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It has recently been demonstrated that protected supersymmetry emerges on the boundaries of one-
dimensional intrinsically fermionic symmetry protected trivial (SPT) phases. Here we investigate the
boundary supersymmetry of one-dimensional fermionic phases beyond SPT phases. Using the connection
between Majorana edge modes and real supercharges, we compute, in terms of the bulk phase invariants,

the number of protected boundary supercharges.
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Much recent interest has been paid to topological phases
of matter and their classification. Simplest among them are
invertible phases, which are essentially trivial in their bulks
but host topologically protected phenomena on their
boundaries [1]. The notion of topological phases may be
enriched by considering systems invariant under a global
symmetry and restricting deformations to symmetric ones.
A large class of symmetry enriched invertible phases is
given by symmetry protected trivial (SPT) phases—those
which would belong to the trivial phase in the absence of
the protecting symmetry [2,3]. Beyond SPT phases are
invertible phases that remain topologically distinct even
without symmetry.

A particularly interesting class of invertible phases is
those of fermions in one dimension, which includes, for
example, the topological superconductor, whose boundary
Majorana modes distinguish it from the trivial supercon-
ductor [4]. The absence of noninvertible topological order
in one dimension means that every one-dimensional inde-
composable phase without symmetry breaking is invertible.
The problem of classifying and characterizing these phases
has been solved by Fidkowski and Kitaev [5]. Roughly
speaking, for the group G, of symmetries modulo fermion
parity, phases are described by three topological invariants:
group cochains a € C*(G,; U(1)) and B € C'(Gy; Z,),
subject to constraints and equivalences, and a value y € Z,.
The invariant y measures whether a phase supports an even
or odd number of modes on each boundary. Since even
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numbers of modes may be gapped out by interactions that
disrespect the symmetry, a value of y = 0 indicates that the
phase is SPT. The invariants @ and # may also be under-
stood in terms of protected features of the boundary
physics.

One such feature is the projectivity of the symmetry
action on the boundary. The 2-cochain a always measures
the projectivity of the G, action on the boundary, while the
meaning of the 1-cochain # depends on the value of y. For
an SPT phase, () encodes whether the boundary action of
a symmetry g € G, commutes or anticommutes with
fermion parity. For a phase that is not SPT, f(g) instead
encodes commutation of the g action with the central
fermionic boundary mode I'.

While the bulk phase invariants constrain the projective
action of the symmetry on the boundary, they do not fix the
number and statistics of the boundary degrees of freedom on
which the symmetry acts. For example, a system in the trivial
phase may have zero energy degrees of freedom on its
boundaries, yet it belongs to the same phase as the trivial
system obtained by gapping out these degrees of freedom.
This is true of k =2 copies of the nontrivial class D
Majorana chain or k=8 copies of the class BDI
Majorana chain, for example. For an example of a system
with nontrivial order, consider a stack of k = 4 class BDI
Majorana chains. This system has four Majorana zero modes
on each of its boundaries, yet it belongs to the same phase as
the system obtained by partially gapping out the boundaries
in a way that leaves a Kramer’s doublet of bosonic zero
modes. Despite the collection of boundary modes of a
system not being an invariant of the system’s phase, it is still
possible to make statements about protected modes. If the
constraint imposed by the phase invariants on the projective
action of the symmetry is such that a minimal collection of
modes is necessary to realize the constraint, these modes will
be present in every system belonging to the phase.
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The perspective of characterizing a phase by its boun-
dary degrees of freedom is suited to studying the super-
symmetry that emerges on the boundary. Supersymmetry is
the existence of parity-odd operators called supercharges
that satisfy the relations of a supersymmetry algebra [6].
Supercharges on a zero-dimensional space are closely
related to Majorana modes, and the supersymmetry algebra
to their Clifford algebra [7]. Supersymmetry is especially
interesting when it emerges on the boundaries of topologi-
cal phases because its supercharges may be protected by
bulk topological invariants, meaning the supersymmetry
requires no fine-tuning. This occurs, for example, in a
recent Letter of Prakash and Wang [8], which constructs
two real supercharges on the boundary of some one-
dimensional SPT phases and argues that they are protected
by the SPT invariant f.

The purpose of the present Letter is to investigate the
possibility of protected supersymmetry on the boundaries
of one-dimensional fermionic phases beyond SPT phases.
Ultimately, we are able to determine the number of
protected supercharges as a function of the bulk phase
invariants. These findings are stated as Result 1 and Result
2 in the text. We find examples of phases that protect
arbitrarily many boundary supercharges. The case of class
BDI superconductors is also discussed in detail.

Symmetries and invariants.—We begin by reviewing
the symmetry groups and topological invariants of one-
dimensional phases of fermions.

