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Scalar fields coupled to the Gauss-Bonnet invariant can undergo a tachyonic instability, leading to
spontaneous scalarization of black holes. Studies of this effect have so far been restricted to single black
hole spacetimes. We present the first results on dynamical scalarization in head-on collisions and
quasicircular inspirals of black hole binaries with numerical relativity simulations. We show that black hole
binaries can either form a scalarized remnant or dynamically descalarize by shedding off its initial scalar
hair. The observational implications of these findings are discussed.
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Introduction.—Despite the elegance of Einstein’s theory,
it presents several shortcomings: explaining the late-time
acceleration of the Universe and providing a consistent
theory of quantum gravity or the presence of spacetime
singularities [e.g., in black holes (BHs)]. Candidate theories
(of quantum gravity) that remedy these shortcomings
typically predict the coupling to additional fields or higher
curvature corrections [1]. Binary BHs, their gravitational
wave (GW) emission, and the first GW detections by the
LIGO-Virgo Collaboration [2,3] offer unique insights into
the nonlinear regime of gravity that unfolds during the
BHs’ inspiral and merger and enable new precision tests of
gravity [4,5]. So far, these tests have been parametrized null
tests against general relativity (GR) [6,7] or used a mapping
between these parameters and those of specific theories
[8–10]. To do the latter, however, requires GW predictions
in specific theories.
One of the most compelling beyond-GR theories, scalar

Gauss-Bonnet (SGB) gravity introduces a dynamical scalar
field coupled to the Gauss-Bonnet invariant. SGB gravity
emerges in the low-energy limit of quantum gravity
paradigms such as string theory [11], through a dimen-
sional reduction of Lovelock gravity [12] and is the
simplest model that contains higher curvature operators.
The most studied class of SGB gravity with a dilatonic or
linear coupling to the scalar field gives rise to hairy BHs
[13–19]. This theory, however, has been strongly con-
strained with GW observations from binary BHs [9].

We turn our attention to another interesting class of SGB
gravity that is both unconstrained by GW observations and
gives rise to (spontaneously) scalarized BHs [20,21].
Spontaneous scalarization is a familiar concept in
beyond-GR theories; e.g., it is well established for neutron
stars in scalar-tensor theories [22,23]. In such theories, the
neutron star matter itself can induce a tachyonic instability
that spontaneously scalarizes the star. When placed in a
binary system, initially unscalarized neutron stars can
scalarize dynamically near their merger or a scalarized
neutron star can induce a scalar field in their unscalarized
companion [24–27]. In SGB gravity, it is the spacetime
curvature itself that induces scalarization of BHs [20,21],
although this has only been shown for isolated BHs so far.
In this Letter, we investigate, for the first time, dynamical
scalarization in binary BHs. We concentrate on head-on
collisions of BHs, but also present the first binary BH
inspiral study. Before doing so, it is convenient to first
review the basics of SGB gravity and spontaneous BH
scalarization.
Scalar Gauss-Bonnet gravity and scalarization.—SGB

gravity is described by the action

S ¼ 1

16π

Z
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where a real scalar field Φ is coupled to the Gauss-Bonnet
invariant G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ, through the
function fðΦÞ and a dimensionful coupling constant
αGB. We use geometrical units c ¼ 1 ¼ G, in which αGB
has units of ½length�2. The action (1) gives rise to the scalar
field equation of motion

□Φ ¼ −ðαGB=4Þf0ðΦÞG; ð2Þ
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where we defined ð·Þ0 ¼ dð·Þ=dΦ. The function fðΦÞ
selects different “flavors” of SGB gravity [28,29]. One
subset of these theories has f0 ≠ 0 everywhere. It includes
variants of SGB gravity with dilatonic fðΦÞ ∝ expðΦÞ
[13–15] or shift-symmetric fðΦÞ ∝ Φ [17,18,30] cou-
plings, in which BHs always have scalar hair [19,31].
Another interesting class of SGB theories admits an
extremum f0ðΦ0Þ ¼ 0 for a constant Φ0. They give
rise to an effective space-dependent mass term m2

eff ¼
−f00ðΦ0ÞG. This class includes quadratic fðΦÞ ∝ Φ2

[21,32] and Gaussian fðΦÞ ∝ expðΦ2Þ [20] models.
The latter class still admits all vacuum (BH) solutions of

