(a) is used to
determine the parameters g12 ¼ 0.0456� 0.0015 and gL ¼
0.0432� 0.0009 by simultaneously fitting with respect to
both datasets in Fig. 3(b). An analytic solution of this
model shows that the decay of N2ðtÞ is exponential during
the first 10 s with a 1=e decay time of 16.1 s.
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For mixtures of the two spin components jmF ¼ −9=2i
and jmF ¼ −7=2i, s-wave collisions between different spin
states are possible. The singlet and triplet scattering lengths
at zero magnetic field are 105a0 and 176a0, respectively
(a0 ¼ Bohr radius) [44]. For modeling band relaxation,
only band-index changing collisions are relevant. We
assume that, similarly as found for bosons in the same
lattice potential [26,43], the dominant collisional process
leading to loss of second band population is associated with
a transfer of pairs of colliding spin-up and a spin-down
atoms to the first band. Thereby, in fulfillment of energy-
momentum conservation, an energy per particle of approx-
imately the band gap between the first and second bands is
deposited into motion along the z axis. Starting with a
balanced spin mixture, it is reasonable to assume that the
same dynamical evolution holds for both spin components.
In the absence of binary collisions, we may hence describe
each spin component by the same equations used for the
spin-polarized case [Eq. (2)] with according particle num-
bers N1 and N2 representing the populations of either spin
component in the first and second bands.
In an extended minimal relaxation model, including

binary collision transfer between the second and first band,
we have to consider an additional class of atoms with

population Z1 belonging to the first band but possessing
additional excitation along the z axis with an energy similar
to the band gap between the first and second band.
Similarly as for the case of N2, also Z1 is subject to a
decrease by heating toward the lost atom populationNL at a
rate fL. The decrease of N2 toward Z1 is modeled by a two-
body collision term gN2

2, with g≡ β=ð2VN2;effÞ, where β
denotes the two-body collision parameter and VN2;eff is the
effective volume of the sample in the state jN2i [45,46].
Conversely, the decrease of Z1 towardN2 is given by a two-
body collision term fZ2

1, with f ≡ β=ð2VZ1;effÞ, where
VZ1;eff is the effective volume of the sample in the state
jZ1i. We expect VZ1;eff > VN1;eff and hence f < g. This
relaxation model is sketched in Fig. 3(c) with the equations

_N1 ¼ g12ðN2 − N1Þ;
_Z1 ¼ gN2

2 − fZ2
1 − fLZ1;

_N2 ¼ fZ2
1 − gN2

2 þ g12ðN1 − N2Þ − gLN2: ð3Þ

In Fig. 3(d), initially most atoms are loaded into the
second band, as illustrated by the band mapping image
in Fig. 3(c), showing the initial distribution of atoms
across the BZs at t ¼ 10 ms with most atoms seen in
the second BZ. The total populations detected in the first
(red symbols) and second (blue symbols) bands, N1 þ Z1

and N2, respectively, are plotted versus the hold time. The
solid lines are obtained by using the heating rates g12 ¼
0.0456 and gL ¼ 0.0432, found for the spin-polarized case,
and by determination of g ¼ ð6.472� 0.234Þ × 10−6,
f ¼ ð1.936� 0.173Þ × 10−6, and fL ¼ 0.0167� 0.0015
via simultaneously fitting the model of Eq. (3) to both
datasets in Fig. 3(d). Note that a significantly faster, clearly
nonexponential decay of N2 is observed as compared to
Fig. 3(b). We may roughly estimate β ≈ ησv̄, where σ ¼
4πa2 is the free-space scattering cross section with the
scattering length a ¼ 176a0, v̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8kBT=mπ
p

is the mean
thermal velocity for the temperature T ¼ 30 nK, and m is
the atomic mass of potassium. The factor η accounts for a
transition matrix element involving the initial and final
wave functions before and after the collision in the lattice
potential. In previous experiments with bosons, small η ≪
1 have been found to give rise to long lifetimes of higher
bands [24]. With VN2;eff ≡ N2

2=
R

dr3n22ðrÞ ≈ 10−8 cm3,
where n2ðrÞ is roughly approximated by the density profile
in the dipole trap, one obtains g ≈ 6 × 10−4η. By compari-
son with the value determined in the context of Eq. (3), one
finds η ≈ 10−2.
In summary, selected excited Bloch bands of an optical

square lattice have been loaded with a quantum degenerate
Fermi gas with a single or two balanced spin components.
In the former case, extreme band lifetimes (> 10 s) are
observed as a result of the suppression of collisions due to
Pauli’s principle. For spin mixtures the lifetime is still on
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FIG. 3. (a) Model for band relaxation dynamics of spin-
polarized samples after the second band is selectively populated,
according to the band mapping image showing dominant pop-
ulation of the second BZ. (b) Observed populations in the first
(N1, red symbols) and second (N2, blue symbols) bands are
plotted versus the holding time. The solid traces result from the fit
model in (a). (c) Extended relaxation model for balanced spin
mixtures, including a class of atoms with population Z1 residing
in the first band with additional excitation of motion along the z
axis. Binary collision processes (illustrated by blue arrows)
exchange pairs of spin-up and spin-down particles between
jN2i and jZ1i. (d) Observed populations in the first (N1 þ Z1,
red symbols) and second (N2, blue symbols) bands are plotted
versus the holding time. The solid traces result from the fit model
in (c). In (b) and (d), V0 ¼ 7Erec and ΔV ¼ 3.1Erec. The error
bars in (b) and (d) show statistical errors for averages of 20–30
experimental runs.
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the order of 1 s although limited by binary collisions
between different spin components. The techniques dem-
onstrated here form the basis for simulating fermionic
superfluidity in orbital optical lattices. Similar techniques
also apply for a wide range of other lattice geometries,
including the hexagonal boron nitride lattice [47] or the
Lieb lattice [48], known from cuprate high-temperature
superconductors.
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