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We generalize Page’s result on the entanglement entropy of random pure states to the many-body
eigenstates of realistic disordered many-body systems subject to long-range interactions. This extension
leads to two principal conclusions: first, for increasing disorder the “shells” of constant energy supporting a
system’s eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent
in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body
localization transition individual eigenstates are thermally distributed over these shells. These results,
corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of
“nonergodic extended states” in many-body systems discussed in the recent literature.
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Introduction.—Complex quantum systems exposed to
external disorder may enter a phase of strong localization.
About two decades after the prediction of many-body
localization (MBL) [1–3], there is still no strong consensus
about the stability of the MBL phase and/or the possible
presence of an intermediate phase between MBL and the
thermal phase. One class of models where these questions
can be explored with more analytic control is confined
many-body systems with long-range interactions. Under
these conditions, the interaction operator couples all sin-
gle-particle states, which facilitates the analysis. At the same
time, the Hilbert space dimension is still exponentially large
in the particle number, which leads to rich physics relevant to
systems such as chaotic many-body quantum devices [4–7],
small sized optical lattices [8–10], or qubit arrays [11,12].
In recent years, the complex structure of many-body

quantum states in MBL has become a focus of intensive
research. Unlike with single particle problems, where
extended wave functions uniformly cover real space,
increasing the disorder in a phase of extended many-body
states jψi leads to a diminished wave function support in
Fock space. This phenomenon, which shows, e.g., in a
suppression of wave function moments (WFM) jhnjψij2q in
an occupation number basis jni, has led to the proposal of a
phase of “nonergodic extended states” [13–16] intermedi-
ate between the phases of absent and strong localization.
An alternative scenario is that for each realization of the
disorder only a subset of states fjnig have finite overlap
with the eigenstates of energy E, and in this way define a
quantum energy shell in Fock space. A uniform (thermal)
distribution of the exact eigenstates on this shell would then
be the defining criterion for maintained quantum ergodicity
on the delocalized side of the MBL transition.

At this stage, there is mounting evidence in favor of the
second scenario [17–20]. However, in order to firmly
characterize the physics of a globally realized many-body
ergodic quantum phase, two questions need to be
addressed: How can the energy shell be described in
quantitative terms? And what is the distribution of quantum
states on that shell? As indicated above, wave function
statistics can provide at least part of an answer to the first
question. In this Letter, we focus on the equally important
second part of the problem and demonstrate that the key
to its solution lies in concepts of quantum information.
Specifically, we will compute pure state entanglement
entropies (EE) under a relatively mild set of assumptions.
Within this framework we find that to zeroth order wave
functions remain thermally distributed over the shell. This
establishes a microcanonical distribution, in agreement
with the second scenario—maintained ergodicity in all
regimes prior to the transition. In addition, the EE contains
subleading terms which reflect the characteristic way in
which the energy shell is interlaced into Fock space. These
contributions sharply distinguish the energy shells of
genuine many-body systems from those of phenomeno-
logical high dimensional models such as the random energy
model (REM) or sparse random states [21]. In this way the
combined analysis of WFMs and EEs becomes a sensitive
probe into the complex manifestation of wave function
ergodicity in many particle systems.
Pure state entanglement entropies.—For a pure state

ρ ¼ jψihψ j, the entanglement entropy relative to a parti-
tioning F ¼ FA ⊗ FB of Fock space is defined as the von
Neumann entropy, SA ¼ −trAðρA ln ρAÞ of the reduced
density matrix ρA ¼ trBðjψihψ jÞ. The entanglement entro-
pies of pure maximally random states were calculated in the
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classic Ref. [22]. More recent work [23] emphasizes the
utility of the concept in the context of random matrix
models serving as proxies of high-dimensional localizing
systems [14]. In these systems, quantum interference shows
in a contribution to the entanglement entropy proportional
to the ratio of subsystem Fock-space dimensions. A main
finding of the present work is that energy-shell correlations
distinguishing microscopic systems from random matrix
models open a second channel of quantum information and
exponentially enhance the suppression of the entanglement
below its thermal value. In this way, the entanglement
sharply distinguishes between genuine many-body wave
functions and wave functions on generic high-dimensional
random lattices.
In the rest of this Letter, we will compute the entangle-

