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We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the
topological properties of their nodal band structures. Implementing nonunitary time evolution in reciprocal
space followed by interferometric measurements, we probe the complex eigenenergies of the correspond-
ing NH Bloch Hamiltonians, and study in detail the topology of their exceptional lines (ELs), the NH
counterpart of nodal lines in Hermitian systems. We focus on two distinct types of NH metals: two-
dimensional systems with symmetry-protected ELs, and three-dimensional systems possessing symmetry-
independent topological ELs in the form of knots. While both types feature open Fermi surfaces, we
experimentally observe their distinctions by analyzing the impact of symmetry-breaking perturbations on
the topology of ELs.
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Introduction.—Phases of quantum matter characterized
by topologically robust nodal band structures, such as Weyl
semimetals exhibiting remarkable transport properties [1],
have been amajor focus of both theoretical and experimental
study for the past decade [1–6]. Recently, it has become clear
that non-Hermiticity, a common element in open, dissipative
systems [7–10], can qualitatively modify key features of
band topology (see Ref. [6] for a review). This leads to a
variety of fascinating phenomena, including the emergence
of anomalous topological edge states [11–18], and the
presence of exceptional lines (ELs) [19], the non-
Hermitian (NH) generalization of nodal lines along which
the NH Hamiltonian is nondiagonalizable [20–30]. In
particular, at least two distinct classes of NH metals have
been theoretically identified, one with ELs protected by NH
symmetries that reduce the codimension of exceptional
points (EPs) [23,31], the other featuring nodal band struc-
tures and knotted ELswith intrinsic, symmetry-independent
topology [24]. TheseNHmetals are in sharp contrast to their
Hermitian, semimetal counterparts, where ELs and Fermi
surfaces are reduced to isolated Weyl points and surface
Fermi arcs, respectively [32–36]. While nodal band struc-
tures in both Hermitian and NH settings have seen a great
surge of experimental interest recently [37–42], a systematic
study of unconventional NH metals and their topological
stability is still lacking.
In this work, we experimentally simulate and observe

NH metals using single-photon interferometry (see Fig. 1
for an illustration of our setup), with a particular focus on
the stability and topology of the ELs with respect to

perturbations. Experimentally, this is achieved by imple-
menting nonunitary time evolution for single photons that
is governed by a corresponding NH Hamiltonian, and by
performing interferometric measurements on the photons to
extract the complex eigenenergies for each mode in
reciprocal space. We simulate both NH metals featuring

FIG. 1. Experimental setup. The polarization of the signal
photon generated by the standard spontaneous parametric
down-conversion is projected into the polarization state jψ�iwith
a polarizing beam splitter (PBS), a half-wave plate (HWP), and a
quarter-wave plate (QWP), and then goes through the interfero-
metric network. After passing through a 50:50 beam splitter (BS),
the photon is either transmitted or reflected, and thus separated into
different paths. Subsequently, a nonunitary operation U0 realized
via sets ofwave plates and twobeamdisplacers (BDs) is performed
on its polarization state in the transmitted mode which acquires a
complex phase shift, corresponding to the eigenenergies of H0.
Finally, the photon is detected by avalanche photodiodes (APDs)
resulting in a “click click” in coincidence detection event involving
another trigger photon. We measure the eigenenergies in momen-
tum space via interferometric measurements.
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symmetry-protected ELs in two-dimensional (2D) sys-
tems and knotted ELs including a trefoil knot in three-
dimensional (3D) systems, thus observing how EPs may
form closed lines and even knots in momentum space.
More specifically, for symmetry-protected NH models in

2D,we show that the closed exceptional-line structures bound
open Fermi volumes, and are robust against symmetry-
preserving perturbations, while symmetry-breaking terms
generically remove the ELs. This is in contrast to their 2D
Hermitian analogs, where nodal points occur only at isolated
momenta and do not give rise to bulk Fermi volumes. We
further simulate 3D NH metals with both knotted and linked
ELs that bound open Fermi surfaces representing the topo-
logical Seifert-surfaces of the corresponding knots [24].
There, observing the robustness of the band-structure top-
ology with respect to generic perturbations, we confirm the
topological stability of nodal knots inNHsystems.Our results
thus experimentally establish the topological variety and
stability of nodal structures in NH metals.
Theoretical framework.—We consider two-band NH

