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We propose an intrinsic three-dimensional Fabry-Pérot type interferometer, coined “higher-order
interferometer,” that is based on the chiral hinge states of second-order topological insulators and cannot
be mapped to an equivalent two-dimensional setting because of higher-order topological obstructions.
Quantum interference patterns in the two-terminal conductance of this interferometer are controllable not
only by tuning the strength but also, particularly, by rotating the direction of the magnetic field applied
perpendicularly to the transport direction. Remarkably, the conductance exhibits a characteristic beating
pattern with multiple frequencies depending on the field strength and direction in a unique fashion. Our
novel interferometer thus provides feasible and robust magnetotransport signatures for hinge states of
higher-order topological insulators.
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Introduction.—Higher-order topological insulators
(HOTIs) feature gapless excitations, similar to conventional
(first-order) topological insulators, that are protected by
the nontrivial topology of bulk electronic bands but
localized at open boundaries at least two dimensions
lower than the insulating bulk [1–16]. For instance,
three-dimensional (3D) second-order topological insulators
(SOTIs) host one-dimensional chiral or helical states along
specific hinges of the samples inside their topological gaps.
The recent discoveries of HOTIs in a variety of candidate
systems have not only extended our understanding of
topological phases of matter but also inspired wide-ranging
potential applications [17–44]. Whereas most of the
research efforts so far have been put into the electronic
structures of potential HOTI material, their transport
properties remain largely unexplored despite some inves-
tigations involving superconductivity [45–47]. Indeed, an
intriguing open question regarding 3D SOTIs in particular
is whether there exist unique transport effects that can
unambiguously detect topological hinge states and further
lead to their functionalization.
One appealing route toward addressing this question

involves interferometry built upon 3D SOTIs, or more
precisely, through quantum-coherent transport via the
hinge states. Propagating hinge states that form an inter-
ference loop can enclose a magnetic flux applied to the
system and thereby pick up an Aharonov-Bohm (AB)
phase [48]. In the presence of quantum coherence, the AB
phase will give rise to quantum oscillations in transport
characteristics such as charge conductance. Quantum
interference patterns in the conductance of two-terminal

devices have been routinely employed to detect topological
states such as surface states of topological insulators
[49–52], chiral Majorana modes [53–56], and topological
Dirac semimetals [57].
In this Letter, we propose a higher-order Fabry-Pérot

interferometer based on hinge states of SOTIs. Our basic
setup, shown in Fig. 1(a), consists of a chiral SOTI in contact
with two metallic leads. The chiral hinge states, combined
with partial reflections at the SOTI and lead interfaces, form
interference loops that are interconnected in 3D space. Under
external magnetic fields, the two-terminal conductance in
this setup exhibits peculiar quantum interference patterns
originating from the AB effect and tunable by both field
strength and orientation, as exemplified by Fig. 1(c). Owing
to the inherent 3D nature of the interferometer, there are
generally two linked frequencies in the magnetoconductance
oscillations, leading to a beating pattern. When varying the
magnetic field direction, one frequency increases while the
other decreases and they cross at certain field directions.
These features are independent of the details of the device
and stable against moderate disorder and dephasing. Hence,
they provide robust transport signatures of hinge states in 3D
SOTIs [58].
General analysis by scattering-matrix theory.—Before

presenting microscopic models, it is instructive to analyze
the main transport features of the interferometer using a
phenomenological scattering approach [59–61]. For sim-
plicity, we assume that the hinge states in our setup are well
separated by the insulating bulk and side surfaces such that
scattering only occurs at the interfaces between normal
metal leads and the SOTI sample [Fig. 1(a)]. This also
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implies that the possible gapless states on the two terminal
surfaces, which become part of the interfaces, will not
affect our following analysis as we will consider generic
scattering matrix elements for these interfaces. Consider
electrons (blue wavy line) coming from the left lead
[Fig. 1(a)]. The incident electrons first experience reflection
(red wavy line) or transmission (characterized by a trans-
mission matrix tL) into the right-moving hinge channels
c1 and c3 (blue dashed lines) at the left interface. The
transmitted electrons propagate along c1 and c3 forward to
the right interface. Then, they again experience partial
reflection (described by rR) back into the left-moving hinge
channels c2 and c4 (red solid lines), and partial trans-
mission (described by tR) into the right lead (blue wavy
line). The reflected electrons in c2 and c4 go backward and
are partially reflected (described by rL0) at the left interface
into c1 and c3. Because of the finite reflections at the
interfaces, electrons propagating along the hinges of the
SOTI undergo multiple reflections at the interfaces before