GR together with Φ ¼ Φ0 ¼ const. In fact, if f00ðΦ0ÞG < 0
these solutions are unique due to a no-hair theorem [21]. A
linear stability study of these Φ0 ¼ const solutions around
a Schwarzschild BH reveals that this condition is a require-
ment for the absence of a tachyonic instability (m2

eff > 0)
for the scalar field perturbations [21]. If the effective mass
m2

eff < 0, a tachyonic instability is triggered and the SGB
scalar field is excited and spontaneously scalarizes the BHs.
This linear instability [33] is quenched at the nonlinear
level, resulting in a scalarized BH as end state [34]. The
simplest theory that admits scalarized BHs is described by
the quadratic coupling fðΦÞ ¼ β̄2Φ2, where β̄2 ¼ const
[35]. The relevant parameter in this theory is the dimen-
sionless constant β2 ¼ ðαGB=m2Þβ̄2, where m is the char-
acteristic mass of the system.
The onset of scalarization is fully determined by the

scalar’s linear dynamics on a given GR background. For a
Schwarzschild BH of massm, for which G ≥ 0 everywhere,
scalarization first occurs for a spherically symmetric scalar
field if β2 ¼ βc ∼ 1.45123, a result in agreement with
nonlinear calculations [20,21]. For values below βc, the
scalar perturbation decays monotonically at late times (we
call them “subcritical”), precisely at βc the scalar field
forms a bound state around the BH (“critical”), and above it
the scalar field growths exponentially with time (“super-
critical”). This result was recently generalized to Kerr BHs,
where spin-induced scalarization can take place for β2 < 0,
for dimensionless spin parameters χ ≥ 0.5 [36–39].
Nonlinear rotating scalarized BH solutions in SGB gravity
were found for both positive [40,41] and negative [42,43]
values of β2. So far studies of scalarization in SGB gravity
focused on single BHs. We advance these studies to BH
binaries and expand upon [44], focusing on the quadratic
theory fðΦ̄Þ ¼ β̄2Φ2, as discussed next.
Numerical methods and simulations.—We investigate

BH scalarization in the decoupling limit, i.e., we numeri-
cally evolve the scalar field on a time-dependent back-
ground in vacuum GR that represents binary BH
spacetimes. Unless stated otherwise, we follow the
approach of [44] and refer to it for details. We foliate
the spacetime into spatial hypersurfaces with 3-metric γij
and extrinsic curvature Kij ¼ −ð2αÞ−1dtγij, where
dt ¼ ∂t − Lβ, with Lβ being the Lie derivative along the

shift vector βi, and α is the lapse function. We
write Einstein’s equations as a Cauchy problem and adopt
the Baumgarte-Shapiro-Shibata-Nakamura formulation
[45,46] of the time evolution equations complemented
with the moving-puncture gauge conditions [47,48]. We
prepare Brill-Lindquist initial data [49,50] for head-on
collisions or Bowen-York initial data [51,52] for a quasi-
circular BH binary.
To evolve the scalar field, we introduce its momentum

KΦ ¼ −α−1dtΦ and write its field equation (2) as

dtΦ ¼ −αKΦ;

dtKΦ ¼ −DiαDiΦ − α

�
DiDiΦ − KKΦ þ αGB

4
f0G

�
; ð3Þ

where Di is the covariant derivative associated with γij,
K ¼ γijKij, f0 ¼ 2β̄2Φ, and G is the Gauss-Bonnet invari-
ant of the background spacetime. We set the system’s total
mass to unity, i.e., M ¼ m1 þm2 ¼ 1, where m ¼ m1;2 is
the component’s mass. The scalar field is initialized either
as a spherically symmetric Gaussian shell (G), located at
r0 ¼ 12M and with width σ ¼ 1M as in [44], or as a bound
state (B) around each binary component

