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Anomalous heat transport in one-dimensional nanostructures, such as nanotubes and nanowires, is a
widely debated problem in condensed matter and statistical physics, with contradicting pieces of evidence
from experiments and simulations. Using a comprehensive modeling approach, comprised of lattice
dynamics and molecular dynamics simulations, we proved that the infinite length limit of the thermal
conductivity of a (10,0) single-wall carbon nanotube is finite but this limit is reached only for macroscopic
lengths due to a thermal phonon mean free path of several millimeters. Our calculations showed that the
extremely high thermal conductivity of this system at room temperature is dictated by quantum effects.
Modal analysis showed that the divergent nature of thermal conductivity, observed in one-dimensional
model systems, is suppressed in carbon nanotubes by anharmonic scattering channels provided by the
flexural and optical modes with polarization in the plane orthogonal to the transport direction.
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The 1955 computer experiment by Fermi, Pasta, Ulam
(FPU), and Tsingou [1] initiated the field of nonlinear
statistical physics and the age of computer simulations in
physics. The FPU model, consisting of a one-dimensional
(1D) chain of masses interacting through weakly anhar-
monic springs, sparked a debate on anomalous heat trans-
port in low-dimensional systems. While in standard bulk
materials heat diffusion obeys Fourier’s law and the thermal
conductivity « is an intrinsic property, the thermal con-
ductivity of the FPU and other 1D models diverges with
their length L as k ~ L%, with a > 0 [2,3]. Heat transport in
these models is deemed anomalous, as it violates the
principles of normal diffusion [4-10].

The advent of nanotechnology and the discovery of carbon
nanotubes (CNTs) [11] provided a suitable platform to verify
experimentally the predictions from nonlinear statistical
models. The early measurements on suspended individual
CNTs found thermal conductivity comparable or even higher
than diamond [12-15]. Systematic measurements of x vs
length in multiwall and, eventually, single-wall (SW)CNTs
supported the hypothesis of anomalous heat transport with
diverging (L) [16,17]. The latter experiment showed that
for suspended SWCNTSs x may reach values as high as
13,000 Wm~! K~! at room temperature (RT) and would not
converge up to millimeter lengths. A similar experiment,
however, suggests that k converges for pristine suspended
SWCNTs at lengths of few tens of ym [18]. The technical
difficulties of these experiments and possible shortcomings
in the models used to interpret measurements [19] suggest
that the fundamental problem of anomalous heat conduction
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in CNTs and other 1D nanostructures may not be solved
experimentally.

Even for metallic CNTs, the electronic contribution to x
is negligible, and the major heat carriers are phonons [20],
thus making the problem tractable by either molecular
dynamics (MD) or anharmonic lattice dynamics (ALD) and
the Boltzmann transport equation (BTE). Several theoreti-
cal and computational studies have tackled the calculation
of the thermal conductivity of either finite or infinitely long
CNTs, but they do not provide a clear and coherent picture
altogether [21]. Equilibrium MD (EMD) simulations with
periodic boundary conditions probe the infinite-length
limit, provided that size convergence and phase-space
sampling are properly addressed. For CNTs of various
chirality modeled with different interatomic potentials,
most EMD simulations suggest that « is finite [22-26].
Conversely, most nonequilibrium MD (NEMD) simula-
tions show no evidence of x converging for length up to
10 um [27-31]. Early ALD-BTE calculations suggested
that ¥ would converge only if four-phonon scattering
processes are explicitly considered [32]. Successive works,
implementing the self-consistent solution of the BTE
implied that x may converge only by imposing a cutoff
to low-frequency phonon modes [33,34]. EMD, NEMD,
and ALD-BTE have complementary strengths and weak-
nesses. For example, MD simulations do not approximate
the anharmonic terms of the interaction potential, but, as
the dynamics is Newtonian, do not include quantum
mechanical (QM) effects, which are easily implemented
in ALD-BTE, instead.
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In this Letter, we reconcile the results from EMD and
NEMD with those from ALD-BTE, to finally provide a
coherent and comprehensive picture of heat transport in
CNTs. By concertedly performing MD and ALD-BTE
simulations on a (10,0) SWCNT, we show that the thermal
conductivity for this paradigmatic system converges to a
large value, comparable to that measured in recent experi-
ments. The convergence length is > 1 mm, in accordance
with measurement showing length dependence of x for
mm-long CNTs. Our calculations show an overall quanti-
tative agreement among the different simulation methods,
provided that they are carefully converged and boundary
conditions are implemented correctly. In particular, we find
that the Matthiessen rule, customarily used in ALD-BTE
calculations, fails spectacularly for CNTs with length from
few tens of nm to mm, that is when transport is in the so-
called nanoscale regime [35] between the ballistic and the
diffusive limit.