metals, as described in reciprocal space by the NH
Bloch Hamiltonian

HðkÞ ¼ dRðkÞ · σ þ idIðkÞ · σ; ð1Þ

where σ are the standard Pauli matrices, k is the lattice
momentum for either a 2D or 3D lattice model, with the
complex Bloch vector d ¼ dR þ idI, where dR;dI ∈ R3.
With the eigenvalues of the NH Bloch Hamiltonian (1)
given by E� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2R − d2I þ 2idR · dI

p
, EPs occur when-

ever eigenvalues coalesce (Eþ ¼ E−) at nonvanishing d,
i.e., for nontrivial solutions to the equations d2R − d2I ¼ 0
and dR · dI ¼ 0 [43]. Depending on the presence of NH
symmetries as well as the spatial dimension of the system,
the EPs can form closed ELs in the reciprocal space, with
either symmetry-protected, or symmetry-independent top-
ology. Specifically, ELs independent of symmetry occur in
3D, while suitable NH symmetries may reduce the codi-
mension of EPs by one, thus stabilizing ELs in 2D systems.
In both cases, ELs constitute boundaries for open Fermi
volumes or surfaces, characterized by vanishing real parts
of the energy gap, thus giving rise to symmetry-protected or
intrinsic NH metals. Besides their topological stability, ELs
in 3D may be topologically distinguished by forming
different knots [24].
For the symmetry-protected NH metal, we consider a

model on a 2D square lattice with unit lattice constant
preserving the NH symmetry

H ¼ qH†q−1; q†q−1 ¼ qq† ¼ 1: ð2Þ

By taking q ¼ σx, the relation dR · dI ¼ 0 is satisfied
automatically [23]. The ELs are therefore defined and
tunable as closed contours in 2D momentum space that
satisfy the single constraint d2R − d2I ¼ 0. In particular, the

parameter space is divided into regions with entirely real
and entirely imaginary eigenspectrum, with ELs forming
the boundary between the two.
By contrast, in three dimensions, the solutions of

ReðE2Þ ¼ 0 and ImðE2Þ ¼ 0 each yield a closed 2D surface
in 3D momentum space, and these two hyperplanes
generically intersect at topologically stable closed lines
in the parameter space, thus giving rise to NH metals with
ELs that are robust against symmetry-breaking perturba-
tions. These ELs with intrinsic topology can form knots or
links in reciprocal space, and are thus fundamentally
distinct from symmetry-protected ELs in 2D.
Experimental simulations.—We observe both symmetry-

protected and intrinsic ELs by simulating the correspond-
ing NH Bloch Hamiltonians HðkÞ in reciprocal space, and
by measuring the complex eigenenergies E�ðkÞ using
single-photon interferometry. While an arbitrary NH
dynamic is difficult to implement experimentally due to
the difficulty of achieving gain in quantum systems [44],
especially with single photons, we circumvent this diffi-
culty through a mapping

H0ðkÞ ¼ HðkÞ þ d0σ0; ð3Þ

where σ0 is the 2 × 2 identity matrix, and d0 ¼ i ln
ffiffiffiffiffiffiffiffiffi
1=Λ

p
,

with Λ ¼ maxk jλkj and λk the eigenvalue of e−iHe−iH
†

[45,46]. It follows thatH andH0 have the same eigenstates,
while eigenenergies of H0 are related to those of H
through E0

� ¼ E� − i ln
ffiffiffiffi
Λ

p
.

As a general framework, we encode the basis states into
the orthogonal polarization states of a single photon, and
initialize the polarization state in jψ�i, the eigenstates of
H0ðkÞ of a given k sector. We then send the photon through
a 50:50 beam splitter, after which the photon is in the state

jΨji ¼
1ffiffiffi
2

p ðjψ jijti þ jψ jijriÞ; ðj ¼ �Þ; ð4Þ

where t and r denote the transmitted and reflected modes of
the single photon, respectively. The nonunitary time evo-
lution governed by e−iH

