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Computation of correlated ionic transport properties from molecular dynamics in the Green-Kubo
formalism is expensive, as one cannot rely on the affordable mean square displacement approach. We use
spectral decomposition of the short-time ionic displacement covariance to learn a set of diffusion
eigenmodes that encode the correlation structure and form a basis for analyzing the ionic trajectories. This
allows systematic reduction of the uncertainty and accelerate computations of ionic conductivity in systems
with a steady-state correlation structure. We provide mathematical and numerical proofs of the method’s
robustness and demonstrate it on realistic electrolyte materials.
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Introduction.—Understanding the transport of ionic
species is of central importance in a variety of fields
ranging from physics and biophysics [1,2] to chemistry
in general [3]. Of particular relevance for energy storage
solutions, the design of next-generation metal-ion batteries
depends on the development of fast ion-conducting and
stable electrolyte materials [4–6].
As the total ionic conductivity is proportional to the

number of charge carriers, high concentrations of ions are
typically targeted. Consequently, due to both high concen-
trations and long-range Coulomb interactions, the correla-
tion between ions becomes non-negligible [7,8]. The
physics of ion correlations and effects on transport proper-
ties are complex, as they can be either beneficial [9,10]
or detrimental [11,12] depending on the composition and
concentrations. To capture these effects one can either
apply an external electric field or collect the statistics of
the total ionic flux fluctuation at equilibrium [13,14]. The
former (nonequilibrium) method is often problematic,
especially for first-principles dynamics simulations, due
to the difficulty of including a finite electric field in periodic
systems, ensuring its linear-response effect, and controlling
the thermodynamic ensemble of the driven system [14,15].
Consequently, the latter (equilibrium) method, based on the
Green-Kubo formalism [16], is often preferred. Even
though the method is exact in principle, the challenge is
that it is based on fluctuations of a single total flux value for

the entire system, and the conductivity estimate has a
variance that increases with the system size. As a result, to
reach sufficient convergence of the statistics, long simu-
lations are needed, especially for large systems in which
total flux fluctuations are small.
These limitations often lead to the erroneous adoption of

the Nernst-Einstein dilute-solution approximation. In this
case the variance of the estimate is lower and independent of
the system size, leading to fast although often incorrect
(biased) estimates. If the short-range correlations are strong,
time independent, and known a priori, such as bonds
between atoms in a molecular liquid, with negligible
intermolecular correlations, displacements of the molecules
rather than atoms can be used in the Nernst-Einstein
formulation. In the case of electrolytes, for example, the
cluster Nernst-Einstein method treats ionic clusters as
uncorrelated charge-moving entities [17]. Equivalent to
the Nernst-Einstein approach for uncorrelated molecular
diffusion, this approach reduces the κ estimate variance.
However, it relies on the prior knowledge of the clusters’
composition and the assumption of their immutability, which
is not satisfied by a wide range of liquid, polymer, and
single-ion solid-state electrolytes. In the absence of perfect
knowledge of clusters, or dynamic nature of the interatomic
correlations, the expensive total flux approach is required.
In this Letter, we introduce a data-driven approach to

learn the diffusive modes from the full interatomic
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displacement covariance matrix via its spectral decompo-
sition, without prior assumptions about the range and
structure of the correlation, other than it is time indepen-
dent. We then use the learned eigenvectors to greatly reduce
the variance and accelerate the estimation of the ionic
conductivity for correlated systems, with rigorous provable
bounds on the bias and variance.
Theory and method.—The conductivity κ can be written

in an Einstein form as

κ ¼ F2

6N 2
AVkBT

lim
τ→∞

∂
∂τ

X
ij

qiqjhCijðτÞi: ð1Þ

Here F is the Faraday’s constant,N A the Avogadro number,
V the volume, kB the Boltzmann constant, and T the
temperature; h� � �i indicates an element-by-element average
(see below), and qi is the charge and riðtÞ the position vector
of particle i at time t. The position displacement covariance
matrix is CijðτÞ¼ ½riðτþ tÞ−riðtÞ� · ½rjðτþ tÞ−rjðtÞ� and
indices i, j run over all particles.
The diagonal i ¼ j represents each particle’s squared