Infinite size limit.—We consider a (10,0) semiconducting
SWCNT, for which we model the interatomic interactions
using the empirical bond-order Tersoff potential [36] using
the parameters optimized to reproduce the phonon
dispersion relations of graphene [37]. We first compute
the thermal conductivity of an infinitely long SWCNT by
both EMD and ALD simulations with periodic boundary
conditions. In EMD simulations, « is computed in the
Green-Kubo formalism as an infinite time integral of the
heat flux autocorrelation function obtained from a suffi-
ciently large ensemble of EMD runs in the microcanonical
ensemble [38—41]. We performed EMD simulations using
the GPUMD package [42] for periodic (10,0) SWCNT cells
of lengths 52-207 nm at 300 K. While the Green-Kubo
integral would not converge for 1D systems with anoma-
lous heat transport [2], our EMD simulations converge with
respect to both correlation time and cell length and provide
a value of x = 2408 4+ 83 Wm™' K~! (see Supplemental
Material, Table ST1, Figs. S1, S2 [43]).

Whereas the convergence of x in EMD simulations is
supported by plenty of evidence, ALD-BTE calculations
have so far struggled to provide an estimate for the thermal
conductivity of a SWCNT in the infinite length limit. ALD-
BTE allows one to compute x from the nonequilibrium
phonon population én, = n, — 7, obtained by solving the
linearized BTE [44], which for a system extended in one
dimension reads
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where I, is the scattering tensor that accounts for all the
phonon scattering processes [45]. Here we consider only
anharmonic scattering approximated to the first order of
anharmonicity, i.e., considering only three-phonon scatter-
ing processes. The resulting thermal conductivity is

1
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where N, is the number of g points used to integrate the
first Brillouin zone, ¢, and v, are the heat capacity and
group velocity of mode u [46]. Due to prominent hydro-
dynamic effects [47,48], the phonon mean free path (MFP)
AP cannot be approximated by the relaxation time approxi-
mation, and needs to be computed by inverting the
scattering tensor as Ay’ =, (I'™") ,v,,. Matrix inversion
is often circumvented by a self-consistent approach [49,50]
that was applied in the previous ALD-BTE calculations for
SWCNT [33,34]. However, the self-consistent series con-
verges only if the off-diagonal elements of the scattering
tensor are smaller than the diagonal ones in modulus
T, /T, < 1 with p # /. [51] This is not the case for
the low-frequency modes of the (10,0) SWCNT (Fig. S9),
hence we directly invert the scattering tensor [52], with
well-converged g-point sampling (Fig. S4) [53]. ALD-BTE
presents the advantage that it can be carried out both with
the correct QM phonon statistics and in the classical limit,
which is taken by solving Eq. (1) with 2 — 0. Both
classical and QM calculations converge but to very differ-
ent values of x. The classical limit at 300 K gives x, =
3190 Wm~! K=! which compares well to the value com-
puted by EMD, especially considering that in ALD-BTE
anharmonic effects are truncated, leading to overestimated
k even at low temperature [54-56]. The QM calculation
gives kg = 9960 Wm™' K~! in the same ballpark as the
experiments on mm-long SWCNTs [17]. The difference
between kqy and k; is among the largest for any material at
RT: it stems from both the high Debye temperature ®, and
the low dimensionality of CNTs. Such a striking difference
indicates that classical simulations for carbon-based nano-
materials can be used to find qualitative trends, but cannot
provide quantitative predictions. Quantum effects become
less important at high temperature or for materials with
lower ®p, for which MD provides reliable results.

Finite size.—NEMD allows one to study thermal trans-
port in an analogous way to the experiments. Two local
thermostats apply a temperature difference AT at opposite
sides of a system with finite length L to generate a
nonequilibrium heat flux J [57-59]. Evaluating J at a
stationary state and probing the temperature difference AT
between the two reservoirs, with temperature controlled
through Langevin dynamics, provides the thermal conduct-
ance per unit area G = J/AT and the effective length-
dependent thermal conductivity k(L) = GL [60,61]. Here
we performed NEMD simulations to compute x(L) for the
(10,0) SWCNT with L from 10 nm to 10 gm using GPUMD
[42] exploiting a simulation protocol carefully evaluated for
carbon nanostructures [60] (see SM [43], Fig. S3, Tab. S1,
including Refs. [62,63]). The NEMD results displayed in
Fig. 1(a) show that k(L) apparently diverges with length, at
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least up to 10 ym, which is at the edge of the length
accessible to NEMD simulations. Also these results are in
agreement with former works, but they do not contradict
the former EMD predictions, as k(L) remains below the
infinite-length limit x(co) computed by EMD.