exiting to the leads, and their trajectory inside the SOTI
forms closed loops. In this sense, we have a Fabry-Pérot
interferometer.
In the presence of a magnetic fieldB ¼ Bðcos θ; sin θ; 0Þ

with strength B and direction θ, the trajectory loops in the
SOTI can enclose magnetic fluxes. Thus, electrons propa-
gating along these loops pick up AB phases. For instance,
the loop involving c1 and c2 (c2 and c3) on the top (front)
surface of Fig. 1(a) encloses a magnetic flux ϕ ¼
BLWx sin θ (φ ¼ BLWy cos θ), where L is the distance
between the two leads and Wx=y the width of the SOTI in
the x=y direction. The scattering propagation of electrons in
the hinge channels can be described by a 2 × 2 matrix [62],

SðB; θÞ ¼ eiλ=2eiΦþð1 − eiλrL0eiΦ−rReiΦþÞ−1; ð1Þ

where Φ� ¼ ðφ� ϕÞσz=2 account for the AB phase
differences between the two right-moving and between
the two left-moving hinge channels, respectively; σz is the
Pauli matrix acting on pseudospin space for two left- or
right-moving hinge channels, and λ ¼ 2kFL is the dynami-
cal phase with kF the Fermi wave number. The term with
rL0 and rR in the denominator of Eq. (1) corresponds to the
encircling processes in the SOTI, reflecting the multiple
reflection properties of the Fabry-Pérot interferometer.
The transmission matrix of the setup is then expressed
as tRSðB; θÞtL. It indicates that the electrons transmit from
one lead to the SOTIs (tL), undergo multiple reflections
[SðB; θÞ], and finally transmit to the other lead (tR). We
provide more details of this analysis in the Supplemental
Material (SM) [62].
With the transmission matrix, the conductance of the

setup at zero temperature can be evaluated as

GðB; θÞ ¼ e2

h
Tr½t†RtRSðB; θÞtLt†LS†ðB; θÞ�; ð2Þ

where e2=h is the conductance quantum. Clearly, G
vanishes if there is no transmission across the interfaces,
i.e., tL ¼ 0 or tR ¼ 0. G becomes quantized at 2e2=h and
independent of B if the interfaces are completely trans-
parent, i.e., rL0 ¼ 0 and rR ¼ 0. Otherwise, G generically
depends on B via the phases φ and ϕ. Particularly, if we
assume that the two interfaces are identical and the
scattering is equally probable between leads and individual
hinge channels as well as among hinge channels, i.e., tL ¼
tR ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − R
p

1 and rL0 ¼ −rR ¼ ffiffiffiffiffiffiffiffi
R=2

p ðσz þ σxÞ, we find
explicitly

G ¼ 2e2

h
ð1 − RÞ2½1þ R2 þ R cos λðcosϕþ cosφÞ�

j1þ R2e2iλ þ Reiλðcosϕþ cosφÞj2 : ð3Þ

These results indicate the necessary condition for a working
interferometer: finite transmission and reflection at the
interfaces for the hinge states. Note that this condition is
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FIG. 1. (a) Schematic of the higher-order interferometer: SOTI
with four chiral hinge states (solid red and dashed blue lines)
connected to two leads. A magnetic field B is applied perpen-
dicularly to the z direction in the SOTI with strength B and an
angle θ with respect to þx axis. The dotted arrow lines at the
interfaces indicate the scattering between the hinge states.
(b) Sketch of the low-energy spectra in three regions in (a) with
the Fermi energy indicated by the dotted line. The leads have a
parabolic spectrum, and the SOTI has a linear spectrum split
by B. (c) Density plot of conductance against B and θ.
B0 ¼ ϕ0=Sf with ϕ0 the flux quantum and Sf the area of the
front surface of the SOTI.
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common, for example, in the presence of a mismatch
between transport channels across the interfaces, as shown
in Fig. 1(b), or interface barriers.
Moreover, the matrix S contains explicitly two field-