A fermionic symmetry group G has a central involution
p called fermion parity. Centrality of p means there are no
parity-odd symmetries in the bulk. In general, the extension
7, - G* G, of G, = G;/Z}, by Z}, = {1, p} does not
split as a product group Gy = G, X Zg . However, in order
for G to be realized as the symmetries of a fermionic
system that is not SPT, it must split [5,9,10]. Whether a
symmetry of G, is represented unitarily or anti-unitarily is
encoded by a map x:G, — Z1. The triplet (G, p,x)
specifies the symmetry class.

Fermionic phases of symmetry class (G, p, x) have a
classification, due to Ref. [5] (see also Refs. [9-11]) in
terms of three invariants

a € C* (G, U(1)), PeC(GnZy), re€Zy (1)

subject to certain constraints and equivalences. In the case
of a product group, the invariants « and f represent classes
in group cohomology twisted by the action where g € G,
with x(g) inverts the coefficient.

One way of understanding the invariants is in terms of
the action of the symmetries on the algebra of operators on
the boundary. Here we briefly review how this works,
leaving detailed discussion to Refs. [9,10]. The invariant y
measures whether this algebra is of the form

A =End(Uy) (y =0,even, SPT) or
A =End(U,) ® C£(1) (y = 1, 0dd, not SPT),

where Uy, U, are vector spaces, End denotes the algebra of
matrices on a space, and CZ(1) is the complex Clifford
algebra with one generator. An algebra (and its correspond-
ing system) is referred to as “even” when y = 0 or “odd”
when y = 1. For example, the algebra generated by N
Majorana modes is the Clifford algebra CZ(N), which is
isomorphic to an even or odd algebra depending on whether
N is even or odd. Systems belong to the same phase in the
absence of symmetry if their algebras are related by
End(U) factors [9]; this means that y encodes whether a
system is SPT. The symmetries act on the algebra as
follows, according to the invariants:

y=0:9-M=Q:(9)MQs(g)™" (2)

y=1:g-M@T" = (=100, (5)MQ,(3)' ® I""
p-MD" = (-1)"M @I, (3)

where Qf, Q), are projective representations of G, G, and
g € Gy, g = b(g) € G,,. The cocycle measuring the pro-
jectivity of Q) is simply a, while that of Qf is a certain
function of a and f [9,10], such that f may be extracted
from Q, as the phase in the commutator PQ,(g)P =
(=1)"@Q(g) of the actions of g and fermion parity
P = Q(p).

Supercharges from zero modes.— We now establish a
connection between Majorana zero modes and real super-
charges that has been noted, for example, in Ref. [12].

Consider a system with Majorana zero modes y;, not
necessarily protected. Any set of N modes forms the
Clifford algebra CZ(N). Diagonalize the Hamiltonian of
the system as H =} E,1,, where 1, projects onto the
eigenspace labeled by p. Since the modes have zero energy,
they must commute with H and so also with the 1,,. We may
define N real supercharges as

Qi = Z V Eﬂ ﬂﬂyi‘ (4)
"
They satisfy the supersymmetry algebra

{0,.0;} = ZEyﬂu{Vi’Vj} =26;H. (5)
u

Conversely, given an algebra of real supercharges Q;, the
Clifford algebra is recovered by the inverse to Eq. (4).
Now suppose the N modes are protected by virtue of
living on the boundary of a nontrivial phase. This implies
that the supersymmetry is protected as well.
When N is odd, fermion parity P can be used to construct
an additional supercharge, so that the total number is
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even [13]; however, the boundary of an odd one-dimen-
sional phase has no local fermionic parity, so the total
number of local supercharges is still odd.

Counting protected supercharges.—We now investigate
when a phase protects A/ Majorana zero modes on its
boundary. As we just saw, this amounts to studying protected
boundary supersymmetry of N real supercharges. The terms
Majorana zero mode and real supercharge are henceforth
used interchangeably.

Recall from a previous section that a fermionic system is
characterized by an algebra A with a compatible action of
the symmetries G;. This data may be interpreted as the
algebra of zero energy degrees of freedom on the boundary
and how they transform under symmetry. The form of the
algebra is constrained by the phase invariants: y determines
whether the algebra is of the form End(U) or
End(U) ® C#(1), while a (and also f§ in the even case)
detects the projectivity of the group action on U.

Given an algebra A, we ask for the largest N, denoted
N(A), such that A has a tensor factor decomposition
A = BRCZ(N), where the hat over ® reminds us to use
the tensor product graded by fermionic parity, if neither
factor is purely even. The number N(A) represents the
number of Majorana modes, or real supercharges, present
on the boundary of the system. Since we are interested in
fermionic rather than bosonic modes, we require that the
CZ(N) factor is not purely even. If CZ(N) has at least one
odd generator y ;, any even generator may be replaced by an
odd one by the graded isomorphism y; ~ 7,7 ;.