Φjt¼0 ¼
mr
ϱ2

�
c1 þ

c2mr
ϱ2

þ c3ðmrÞ2
ϱ4

�
; KΦjt¼0 ¼ 0:

ð4Þ

Here, ϱ ¼ mþ 2r, and c1 ¼ 3.683 75, c2 ¼ 4.972 416, and
c3 ¼ 4.972 416 × 102 are fitting constants to reproduce the
numerical results in [21].
We perform our numerical simulations with Canuda

[44,53–55], coupled to the open-source Einstein Toolkit

[56,57]. We extended the implementation of [44] to general
coupling functions f, including the quadratic coupling. We
employ the method of lines with fourth-order finite differ-
ence stencils to realize spatial derivatives and a fourth-
order Runge-Kutta time integrator. We use box-in-box
mesh refinement provided by Carpet [58]. The numerical
grid contains seven refinement levels, with the outer
boundary located at 256M and a grid spacing of dx ¼
1.0M on the outer mesh. To assess the numerical accuracy
of our simulations, we evolved Fig. 1(b) with additional
resolutions dx ¼ 0.9M and dx ¼ 0.8M. We find second-
order convergence and a relative discretization error of
ΔΦ00=Φ00 ≲ 0.5%, where Φ00 is the l ¼ m ¼ 0 multipole
of the scalar field. We present the corresponding conver-
gence plot for the scalar monopole and for the gravitational
wave l ¼ 2, m ¼ 0 mode in Fig. 1 of the Supplemental
Material [59].
Results.—We performed a large set of BH head-on

collisions with varying mass ratio q ¼ m1=m2 ≤ 1, total
mass M ¼ 1, and initial separation d ¼ 25M. The BHs
merge at tM ∼ 179.5M, as estimated from the peak of the
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l ¼ 2, m ¼ 0 multipole of the gravitational waveform. To
guide our choices of β2, we recall that the critical coupling
for the fundamental mode is β2;c ¼ βcðm=MÞ2 with
βc ∼ 1.45123, and m denotes either the individual BH’s
mass m1;2 or the total mass M. For example, for an equal-
mass binary withm1 ¼ m2 ¼ M=2, the critical coupling for

the individual holes is βð1Þ2;c ¼ βð2Þ2;c ¼ βc=4 ¼ 0.362 75 and

that of the final hole is approximately βf2;c ¼ βc, where we
neglected the small mass loss in the form of GWs during
the collision [60,61].
Here we present a selection of our results, illustrated in

Fig. 1, to highlight our most important findings. An
expanded discussion will be presented in a companion
paper [62]. We vary the initial state by setting the coupling
parameter β2 such that [Fig. 1(a)] none of the BHs are
initially scalarized, [Fig. 1(b)] the smaller-mass BH initially
carries a bound-state scalar field, and both BHs carry
initially a bound-state scalar that leads either to a non-
scalarized final BH [Fig. 1(c)] or a scalarized final BH
[Fig. 1(d)].
In Fig. 2 we show the l ¼ m ¼ 0 scalar field multipole

extracted on a sphere of fixed radius rex ¼ 50M, as a
function of time, and we present snapshots of the scalar’s
profile in the Supplemental Material [59]. In Fig. 1(a), the
scalar perturbation is not supported at all (since meff ¼ 0)

and, indeed, after a brief interaction at early times it decays
already before the BHs collide. In Figs. 1(b) and 1(c), we
find a constant scalar field before the BHs collide that is
consistent with a bound state around the individual (q ¼ 1)
or smaller-mass BH (q ¼ 1=2). After the merger, the scalar
field decays since the curvature (and thus meff ) decreases
and the system no longer supports a bound state—the final
BH dynamically descalarizes. In Fig. 1(d), the scalar field
grows exponentially before the merger because it is
supercritical for the individual BHs and settles to a constant
in time that is consistent with a bound state around the
final BH.
In Fig. 3, we show two-dimensional snapshots of the