dependent phases φ� ϕ in general. This indicates the
appearance of beating patterns with two linked frequencies
in the magnetoconductance. Notably, the two frequencies
are intimately connected to the magnetic fluxes threading
the different side surfaces of the SOTI. They are solely
determined by the geometry of the sample and insensitive
to the details of the interface barriers. Since the dynamic
phase λ in Eq. (1) is unchanged by magnetic fields, it
does not affect our results qualitatively. We have verified
these predictions by properly parameterizing the scattering
matrices [62].
Model simulation and method.—To demonstrate these

features explicitly, we consider an effective but rather
generic model for chiral SOTIs [7]:

HðkÞ ¼
�
mþ b

X
i¼x;y;z

cos ki

�
τ3 þ v

X
i¼x;y;z

sin kiσiτ1

þ Δðcos kx − cos kyÞτ2; ð4Þ

where k ¼ ðkx; ky; kzÞ is the wave vector, τ ¼ ðτ1; τ2; τ3Þ
and σ ¼ ðσx; σy; σzÞ are Pauli matrices acting on orbital and
spin spaces, respectively, and m, b, v, and Δ are model
parameters. Without loss of generality, we set the lattice
constant and the velocity v to unity. When 1 < jm=bj < 3
and Δ ¼ 0, the model describes 3D topological insulators
with gapless surface states protected by time-reversal
symmetry T [72]. A finite Δ breaks time-reversal and
C4 rotation symmetries individually. Thus, it opens gaps in
the surface states. However, Δ preserves the combined
symmetry C4T . As a result, the gaps depend on the surface
orientation, leading to gapless chiral hinge states localized
at the hinges connecting adjacent surfaces.
We consider the orbital effect of B via the Peierls

replacement Tij → Tij expð2πi
R rj
ri dr ·A=ϕ0Þ, where Tij

is the hopping amplitude from sites ri to rj, and ϕ0 ¼ h=e
is flux quantum. The vector potential is chosen in the gauge
A ¼ Bð0; 0; y cos θ − x sin θÞ for concreteness. For sim-
plicity, we model the leads (with a low-energy quadratic
dispersion) by a standard cubic lattice and assume only a
few transport channels in both leads such that finite
reflection and transmission for the hinge channels are
generated at the interfaces. Under these considerations,
we calculate the two-terminal conductance numerically,
employing the standard Landauer-Büttiker approach
[64–66] in combination with lattice Green functions
[62]. We emphasize that our main results illustrated below
remain qualitatively the same if we choose other models for
the SOTI or the leads.
Quantum interference pattern.—Now, we analyze the

dependence of G on B, combining the general scattering

theory and concrete numerical simulations. First, Eq. (2)
implies an oscillation pattern of G with respect to field
direction θ. This is confirmed by our numerical results in
Fig. 2(a), which shows GðθÞ as a function of θ for given B.
For weak fields B ≤ B0,GðθÞ is approximately a sinusoidal
function of θ. For strong fields B > B0, the number of
conductance peaks and valleys increases with increasing B
[Fig. 1(c)]. Second, Eq. (2) also indicates an oscillation
pattern of G with respect to B, which is again fully
confirmed by our numerical simulations. When B is in
the x or y direction or at the specific angle θ ∈ ΘX ≡
f�α0; π � α0g with α0 ≡ arctanðWx=WyÞ, GðBÞ exhibits
simple oscillations with a single frequency [Fig. 2(b)].
Generally, GðBÞ takes maximal or minimal values when
the interference loop encloses half a flux quantum ϕ0=2.
For θ ¼ 0, GðBÞ takes maximal values at odd multiples of
B0=2. The oscillation amplitude is relatively smaller since
only two of the four loops enclose ϕ0=2. For θ ¼ π=4,