To compute the length-dependent thermal conductivity
k(L) of the SWCNT at QM level, we use ALD-BTE
method. The customary way of introducing finite length in
ALD-BTE is to correct the anharmonic phonon MFPs with
a boundary scattering term through Matthiessen’s rule [64]:
1/2L =1 /ﬂgiff + 1/L, which correctly describes both
the ballistic (L — 0) and the diffusive (L — oo) limits.
Figure 1(a) shows a large discrepancy between ALD-BTE
results obtained using the Matthiessen rule and the refer-
ence NEMD results: for any L > 10 nm ALD-BTE cal-
culations systematically overestimate x(L). The reason for
the failure of the Matthiessen rule is that it does not account
correctly for the boundary conditions for Eq. (1).
Specifically, in Eq. (1) the first equality is justified under
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FIG. 1. (a) BTE and MD classical simulations at 300 K as a

function of the CNT length. The BTE finite size corrections are
calculated using both the MS method (solid green line) and the
Matthiessen rule (dashed green line). The ballistic limit (dotted
green line) is plotted as a reference. The NEMD result up to
10 um (black x) is shown, as well as the infinite limit EMD,
where the double black dashed line represents the error bars.
The inset shows the difference in percentage of the finite
size BTE, with respect to the NEMD simulations,
A =100 - (kgte — knemp)/KNEMD- (B) Comparison of quantum
(blue) and classical (green) simulations using the BTE 4+ MS
approach.

the assumption of local thermal equilibrium (9n,/0x) =
(On,/OT)VT = (0n,/OT)VT, which is not the case in
systems with finite length, as suggested by the nonlinear
temperature profiles of our NEMD simulations (Fig. S3).
Using the McKelvey-Shockley (MS) flux method, Maassen
and Lundstrém proposed a solution of the BTE for finite
systems with consistent boundary conditions [65]. This
method gives up the assumption of local thermal equilib-
rium and treats separately forward and backward fluxes
along the transport direction. The finite-length thermal
conductivity resulting from this approach for a 1D
systems is

1 2|v,| -1
k(L) = NqV;CﬂUM (F;w’ + LM 5/4/4’) vy (3)

in which the boundary scattering term L/(2|v,|) is added
to the diagonal elements of I',,. k(L) computed using the
MS method in the classical limit is in excellent agreement
with the reference NEMD calculations [Fig. 1(a)]. The
agreement between carefully implemented NEMD simu-
lations and well-converged ALD-BTE calculations with the
correct boundary conditions gives solid ground to the
finite-size MS approach [61] and resolves a long-standing
puzzle about nanoscale heat transport.

We can now exploit ALD-BTE to calculate x(L) with
quantum statistics to obtain predictions directly comparable
to experiments for any length [Fig. 1(b)]. Quantum effects
influence both the modal heat capacity and the MFPs [see
Egs. (2) and (3)]. Because of equipartition in classical
statistical mechanics ¢, (classical) is always larger than ¢,
(QM). Conversely, QM MFPs are longer than the classical
ones (Fig. 2), because the number of phonon scattering
processes is lower in QM as high frequency modes are less
populated. For this reason, the RT kqy is much larger than
k. At finite lengths, however, we observe a crossover at
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FIG. 2. Phonon mean free paths as a function of the frequency,
computed using QM (blue) and classical (green) statistics. The
(x) symbols indicate the longest mean free paths, which are 6 mm
(QM) and 0.9 mm (classical).
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L ~ 1 ym, below which (L) > k(L)qy as the effect on
modal heat capacity dominates over that on phonon MFPs,
which are limited by the length of the system. Furthermore,
Fig. 1(b) shows that the (10,0) SWCNT must be longer than
the maximum thermal phonon MFP, i.e., a few millimeters,
for k(L) to converge to the infinite size limit. These results
reconcile equilibrium and nonequilibrium simulations,
ALD-BTE calculations, and experimental measurements,
all painting the same coherent picture of thermal transport
in SWCNTs: the infinite-length limit of « is finite, but such
limit is reached for mm-long SWCNTs, which are difficult
to probe experimentally.