scalar field and spacetime curvature for Fig. 1(b), which
illustrates the dynamical descalarization phenomenon [63].
The color map is shared among all panels and shows the
amplitude of log10jΦj, while the curves are isocurvature
levels of GM4 ¼ f1; 10−1; 10−2; 10−3g. Initially, at t ¼ 1M,
each BH (whose locations are revealed by the isocurvature
levels) are surrounded by nontrivial scalar field initial data
given by Eq. (4). At t ¼ 50M, the smaller BH hosts a
bound state scalar that is dragged along the hole’s motion,
inducing scalar dipole radiation that would impact the GWs
emitted. In contrast, the scalar field around the larger BH
disperses because its curvature is too small to sustain a
bound state for a coupling of β2 ¼ 0.362 81. The system
thus evolves as an sþ s̄ process in the notation of Fig. 1. At
t ¼ 160M, the BHs are about to merge, as indicated by the
two lobes in the isocurvature contours, the curvature of the
combined system decreases, and the scalar field starts
dissipating. At t ¼ 182M, which is shortly after the
collision, the system has descalarized since for the final
BH βf2;c > β2.
We also simulated the inspiral of an equal-mass, non-

spinning BH binary with initial separation of d ¼ 10M,
β2 ¼ 0.36281, and bound state scalar field initial data. This

FIG. 2. Time evolution of the scalar field l ¼ m ¼ 0 multipole
in the background of a BH head-on collision with initial
separation d ¼ 25M. It is rescaled by the extraction radius rex ¼
50M and shifted in time such that ðt − rex − tMÞ=M ¼ 0 corre-
sponds to the BHs’ merger. The labels refer to the four cases
summarized in Fig. 1.

FIG. 1. Summary of simulations of BH head-on collisions,
where s̄ and s stand for initial or final states that are either
nonscalarized or scalarized, respectively. Each diagram is labeled
by the initial data (Gaussian shell “G” or bound state “B”), the
mass ratio q ¼ m1=m2 (1 or 1=2), and the coupling parameter β2.
In case (a) (top left panel) two nonscalarized BHs produce a
nonscalarized remnant. In case (b) (top right panel) a scalarized
and a nonscalarized BH produce a nonscalarized remnant.
This initial configuration is possible when q is different from
one. In case (c) (bottom left panel) two scalarized BHs
produce a nonscalarized remnant. Finally, in case (d) (bottom
right panel) two scalarized BHs produce a scalarized
remnant.
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corresponds to an initial configuration in which both BHs
are scalarized, and then, after merger, the remnant is not
scalarized, which is analogous to Fig. 1(c) in the head-on
case. In Fig. 4, we show the gravitational quadrupole
waveform (bottom panel), as characterized by the l ¼
m ¼ 2 mode of the Newman-Penrose scalar Ψ4, together
with the scalar field’s monopole (top) and quadrupole
(middle). The scalar’s monopole Φ00 exhibits the distinc-
tive signature of descalarization: the increase in the field’s
amplitude during the inspiral of scalarized BHs is followed
by a complete dissipation of the scalar field after the merger
(tM ∼ 917M) as the curvature of the remnant BH no longer
supports a bound state. In addition, the dynamics of the BH
binary sources scalar quadrupole radiation. The field’s
amplitude grows exponentially during the inspiral and
decays after the BHs have merged. The origin of this
excitation is not direct scalarization of the l ¼ 2 scalar
bound state, but due to the inspiral of two scalarized (or

“hairy”) BHs. This interpretation is further supported by
the observation that the phase of the l ¼ m ¼ 2 scalar
mode is driven by the binary’s orbital frequency. We also
observed this for the l ¼ m ¼ 4 mode and expect it to
happen for all even l ¼ m modes. For q ¼ 1, the odd
l ¼ m modes are suppressed due to symmetry, whereas
they would be excited in the general case q ≠ 1. The
descalarization during the merger is reminiscent of the
decrease in scalar charge observed in the shift-symmetric
theory [44], however, with the striking difference that here
the remnant BH is a rotating GR solution.
Discussions.—We presented the first numerical relativity