FIG. 2. (a) Conductance G as a function of field direction θ
at field strengths B ¼ B0 and B0=

ffiffiffi
2

p
, respectively. (b) G as a

function of B for θ ¼ 0 and π=4, respectively. (c) Particular
beating patterns with varying B at θ ¼ 0.48π. (d) Beating patterns
with varying θ at a large field strength B ¼ 20B0. (e) Extracted
frequencies (square and circle dots) as a function of θ. (f) Low-
energy spectrum of the SOTI with B ¼ 2B0 and θ ¼ 0.15π. Other
parameters: L ¼ 60a, Wx ¼ Wy ¼ 12a, m ¼ 2, b ¼ −1, v ¼ 1,
Δ ¼ 1, and EF ¼ 0.002.
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GðBÞ takes maximal values at instead odd multiples of
B0=

ffiffiffi
2

p
, where all interference loops enclose ϕ0=2. These

features signify the interferometer formed by hinge states
being of the Fabry-Pérot type, as we further explain below.
Notably, there exist beating patterns in GðBÞ. When B

deviates away from the directions θ ¼ nπ=2 and ΘX,
the beating patterns are clearly observed [Fig. 2(c)].
By performing discrete Fourier transformation, we extract
precisely two frequencies: ω1 and ω2. These frequencies
depend strongly on θ [dotted lines in Fig. 2(e)]. Explicitly,
we find that they can be well described by ω1 ¼
LWyj cos θj ¼ jϕj=B and ω2 ¼ LWxj sin θj ¼ jφj=B,
respectively [solid lines in Fig. 2(e)]. They correspond
exactly to the two AB phases, in excellent agreement with
the results obtained from our scattering-matrix analysis.
When θ ¼ nπ=2, only one of the two frequencies survives.
When θ ∈ ΘX, the two frequencies become identical. In
both cases, the beating behavior disappears. Similarly,GðθÞ
also shows beatinglike patterns with respect to θ with peaks
and valleys for large fields B ≫ B0 [Fig. 2(d)]. This
direction-induced beating behavior is another manifestation
of the two AB phases.
Higher-order Fabry-Pérot interference.—Next we

clarify in which sense the interference pattern is of the
higher-order Fabry-Pérot type. The two frequencies in the
beating patterns correspond to the projections of two areas
enclosed by the interference loops in the plane normal
to the field direction. As rotating B in the x − y plane,
the frequencies match the effective areas LWyj cos θj
and LWxj sin θj of the front and top surfaces quite well
[Fig. 2(e)]. This result indicates that adjacent hinge states
with opposite chirality form interference loops and hence
the interference is of the Fabry-Pérot type. The interference
loops are made of chiral hinge states that are protected by
higher-order topology and exist in 3D space. This further
defines a higher-order Fabry-Pérot interferometer. Such an
interferometer has several unique features in the interfer-
ence pattern, as shown in Fig. 2(e): (i) It generally shows
multiple linked frequencies that depend strongly on field
direction θ; (ii) When rotating B, there are always some
frequencies increasing whereas the other ones are decreas-
ing; (iii) At certain θ, two of the frequencies become
identical. For the setup considered in Fig. 1(a), the two
frequencies coincide at θ ∈ ΘX [73].
The mechanism behind the interferometer can be better

understood by analyzing the hinge-state spectrum under B.
In the absence of B, the hinge-state spectrum is double
degenerated and linear in kz, i.e., �vkz. Applying B gives
rise to a spatially varying vector potential A, thus shifting
the linear spectrum. Note that the hinge states are localized
at different hinges of the SOTI. Under the chosen gauge,
the spectrum is split as þvðkz � δkz1Þ and −vðkz � δkz2Þ,
where the splittings are δkz1 ¼ BWx sinðθ − α0Þ=2 and
δkz2 ¼ BWy cosðθ þ α0Þ=2 [62]. Thus, the hinge states
acquire finite wave numbers even for vanishing Fermi