ment entropy of pure states prior to the onset of strong
localization under a minimal set of assumptions. We will
compare our results to the entropies obtained for phenom-
enological models and to numerical data obtained for a
Majorana Sachdev-Ye-Kitaev (SYK) model.
Energy shell.—We begin with a qualitative discussion of

the Fock space energy shell. Consider a many-body
Hamiltonian Ĥ ¼ Ĥ2 þ Ĥ4, where Ĥ4 is an interaction
operator and Ĥ2 a one-body operator defined by a single
particle spectrum fmig, i ¼ 1;…; N distributed over a
range δ. Working in the eigenbasis of Ĥ2, Fock space is
spanned by the D≡ 2N occupation number states
n ¼ ðn1;…; nNÞ, ni ¼ 0, 1 for spinless fermions. We
interpret these states as sites of a hypercubic lattice,
carrying local potentials vn ¼

Pð2ni − 1Þmi with rms
value Δ2 ≡ N1=2δ. Individual states n are connected
to a polynomially large number Nα of “nearest neighbors”
m by the interaction Ĥ4. For interaction matrix elements
tnm ∼ gN−β=2, the rms eigenvalue of Ĥ4 scales as
Δ4 ∼ gNðα−βÞ=2, with g an N-independent coupling energy
for the interaction. These interactions change only an order-
one number of occupation numbers, so jvn − vmj is of order
δ and thus for large N much smaller than the “bandwidth”
Δ2 of Ĥ2.
In the competition of the operators Ĥ2 and Ĥ4, states n

may hybridize with states m via the coupling tnm. When
the eigenstates of Ĥ are delocalized in Fock space, this
hybridization gives the local spectral density

νnðEÞ≡ −
1

π
ImhnjðEþ − ĤÞ−1jni; ð1Þ

a linewidth κ ¼ κðvn; δ; gÞ which must be self-consistently
determined [24]. The solution of Eq. (1) for a given
realization of the disorder contains the essential informa-
tion on the distribution of the energy shell in Fock space.
Specifically, for generic values of the energy E (we set
E ¼ 0 for concreteness), the strength of the disorder δ
defines four regimes of different shell structure:

Regime I: δ ≪ N−1=2Δ4: the characteristic disorder band
width δN1=2 ¼ Δ2 ≪ Δ4 is perturbatively small. In this
regime, the spectral density νn ≡ ν is approximately con-
stant over energy scales ∼Δ2.
Regime II: N−1=2Δ4 ≪ δ ≪ Δ4: the bandwidth of Ĥ2

exceeds that of the interaction Ĥ4, but nearest neighbors
remain energetically close jvn − vmj ∼ δ ≪ Δ4. In this
regime, κ ∼ Δ4, indicating that the full interaction
Hamiltonian enters the hybridization of neighboring sites.
Regime III: Δ4 ≪ δ ≪ δc: only a fraction ∼ðΔ4=δÞ2 of

nearest neighbors remain in resonance, and the broadening
is reduced to κ ∼ Δ2

4=δ.
Regime IV: The threshold to localization δc is reached

when less than one of the ∼Nα neighbors of characteristic
energy separation δ falls into the broadened energy win-
dow. Up to corrections logarithmic in N (and neglecting
potential modifications due to Fock space loop amplitudes)
this leads to the estimate δc ∼ Nα=2Δ4 for the boundary to
the strong localization regime.
The energy shell in the delocalized regimes II and III is

an extended cluster of resonant sites embedded in Fock
space. It owes its structure to the competition between the
large number OðNαÞ of nearest neighbor matrix elements
and the detuning of statistically correlated nearest neighbor
energies vn, vm. In regime II, only a polynomially (in N)

small fraction κ=Δ2∼
IIΔ4=ðδN1=2Þ of Fock space sites lie in

the resonant window defining the energy shell, and in III

this fraction is further reduced to ∼IIIΔ2
4=ðδ2N1=2Þ, before the

shell fragments at the boundary to regime IV.
We also note that if a site n lies on the shell, the

probability that its neighboring sites of energy vm ¼
vn �OðδÞ are likewise on-shell is parametrically enhanced
compared to that of generic sites with energy vn �OðΔ2Þ.
It is this principle which gives the energy shell of many-
body systems a high degree of internal correlations (absent
in phenomenological lattice models with statistically inde-
pendent on-site randomness) [26]. What physical quantities
are sensitive to these correlations? And how do quantum
states spread over the shell structure? As we are going to
discuss next, the pure state entanglement entropy SA
contains the answer to these questions.
Entanglement entropy.—Consider a Fock space (outer