simulations of the scalar field dynamics in binary BH
spacetimes in quadratic SGB gravity [21]. We found that
the interplay between mass ratio q and β2 can result in
different scenarios for the scalar field dynamics. Most
notably, it can lead to a dynamical descalarization of the
binary, which we observed in both head-on and quasicir-
cular inspiral simulations. Here we focused on β2 ≥ 0, but
the case β2 < 0would be particularly interesting to study in
inspiral simulations. More specifically, the spinning
remnant of a binary BH merger typically has a dimension-
less spin χ ∼ 0.7 [64], sufficient to trigger a spin-induced
tachyonic instability of the scalar field [36]. This is
currently under study [62]. It would be interesting to frame
this effect within the effective field theory (EFT) of [65] or
in a post-Newtonian framework [66–68].
The scalar excitations we have discovered during the

binary BH coalescence in this class of SGB theories have
important implications to GWobservations and tests of GR.
In particular, the scalar excitations will drain the binary of
energy as they propagate away from the system, the
monopole scalar piece inducing dipole losses, and the
quadrupole piece correcting the quadrupole GW losses of
GR, which, based on [69], are expected to only have the
same “plus” and “cross” polarizations. This enhanced
dissipation of energy and angular momentum, in turn, will
force the binary to inspiral faster than in GR and, therefore,
leave an imprint in the GWs emitted through corrections to
the rate at which the GW frequency increases during the

FIG. 3. Scalar field and Gauss-Bonnet dynamics on the xy plane for Fig. 1(b). We show the amplitude of log10 jΦj (color map) together
with the Gauss-Bonnet invariant (isocurvature levels) at the beginning of the evolution (top left), during the BHs’ approach (top right),
shortly before the collision (bottom left), and shortly after the merger (bottom right). The isocurvature levels correspond to 1M−4 (solid
line), 10−1M−4 (dashed line), 10−2M−4 (dot-dashed line), and 10−3M−4 (dotted line).

FIG. 4. Scalar and gravitational waveforms, rescaled by the
extraction radius rex ¼ 50M, sourced by an equal-mass BH
binary with bound state initial data on each BH. This system
is the inspiral counterpart of Fig. 1(c) and shows dynamical
descalarization in action.
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inspiral. This GW phase shift will enable us to project
bounds on SGB gravity that are similar in spirit but
complementary to the analysis of [44]. In fact, because
the merger leaves behind a “bald” Kerr black hole due to
dynamical descalarization, the (scalar) energy flux is, in
general, larger as compared to shift-symmetric SGB, where
the remnant black hole always retains some of its hair. This
suggests that strong observational bounds might be placed
on this theory. A detailed numerical analysis of this
expected GW phase shift during of the late inspiral, merger,
and ringdown will be presented in upcoming work [62].
Having worked in the decoupling limit, a question

naturally arises: what would we expect in the fully non-
linear regime of SGB gravity? It is known that nonlinear
effects set an upper bound on the scalar field magnitude at
the BH horizon [28], so that the domain of existence of
scalarized BHs exhibits a very narrow bandlike structure in
the phase space spanned by BH mass and coupling β2; see
Fig. 2 of [21]. This means that Fig. 1(d) would only occur
for sufficiently small mass ratios such that both the initial
binary and its final state remain in band. In general,
however, comparable mass BH binaries could undergo
an s̄þ s̄ → s process, in which two unscalarized BHs
would merge, forming a BH within the scalarization band.
The descalarization of the BH remnant would also impact
the GW emission during the ringdown. Specifically, the
waveforms in Fig. 4 show that the ringdown timescales of
scalar and tensorial modes are comparable. This suggests
that one should expect to see the imprint of the descala-
rization onto the quasinormal mode spectra of the Kerr
black hole in the nonlinear case. Performing these studies in
practice would require a general, well-posed formulation of
the time evolution equations outside the EFT approach
[44,70], small values of the coupling parameter [71,72], or
spherical symmetry [34,73–75]. Finding such a formu-
lation has proven challenging [76–79], although first results
in this direction were presented [80]. Our work motivates
and paves the way for future studies of nonperturbative,
beyond-GR effects in BH binaries, with potential impli-
cations to tests of GR with GW astronomy.
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