energy [Fig. 2(f)]. When propagating along hinge channels
of the interferometer, electrons pick up phase shifts
�δkz1=2L. These phase shifts turn out to be the AB phases
stemming from the magnetic flux enclosed by each loop,
i.e., ϕ;φ ¼ ðδkz1 � δkz2ÞL. At special θ, for instance, θ ¼ α0
or α0 þ π, one kind of splitting vanishes whereas the other
one remains finite, i.e., δkz1 ¼ 0 and δkz2 ≠ 0. In these cases,
the interference pattern reduces to a single frequency.
Experimental implementation.—Our higher-order inter-

ferometer with the aforementioned main features, such
as the beating patterns and field-direction dependent
frequencies, can be implemented in many candidates of
magnetic SOTIs, e.g., EuIn2As2 [74–77], MnBi2nTe3nþ1

[69,71,78–81], and Sm-doped Bi2Se3 [82]. These transport
features only rely on the existing chiral hinge states inside
the bulk and side surface insulating gap. They are not
sensitive to the details of materials (e.g., model parame-
ters). For SOTIs with D3 symmetry [83], there are three
pairs of chiral hinge states within an insulating gap that
is up to tens of meV in prominent candidate materials
[71,74,78–80]. Similar to C4T -symmetric SOTIs, we find
that the hinge-state spectra are split by different amounts of
momenta under B [Fig. 3(a)]. When implementing such
SOTIs in the interferometer setup, we can observe the same
main features that we discussed above in the magneto-
conductance. Explicitly, the conductance exhibits beating
patterns with three frequencies in general. These frequen-
cies depend sensitively and periodically on field direction θ
with period π=3 [Fig. 3(b)]. With rotating θ, for instance,
from ð0; π=6Þ, two frequencies increase whereas the other
one decreases. At θ ¼ 0 or π=6, two of the frequencies
coincide. Moreover, the third one vanishes at θ ¼ 0. Thus,
a single and two frequencies can be observed at θ ¼ 0
and π=6, respectively.
We note that although the Zeeman effect of magnetic

fields affects the gaps opened at the side surfaces of SOTIs,
it does not alter the energy bands of hinge states.We show this

FIG. 3. (a) Low-energy spectrum of D3 symmetric SOTIs on a
hexagonal prism under B. The hinge states are indicated by the
red solid lines. Degenerated hinge states (dashed blue lines) in the
absence of B are plotted for comparison. (b) The corresponding
three frequencies as functions of θ. Details about the lattice model
and the parameters can be found in the SM [62].
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analytically and numerically based on the generic magnetic
SOTI model [62]. Thus, we expect our higher-order inter-
ferometer based on the chiral hinge states of SOTIs to be not
sensitive to the Zeeman effect as long as the latter is small
and does not close the surface gaps. We next discuss some
length and energy scales of experimental relevance [62].
Typically, the localization length of hinge states is of the order
of several nanometers [62]. For candidate materials (e.g.,
MnBi2nTe3nþ1) fabricated in a clean way, we could expect a
phase coherence length of the order of 1 μm at low temper-
atures [51,71]. To avoid finite size effects and retain quantum
coherence, we consider, for instance, a sample with exper-
imentally feasible dimensions:Wx=y ∼ 100 nmandL ∼ 1μm
in a slab geometry. Then, the field strength to reach a flux
quantum threading the surfaces is estimated asB0 ≃ 0.006 T.
Therefore, we argue that the particular oscillation pattern
of the conductance can be observed in magnetic fields far
below the in-plane saturation fields of candidate SOTIs (e.g.,
≃1 T in MnBi2nTe3nþ1 [80] and EuIn2As2 [76]). Moreover,
we study the influence of disorder and dephasing due to
environmental noises [62]. Remarkably, we find that the
oscillation patterns persist under moderate disorder and
weak dephasing. This further supports the robustness of
our proposal.
Conclusion.—We have proposed a higher-order Fabry-

Pérot interferometer based on chiral hinge states of SOTIs.
Because of higher-order topology, this interferometer is
intrinsically 3D and features particular beating patterns in
the conductance by tuning strength or direction of an
applied magnetic field. Our results provide feasible trans-
port signatures and shed light on potential applications of
hinge states in HOTIs.
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