Two systems belong to the same phase if they have the
same topological invariants, which is to say that their
algebras satisfy the same constraints. We are interested in
features protected by the phase; that is, in characteristics of
the class [a, 8, 7] of algebras compatible with given values
the invariants. The absence or presence of the CZ(1) factor
is a characteristic of the class because it is associated with y.
The invariants @ and f provide more flexibility: there may
be multiple distinct irreducible projective representations U
with the same projectivity class, and so their algebras are
associated with systems in the same phase. This means the
particular End(U) factor is not a characteristic. In physical
terms, a typical zero energy boundary degree of freedom of
a system is not a protected feature of the phase, as only
some of these are present in every system in the phase.
Here we ask, given a phase, what the protected zero modes
on its boundary are. This amounts to looking at all of the
algebras A in the class and asking for the smallest value of
N(A):

Na.p.y) = min N (A). (6)

In the following, we will compute the numbers N (a, 5, 7)
of protected boundary Majorana zero modes. We begin
with odd phases before turning to SPT phases.

0dd case.—Consider the algebra associated with a system
in an odd phase. It has the form A = M(d) ® CZ(1), where
M (d) denotes the algebra of complex d x d matrices. The
CZ(1) factor is generated by an odd zero mode I'. Our
question is whether there exist additional modes.

We claim that the number of odd zero modes is
N =2k +1 where k is the largest whole number such
that 2% divides the degree d of the representation U.

To see this, let [ = d/2* and note that

M(d) ® C(1) =~ M(12F) ® C£(1)
~ M(l) @ C£(2k + 1). (7)

So far we have counted the modes on the boundary of the
system associated with the algebra A. But we are interested
only in the modes that are protected by the phase to which
this systems belongs. Since the value d is the degree of an
irreducible representation with projectivity class a, the
number of protected modes, given abstractly by Eq. (6),
is the following:

Result 1: The number of real supercharges N(a, f, 1)
protected by an odd phase with invariant « is exactly
2k + 1, where k is the largest number for which 2* divides
d,, the greatest common divisor of the degrees of the
irreducible representations with projectivity class a.

We cannot present a general, explicit formula for A/
because no such expression for d,, is known; however, the
mathematics literature contains some limited results that
hold at least when G,, contains only unitary symmetries.
Upper and lower bounds on A follow from the facts that d,
divides the order of G, and is divided by the order of a in
cohomology (cf. Ref. [14], corollary VI.3.10 and lemma
VI1.4.1). More can be said when G, is a finite Abelian
group. In this case, every irreducible representation with

class a has the same degree d, = /|G|/|K,|, where K|, is
the subgroup on which a is symmetric (cf. Ref. [14],
theorem VI.6.6, and Ref. [15]).

For an example that is common in studies of symmetry-
enriched phases, consider the group G, = Z, x Z,. Its
irreducible projective representations are described by
clock and shift matrices on spaces of dimension the order
of ain H*(G,; U(1)) = Z,, [16]. Let n = 2% and take a to
generate the cohomology group. Then ' (a, 8, 1) is 2k + 1.
This class of examples can be used to obtain an arbitrarily
large number of protected supercharges.

Another important case is odd phases with trivial a, for
which the number N (0, $, 1) is exactly 1. To see this, note
that if « is trivial, it represents the projectivity class of the
trivial representation, which has degree d =1 and so
k = 0, corresponding to one real supercharge. Since this
mode is protected (as in any odd phase) and is the only
mode in one system (the one with trivial representation), it
is the only protected mode for the phase.
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Let us also illustrate how our formula applies to phases
of symmetry class BDI—that is, G, = Z} x Z}. The
construction of supercharges for each v =0,...,7, has
been carried out in Ref. [12], and we recover their counting.
Using the dictionary, given in Refs. [5,10], between the
number of layers v and the invariants «, f3, y, our formalism
recovers this count of supercharges: (i) In the phases with
y =vmod 2 = 1, there is at least one protected super-
charge. (i) When v = 1, 7, « is trivial and so there are no
more protected supercharges. We have a total of N = 1.
(iii) When v =3, 5, a is nontrivial and the smallest
irreducible projective representation (the Kramer’s doublet)
has degree d = 2, for a total of A/ = 3. We also could have
recovered this counting from looking at the “minimal”
algebras given by the real superdivision algebras: see the
table in Ref. [10], and note that C#, yR and C7,;R each
have a single generator while H® C¢, ;R and H®
C?, oR each have three.

Even case.—Consider the algebra associated with a
system in an SPT phase. It has the form A = M(a|b),
where M(a|b) denotes the graded algebra of matrices on
the graded vector space C/?.