0
is selectively enforced on the

transmitted photon, leading to the state

jΨ0
ji ¼ ðe−iH0 ⊗ jtihtj þ 1 ⊗ jrihrjÞjΨji

¼ 1ffiffiffi
2

p ðe−iE0
j jψ jijti þ jψ jijriÞ; ð5Þ

from which E0
j is extracted through an interferometric

measurement [47].
Symmetry-protected ELs.—We first simulate the follow-

ing 2D NH Hamiltonian with symmetry-protected ELs

H1 ¼ ð2 − cos kx − cos kyÞσx þ
i
4
σz: ð6Þ
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Note that H1 satisfies the symmetry defined in Eq. (2). We
sample 11 different Bloch vectors dx ¼ 2 − cos kx − cos ky,
and measure the eigenenergies of both bands. Each
sampled dx corresponds to a closed loop in the Brillouin

zone that has the same eigenenergy. In Fig. 2(a), we show
the real and imaginary components of the energy gap
ΔE ¼ Eþ − E− in momentum space, which agree well
with theoretical predictions. Particularly, an exceptional

FIG. 3. Observation of symmetry-independent knotted ELs. (a) Blue and green surfaces correspond to ReðE2Þ ¼ 0 and ImðE2Þ ¼ 0,
respectively. The solid red curve is trefoil knotted EL, i.e., the intersection of two surfaces. Two gray planes correspond to the surfaces
with kz ¼ 0.65 and 0, respectively, which are chosen in our experiment.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jReðE2Þj

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jImðE2Þj

p
with fixed kz ¼ 0.65 (b) and kz ¼ 0

(c) as functions of kx and ky. Solid black curves are the intersections between the surfaces ImðE2Þ ¼ 0 and the gray planes. Blue solid
curves are the intersections between the surfaces ReðE2Þ ¼ 0 and the gray planes. EPs correspond to intersections of black and blue
curves. Experimental data are shown as the black, blue, and red dots, and theoretical results are shown as the colored curves and the
colored contour plots. (d)–(f) Effects of perturbations

P
i¼x;y;z δiσi, where δi ∈ ½0; 0.4� are chosen randomly. In our experiment, we have

δx ¼ 0.3179, δy ¼ 0.3590, and δz ¼ 0.2211.

FIG. 2. Observation of symmetry-protected ELs. (a) The real (left column) and imaginary (middle column) parts of the spectral gaps
ΔE as a function of momentum for the symmetry-protected NH metal H1. Experimental data are shown as black lines and theoretical
results are shown as colored contour plots. Right column: the real and imaginary parts of the energy gap ΔE as a function of the
parameter dx. Theoretical predictions are represented by lines, and the experimental results by symbols. Error bars are obtained by
assuming Poisson statistics in the photon-number fluctuations, indicating the statistical uncertainty. Effects due to the symmetry-
preserving perturbation iðπ=20Þσy and the symmetry-broken perturbation iðπ=20Þσx are shown in (b) and (c), respectively.
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ring exists at dx ¼ 0.25, by which the parameter space is
divided into regions with either real or purely imaginary
eigenenergies. It follows that the exceptional ring serves as
a boundary for the open Fermi volume with ReðΔEÞ ¼ 0,
i.e., an open set with the same dimensionality as the bulk
system. As a defining signature of symmetry protection,
the topology of the exceptional ring is robust against
symmetry-preserving perturbations. This is illustrated in
Fig. 2(b), where the exceptional ring persists but is shifted
in parameter space (now at dx ¼ 0.295), upon the addition
of a small perturbative term of the form iðπ=20Þσy. By
contrast, when a symmetry-breaking perturbation of the
form iðπ=20Þσx is added [see Fig. 2(c)], EPs disappear, in
accordance with theoretical predictions. Generalizing this
strategy, we are able to experimentally simulate the general
class of NH models with symmetry-protected ELs [47].
Symmetry-independent knotted ELs.—We now turn to

NH models with symmetry-independent ELs. Following
Ref. [24], we construct models with intrinsic knotted or
linked ELs in momentum space. This is achieved by taking

dRðkÞ¼ ½f1ðkÞ− ϵ;ϵ;0�; dIðkÞ¼ ½0;f2ðkÞ;
ffiffiffi
2

p
ϵ� ð7Þ

in Eq. (1), where f1;2ðkÞ are real and continuous scalar
functions constrained by f1ðkÞ þ if2ðkÞ ¼ Zp