product) partitioning defined by n ¼ ðl; mÞ where the
NA-bit vector l labels the states of subsystem A and m
those of B with NB ¼ N − NA ≫ NA. We are interested in
the disorder averaged moments Mr ≡ htrAðρrAÞi, and the
entanglement entropy SA ¼ −∂rMrjr¼1 of the reduced
density matrix ρA ¼ trBðjψihψ jÞ defined by a realization-
specific zero-energy eigenstate Ĥjψi ¼ 0. The bookkeep-
ing of index configurations entering the moments
trAðρrAÞ ¼ ψ l1m1 ψ̄ l2m1ψ l2m2…ψ lrmr ψ̄ l1mr is conveniently
done in a tensor network representation as in Fig. 1.
Introducing a multi-index N ≡ ðn1;…; nrÞ, and analo-
gously for N A;B, the figure indicates how the index-data

PHYSICAL REVIEW LETTERS 127, 030601 (2021)

030601-2



N and M carried by ψ and ψ̄ is constrained by the
summation as Mi

B ¼ N i
B and Mi

A ¼ N τi
A , where

τi ¼ ðiþ 1ÞmodðrÞ. A further constraint, indicated by
red lines in the bottom part of the figure, arises from the
random phase cancellation under averaging, which in
the present notation requires N i ≡Mσi, for some permu-
tation σ. [The figure illustrates this for the identity,
σ ¼ id., and the transposition σ ¼ ð2; 4Þ.] Combining
the two constraints, we obtain the representation
Mr ¼

P
σ

P
N

Q
ihjψni j2iδN A;σ∘τN A

δN B;σN B
. This expres-

sion is universal in that it does not require assumptions
other than the random phase cancellation. In a less innocent
final step we establish contact to the previously discussed
local density of states νn and compare the two representa-
tions Dν≡P

α δðE−EαÞ¼
P

n;α jψα;nj2δðE−EαÞ¼
P

nνn
to identify jψnj2 ¼ νn=Dν. In other words, we identify
the moduli jψnj2 of a fixed eigenstate ψ ¼ ψα with the
realization specific local density of states νn at E ¼ Eα.
For the legitimacy of this replacement for single particle
random systems see Ref. [30], and for the SYK model the
Supplemental Material [31] and Ref. [25]. With this
substitution, we obtain the representation

Mr ¼
X
σ

X
N

Yr
i¼1

λniδN A;ðσ∘τÞN A
δN B;σN B

; ð2Þ

with λn ≡ νn=Dν. This expression describes two comple-
mentary perspectives of quantum states in Fock space:
their support on a random energy shell defined by the
coefficients λn ∼ νn, and random phase cancellations
implicit in the combinatorial structure. In the following,
we discuss the manifestations of these principles in the
above regimes I–IV.
Regime I, maximally random states.—Here, wave func-

tions are uniformly distributed, νn ¼ ν, and the evaluation
of Eq. (2) reduces to a combinatorial problem. The latter
has been addressed in the string theory literature [37,38]

(where high-dimensional pure random states are considered
as proxies for black hole micro states.) Inspection of
the formula shows that increasing permutation complexity
needs to be paid for in summation factors DB. Keeping
only the leading term, σ ¼ id, and the next leading
single transpositions σ ¼ ðijÞ, we obtain Mr ≈
D1−r

A þ ðr
2
ÞD2−r

A D−1
B , and the subsequent differentiation in

r yields Page’s result [22]

SA − Sth ¼ −
DA

2DB
; Sth ¼ lnDA: ð3Þ

Interestingly, higher order terms in the DA=DB-expansion
vanish in the replica limit [22,37–40], and Eq. (3) is exact
for arbitrary NA ≤ NB, up to corrections small in 1=D. (The
case NA ≥ NB follows from exchange A ↔ B.) The result
states that to leading order the entropy of the subsystem is
that of a maximally random (“thermal”) state, Sth. The
residual term results from wave function interference across
system boundaries. Reflecting a common signature of
“interference contributions” to physical observables, it is
suppressed by a factor proportional to the Hilbert space
dimension.
Regime II and III, energy shell entanglement.—The

energy shell now is structured and correlations in the local
densities fνng lead to a much stronger correction to the
thermal entropy. Since these contributions come from the
identity permutation (do not involve wave function inter-
ference), we ignore for the moment σ ≠ id, reducing Eq. (2)
toMr ≃