Modal analysis.—Hereafter, we analyze the origin of the
large difference between k and kqgy, and why heat
transport in SWCNTs is not anomalous as opposed to
1D models. Figure 3(a) displays the comparison between
the classical and QM frequency-resolved thermal conduc-
tivity x(w) for the infinite-length SWCNT. The shaded
areas represent the differential contribution Ax/Aw. The
contribution to kqy from frequencies lower than 1 THz
amounts to about 50% of the total, and that below 10 THz
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FIG. 3. (a) Frequency resolved conductivity at 300 K, using
both the quantum and the classical statistics. The solid lines show
the diffusive cumulative conductivity (reference axis on the
right), while the shaded area shows the differential one (reference
axis on the left), for quantum (blue), and classical (green). The
brown shaded area and dashed lines show the quantum case for a
10 um-long CNT. Panels (b) and (c) show the dispersion relations
below 10 THz, colored according to their contribution to the
scattering phase space (b), and thermal conductivity as in Eq. (2)
(c). The labels indicate the transverse acoustic (TA), torsional
acoustic (RA), and longitudinal acoustic (LA) modes.

to 90%. In the classical calculation the contribution from
the low-frequency modes is substantially reduced, as they
are involved in a larger number of anharmonic scattering
processes. The difference stems from the 2-to-1 phonon
scattering processes that involve one high-frequency and
one low-frequency mode combining into another high-
frequency phonon. Classical statistics overestimates these
processes due to the excess population of high-frequency
modes, which are depleted according to the correct QM
statistics. Figures 3(b) and 3(c) show the dispersion
relations near the I' point with the color of the dots
indicating the three-phonon scattering phase space [66],
i.e., the number of scattering processes available to each
phonon (b) and the mode-resolved contribution to the total
thermal conductivity (c). The longitudinal and torsional
acoustic (LA and RA) modes are involved in relatively few
scattering processes and provide the largest contribution to
k. The two degenerate transverse acoustic (TA) modes also
substantially contribute to x, but they also provide a large
number of scattering channels. Conversely, higher order
flexural modes have a large scattering phase space without
contributing to heat transport mostly because of their small
group velocity. Figure 3(a) also shows the finite length
effect on the relative modal contribution to k. As the long
MFP of low-frequency modes is truncated by the system
boundaries, the main contribution to « shifts toward higher-
frequencies modes with shorter intrinsic 4,,,.

Effect of dimensionality.—Finally, we investigate the
difference between the SWCNT, a 3D system extended
in one dimension with converging x(L), and a system with
the same structure in which the atomic coordinates
perpendicular to the CNT axis are constrained, so that
the dynamics is 1D. The phonon dispersion relations of this
model, compared to those of the 3D SWCNT are displayed
in Fig. S7. ALD-BTE calculations (Fig. 4) suggest that the
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FIG. 4. Lifetime 7 of the longitudinal acoustic mode as a
function of the wave vector g for the SWCNT in which atoms can
move only along the symmetry axis. z is computed by BTE with
either quantum or classical phonons statistics. The low-g limit is
fitted to 7 o ¢77 (dashed lines), with # = 1.76 (quantum) and
1.94 (classical).
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lifetime of the longitudinal acoustic mode diverges for ¢ —
0as 7 x g™, with n = 1.76 (quantum) and 1.96 (classical),
thus supporting the divergence of k(L) o L* with a = 0.43
(quantum) and 0.48 (classical). Trends and exponents are
compatible with both classical and quantum lattice dynam-
ics calculations of anomalous transport in the FPU model
[67,68], showing that the suppression of the dynamics in
the plane orthogonal to the transport direction restores
anomalous thermal transport with x o« L* as in 1D models.

Conclusions.—We showed that different atomistic
approaches, MD and ALD-BTE, independently provide
the evidence that the thermal conductivity of SWCNTSs has
a finite bulk limit, in contrast with anomalous transport
observed in 1D models in 3D space [69]. This result does
not conflict with experimental observations of increasing
k(L) for mm-long nanotubes, as the computed convergence
length at RT is beyond 1 mm. To capture the correct
magnitude of « it is essential to treat phonons quantum
mechanically, meaning that classical MD simulations can
provide qualitative trends but not accurate predictions
below ®p. For the (10,0) SWCNT considered here, the
infinite length limit of x at the QM level is about three
larger than in the classical limit. Modal analysis shows that
both the two fundamental and the optical higher order
flexural modes provide the main source for anharmonic
scattering channels that make the thermal conductivity of
SWCNTs finite. Our work reconciles formerly divergent
numerical approaches to compute thermal transport in
CNTs, and highlights the fundamental differences between
1D models that showcase anomalous heat transport, and
nanostructures with finite thermal conductivity in the bulk
limit, thus providing a substantial contribution to solve a
critical problem across condensed matter and statistical
physics. We expect this fundamental result to hold not only
for CNTs, but also for nanowires and other nanomaterials
that exhibit strong dependence of x on length at the
macroscopic scale [70]. Divergence may still occur for
suspended polymer threads [71,72] and aligned atomic
chains [73].

The data that support this study are openly available in
Zenodo [74].
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