0 þ Zq
1, with

ðZ0; Z1Þ ∈ C2 and jZ0j2 þ jZ1j2 ¼ 1. Here, ϵ is a constant
with sufficiently large amplitude, which is fixed as ϵ ¼ −20
for our work. By construction, if ðp; qÞ are coprime (both
even) integers, a NH Hamiltonian with Bloch vectors
satisfying Eq. (7) features ELs with ðp; qÞ knot (link)
topology.
For our experiment, we adopt the construction

Z0 ¼ sin kx þ i sin ky;

Z1 ¼ 2
X

α¼x;y;z

cos kα − 5þ i sin kz ð8Þ

to generate the functions f1 and f2 (such a construction is
not unique though). First, we solve f1 and f2 using

ðp; qÞ ¼ ð3; 2Þ, and simulate the corresponding NH
Hamiltonian with trefoil-knotted ELs [see Fig. 3(a)]. In
Figs. 3(b) and 3(c), we show the measured

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jReðE2Þj

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jImðE2Þj
p

with fixed kz ¼ 0.65 (b) and kz ¼ 0 (c) as
functions of kx and ky, which agree well with the corre-
sponding theoretical values and reveal the underlying
knotted topology of the ELs. In this case, the knotted
ELs serve as the boundary for the topologically nontrivial
open Fermi-Seifert surface defined by ReðEÞ ¼ 0 [24].
To investigate the robustness of ELs, we introduce a

general, symmetry-breaking perturbation
P

i¼x;y;z δiσi,
where δi ∈ ½0; 0.4� are chosen randomly. The experimental
data shown in Figs. 3(d)–3(f) correspond to the coefficients
δx ¼ 0.3179, δy ¼ 0.3590, and δz ¼ 0.2211. With the
addition of perturbations, the knotted ELs still exist [see
Figs. 3(d)–3(f)], while their shapes are slightly deformed
compared to those without perturbations. These observa-
tions experimentally confirm and exemplify the robustness
of knotted ELs to generic perturbations.
As a second case of NH model with intrinsic ELs, we

adopt the same construction (8), but with ðp; qÞ ¼ ð2; 2Þ.
The resulting NH Hamiltonian features ELs with a link
geometry [see Fig. 4(a)]. The experimentally measuredffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jReðE2Þj

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jImðE2Þj

p
with kz ¼ �kx are shown in

Figs. 4(b) and 4(c). Similar to the knotted ELs, the linked
topology here is also found to be robust to generic
perturbations.
Conclusion.—By simulating and observing two different

classes of NH metals, our present experimental study
corroborates the topological robustness of ELs that occur
in a rich variety of nodal NH band structures. While our
findings hopefully inspire the investigation of exotic NH
metals also in other physical platforms, we note that our
present experimental scheme may readily be extended to
multiband models and systems with other symmetries,
thus offering a versatile toolbox for the systematic exper-
imental study of nodal phases in both Hermitian and non-
Hermitian settings. Furthermore, our configuration enables

FIG. 4. Observation of linked ELs. (a) Blue and green surfaces correspond to ReðE2Þ ¼ 0 and ImðE2Þ ¼ 0, respectively. The solid red
curves correspond to the Hopf linked ELs, i.e., the intersection of two surfaces. The gray planes are the surfaces with kz ¼ kx;−kx,
respectively, which are chosen in our experiment.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jReðE2Þj

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jImðE2Þj

p
with fixed kz ¼ kx (b) and kz ¼ −kx (c) as functions of kx

and ky. Solid black curves are the intersections between the surfaces ImðE2Þ ¼ 0 and the gray planes. Blue solid curves are the
intersections between the surfaces ReðE2Þ ¼ 0 and the gray planes. Red solid curves and the intersections of black and blue curves are
ELs and EPs corresponding to the intersections between the Hopf link and the gray planes. The experimental data are shown as the
black, blue, and red dots, and theoretical results are shown as the colored curves and the colored contour plots.
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the investigation of dynamical properties of NH metals,
where the presence of open Fermi volumes or open Fermi
surfaces may give rise to so far unexplored phenomena.
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