P
l λ

r
A;l with λA ≡ trBðλÞ. This expression suggests

an interpretation of the unit normalized density fλng as a
spectral measure

P
n λn ¼ 1, λn ≥ 0 and of λA as the

reduced density of system A. With this identification,
the entropy

SA ≈ Sρ ≡−trA½λA lnðλAÞ� ð4Þ

becomes the information entropy of that measure.
This is as far as the model-independent analysis goes.

Further progress is contingent on two assumptions, which
we believe should be satisfied for a wide class of systems
in their regimes II and III: First, the exponentially large
number of sites entering the computation of the spectral
measure justifies a self-averaging assumption,X

nX

FðvnXÞ≈DXhFðvXÞiX

≡ DXffiffiffiffiffiffi
2π

p
ΔX

Z
dvX exp

�
−

v2X
2Δ2

X

�
FðvXÞ; ð5Þ

where X ¼ A; B; AB stands for the two subsystems, or the
full space, respectively, DX are the respective Hilbert space
dimensions, and ΔX ¼ δ

ffiffiffiffiffiffiffi
NX

p
. In other words, we replace

the sum over site energies by an average over a single
variable whose Gaussian distribution follows from the

FIG. 1. Top left: graphic representation of the tensor amplitude
ψ lmψ̄ l0m0 . Top right: contraction of indices defining trðρ5AÞ.
Bottom: averaging enforces pairwise equality of indices n, n0
in tensor products h…ψn…ψ̄n0…i, as indicated by red lines.
Left: identity pairing of indices within the five factors
htrAðρAρAρAρAρAÞi. Right: pairing of indices of the second
and fourth factor.
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central limit theorem. Second, when integrated against the
distribution of subsystem energies vB, the local density of
states at zero energy E ≃ 0 acts as a smeared δ function,
setting the additive energy v ¼ vA þ vB ≃ 0, and effec-
tively smoothing the distribution λA;l. Since κ ≪ Δ2 ∼ ΔB,
the detailed value of the width of the shell κ is of no
significance in this construction.
Under these assumptions, straightforward computations

detailed in the Supplemental Material [31] yields, e.g.,
the density of states as Dν ¼ P

AB νn ≈DhδκðvÞiAB ¼
D=ð ffiffiffiffiffiffiffiffiffi

2πN
p

δÞ. Applied to the computation of the moments
Eq. (2), the averaging procedure obtains the entanglement
entropy as [31]

SA − Sth ¼ −
1

2
ln

�
N
NB

�
þ 1

2

NA

N
−

ffiffiffiffiffiffiffiffiffi
N
2NA

s
DA

2DB
: ð6Þ

A number of comments on Eq. (6) are needed: Provided the
above assumptions on the spectral measure hold, the result
has the same level of rigor as Page’s formula Eq. (3). The
main difference is that (for small subsystems, NA ≪ N) the
information entropy SA − Sth ≈ − 1

4
ðNA=NÞ2 is exponen-

tially enhanced compared to the correction in Eq. (3). Also
note that there is no dependence on the disorder strength
(see Supplemental Material [31] for more details).
Comparison to phenomenological models.—The entan-

glement entropy (6) is a universal signature of correlations
(but not the volume) of the energy shell. Conversely, the
WFMs jψnj2q describe the shrinking of the shell volume
(but not its correlations). To see that these are independent
pieces of information, it is instructive to compare to the
random energy model [41], a phenomenological model
replacing the one-body randomness by a set of statistically
independent Fock state potentials fvng. For increasing δ,
the WFMs diminish as in microscopic models [42].
However, we have verified that the EE of REM states
coincides with Page’s Eq. (3). The same result is obtained
for sparse random states [21], as even more phenomeno-
logical proxies of many-body states. What is the origin of
the difference to Eq. (6)? A genuine many-body model
describes many “bodies,” representing the microscopic
degrees of freedom. The Fock space is an outer product
over the single body spaces, and the Hamiltonian contains
only operators coupling Oð1Þ of these degrees of freedom.
In this sense the REM is not a many-body model, since
its nonlocal energy operator acts on the products of all
(or most) degrees of freedom simultaneously. Specifically,
it lacks the principle of energy subsystem additivity
E ¼ EA þ EB, required by Eq. (6). In this way, the
entanglement entropy becomes a sensitive indicator of
whether quantum states are genuine many-body states or
of different origin.
Regime boundaries.—Upon approaching the boundary