We begin by arguing that, since the projective action of
GronU = C4l? is irreducible (by assumption), the grading
is either purely even b = 0 (when f is trivial) or equal
a = b (when f is nontrivial). Recall the interpretation of the
invariant  in an SPT phase as measuring whether a
symmetry acts on U = C“” as an odd (invertible) operator.
Note that the grading is equal precisely when such an
operator exists. Therefore, a nontrivial f implies that the
grading is equal. On the other hand, consider the case
where S is trivial, meaning the symmetry acts as even
operators, i.e., within the even-even and odd-odd blocks.
By irreducibility, one of these (up to isomorphism, the odd-
odd block) must vanish; therefore, the grading is purely
even. This proves our claim.

Next observe that M (ala) ~ M(a) ® C#(2). This means
that, if M (a|b) has equal grading a = b, it has at least two
odd modes. Also note that, for k > 0,

M(c|d)®C?(2k) ~ M(c|d)@M (2K~ |2k1)
= M((c+d)2"|(c + )2, (8)

This implies the converse: that, if M(a|b) has unequal
grading a # b, it contains no odd modes.

From this we may conclude the following, which was
first proved by Prakash and Wang:

Lemma: (cf. Ref. [8]).—If § of an SPT phase is trivial,
the number of protected real supercharges N (a,0,0) is 0,
while, if /8 is nontrivial, A'(a, ,0) is at least 2.

Next, we state an SPT analog of Result 1. As discussed
briefly in a previous section and more extensively in
Refs. [9,10], the projectivity class of the group action on

U is a certain lift w of a to from G, to G that combines the
data of @ and p. In terms of this class @, we have

Result 2: The number of real supercharges N (a, f3,0)
protected by an SPT phase with invariants a, f is 0 if f is
trivial; if f is nontrivial, it is exactly 2k, where k is the
largest number for which 2% divides d,, the greatest
common divisor of the degrees of the irreducible repre-
sentations with projectivity class w.

The proof uses the reasoning from the odd case. If f is
nontrivial, a C#(2) factor splits off of the algebra. Then

M(ala) ~M(l)  C£(2m +2), 9)

where a = [2". The degree d of the representation is 2a, so
d = I2* for k = m — 1. This means that the number of
supercharges is 2k, where k is the largest number for which
2k divides the degree of the representation. To complete the
argument, recall Eq. (6), which says that the number of
protected supercharges is the minimum of the number of
supercharges over all systems in the phase.

As an example, consider Gy = Z, X Zy. By the argu-
ment presented in the odd case, we see that the number of
protected supercharges N (a, 3,0) is 2k for any phase with
a, f such that w generates the cohomology group. As
before, this class of examples can be used to obtain an
arbitrarily large number of protected supercharges.

For SPT phases with trivial @, the number N(0, ,0) is 0
if fis trivial and exactly 2 if 8 is nontrivial. To see this, note
that if « is trivial, the only projectivity in the action of G,
comes from commutators of Q/(g) with P. Therefore, P
may be represented as ¢, and each Q((g) with #(g) = 0, 1
as 1, o,, respectively. This representation has degree d = 2,
so the number of protected supercharges is at most 2.
Applying the lemma completes the proof.

Let us look again at the case of class BDI, this time for the
even phases. We recover the counting of Ref. [12]: (i) When
v =0, 4, p is trivial and so there are no protected super-
charges. (i) When v = 2, # is nontrivial while « is trivial, so
there are N = 2 protected supercharges. (iii) When v = 6,
both f and a are nontrivial. These are compatible with a
representation of degree d = 2 (given by the real graded
algebra CZ,R), so there are still only N =2 protected
supercharges. Again, we could have looked at real super-
division algebras, where R and H are purely even while
C?, R and CZ,R each have two odd generators.

Summary and outlook.—We have found that supersym-
metry emerges without fine-tuning on the boundaries of a
broad class of one-dimensional symmetry-enriched phases
of fermions—both SPT and beyond. The lack of fine-tuning
is by virtue of its protection by the topological invariants
(a,,7) that characterize the bulk phase. For each phase,
we computed the number N (a,f,y) of protected real
supercharges. Our results extend the recent discovery that
intrinsically fermionic SPT phases support at least N = 2
protected boundary supersymmetry [8].
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This work opens a line of investigation into the conse-
quences of the emergent supersymmetry for the Sachdev-
Ye-Kitaev (SYK) models that arise on the boundaries of
one-dimensional fermionic phases that have been many-
body localized. The quantum chaotic eigenspectra of these
models have been shown to encode information about the
bulk topological invariants [17]. In the setting of bulk
phases of symmetry class BDI, which support the eightfold
way of SYK models on their boundaries, this feature of the
spectra and related properties of dynamical correlation
functions were shown to be constrained by supersymmetry
[12]. Our results raise the possibility of understanding the
connection between supersymmetry and these phenomena
in a much broader class of phases. It would also be
interesting to study how our work generalizes to phases
of quantum matter in higher dimensions.
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