to the trivially ergodic regime I, the second condition gets

compromised, i.e., the width κ of individual states ceases
to be small compared to the statistical fluctuations ∼ΔB.
Leaving a detailed analysis of the crossover region to future
work, our numerics below shows a collapse of Eq. (6) to
Eq. (3) upon crossing the regime boundary. In the opposite
MBL regime IV, eigenstates are concentrated on a small
number Oð1Þ of isolated Fock states, and the concept of
an energy shell becomes meaningless: to exponential
accuracy in N, remote Fock states, even if they are close
in energy, have no common matrix elements with individ-
ual eigenstates.
The entanglement entropy then scales as

SA ∼ sðδ=δcÞNA=N, where s is related to the entropy of
the distribution of the localized eigenstate in Fock space.
For 1 ≪ NA ≪ N, SA ≪ 1 stays small down to δ ∼ δc,
where it jumps to SA ∼ NA at the localization transition to
regime III.
Numerical analysis.—Figure 2 shows a comparison

of the analytical predictions of Eqs. (3) and (6) with
numerical results obtained for the SYK Hamiltonian
[31]. In that case, Ĥ4 ¼ ð1=4!ÞP2N

i;j;k;l¼1 Jijklχ̂iχ̂jχ̂kχ̂l,
where fχ̂lg are Majorana operators [43,44]. The competing
one-body operator reads Ĥ2 ¼

P
N
i¼1 mið2c†i ci − 1Þ, where

ci ¼ 1
2
ðχ̂2i−1 þ iχ̂2iÞ are complex fermion operators defined

by the Majoranas [45,46]. Referring to the Supplemental
Material [31] for details, the agreement is very good, and it
becomes better with increasing NA. (We have no certain
explanation for the deviations at the smallest values of NA.)
Discussion.—In this Letter, we applied a combined

analysis of the statistics and the entanglement properties
of pure quantum states to explore the delocalized phase of
disordered many-body systems subject to long-range cor-
relations. Our analysis supports the view that the appealing
concept of “nonergodic extended states”—adopted includ-
ing in publications of the present authors [25,42]—should
be abandoned in favor of a qualified interpretation of many-
body quantum ergodicity. Its key element is the support set

FIG. 2. Numerical entanglement entropies (symbols) vs ana-
lytical (lines) for a system of size N ¼ 15 in regime I, δ ¼ 0.01
(solid) and III, δ ¼ 1 (dashed). Inset: linear scale representation
of the same data.
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fng of states of a given energy, the quantum analog of an
energy shell. We have shown how the entanglement
properties of pure quantum states reveal ergodicity and
in addition characteristic correlations distinguishing the
energy shells of genuine many-body systems from those of
phenomenological proxies.
What is the scope of the above findings? Referring to the

Supplemental Material [31] for a more detailed discussion,
the freedom to adjust the exponents α, β entering the
definition of the model Hamiltonian, implies that our result
applies to a wide class of effectively long-range interacting
systems, among them realizations whose interaction oper-
ators are short range in a microscopic (“real space”) basis
but long range in the eigenbasis of Ĥ2. It is tempting to
speculate on generalizations to yet wider system classes.
To this end, we note that the derivation of Eq. (6) relies on
a number of necessary conditions: subsystem additivity
E ≃ EA þ EB (requiring that the coupling energy between
the subsystems is negligibly small in the limit of large
system sizes), statistically independent distribution of the
energies EA;B, and dependence of the spectral density
(measure) on no more than the single conserved quantity,
energy. Whether these criteria are not only required but
actually sufficient to stabilize the result is an interesting
question left for forthcoming research [47]. However,
regardless of the scope of Eq. (6), we reason that the
combination of wave function statistics and pure state
entanglement defines the suitable diagnostic to characterize
the ergodic phase of many-body quantum chaotic systems.
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