displacements, and the interparticle displacement correla-
tion is encoded in the off-diagonal i ≠ j elements. If the
motions of particles i and j are uncorrelated, the averaged,
off-diagonal element hCi≠jðτÞi → 0 for values of τ greater
than the typical collision timescale. Consequently, the
relevant information about the diffusion of an uncorrelated
system lies exclusively on the diagonal of hCijðτÞi.
Replacing the hCi≠jðτÞi terms with zeros is equivalent to
the widely adopted Nernst-Einstein formulation [18],
which is correct only in the infinitely dilute uncorrelated
limit. In this case each diagonal value contributes inde-
pendently to the variance of the conductivity estimate,
which is reduced by a factor of N (number of particles)
compared to the variance of the total flux estimate of the
conductivity [19]. Finally, the hCijðτÞi average is obtained
by performing multiple instances of the same experiment
and by implementing time-window averaging [20]. The
issue with the latter averaging is that the statistics becomes
poorer for longer time windows; i.e., if Δt1 < Δt2 then
hCijðΔt1Þi is averaged over more matrices, thus better
converged, than hCijðΔt2Þi. Thus, determination of trans-
port properties becomes noisier, and long MD simulations
are needed to obtain the total flux conductivity estimate
within a reasonable uncertainty.
Our approach is based on the eigenvectors of hCijðτÞi

averaged using a short time interval τ ¼ τ1 greater than the
minimum time needed for the system to reach the diffusive
regime. hCijðτ1Þi contains the most well-converged infor-
mation about the correlation of the system because any time
window τn > τ1 has fewer position-position correlation
matrices to average over. We then use the learned spectral
information to reduce the statistical variance of the estimate
of κ for any time window τn > τ1. The only assumption of

our approach is that the correlation structure of the system
under investigation does not change over time. If a system
is in steady state with respect to the diffusion timescale, the
correlation structure is determined by the chemistry at play
as well as the distribution of diffusion mechanisms avail-
able at a given temperature.
Before describing the spectral denoising approach, we

clarify that, for our purposes, tracer and self-diffusion are
used interchangeably. However, we highlight that the two
quantities might differ when same-particle successive
diffusion jumps are correlated, such as in vacancy-mediated
diffusion (not discussed here) [21,22]. Additionally, we
introduce the following terminology used throughout
this work.
Total flux, or full summation (FS), is the exact Green-

Kubo conductivity based on the summation over all i, j
elements of hCijðτÞi as in Eq. (1).
Nernst-Einstein self-diffusion (or MSD) approach, based

on the trace of hCijðτÞi, assumes the cross terms i ≠ j are
zero. Nernst-Einstein conductivity is correct only for
infinitely dilute systems.
Spectral denoising (SD) refers to the method developed

in this work, where the denoised hC�ijðτÞi is used to
compute conductivity, as described below.
To quantify the degree of correlation in a given system,

the correlation factor fc ¼ κFS=κMSD ¼ P
ij Cij=

P
i Cii is

introduced as the ratio of the FS to MSD estimate of
conductivity (it is the inverse of the Haven ratio, and it is
different from the same-particle correlation factor that
quantifies the departure from a random walk).
Now we outline the spectral denoising approach to

reduce the noise in the calculation of correlated ionic
conductivity. (1) Diagonalize hCijðτ1Þi and obtain its
eigenbasis A. As hCijðτ1Þi is positive-definite and sym-
metric, it is always possible to find a complete set of real,
orthonormal eigenvectors, and its eigenvalues are positive.
(2) Rotate using A all hCijðτnÞi, where τn > τ1, obtaining
ΓðτnÞ ¼ AThCijðτnÞiA. As we assume the system is in
equilibrium and the correlation profile is stationary,
we expect ΓðτnÞ to be nearly diagonal, with noise in the
off-diagonal terms arising only from finite sampling of the
time-window averages. This noise is confirmed numeri-
cally to have zero expectation value (Supplemental
Material [23], Sec. 4). (3) Set to zero the off-diagonal
terms of ΓðτnÞ, obtaining Γ�ðτnÞ, in the same spirit as in the
Nernst-Einstein. The key difference is that we do this in the
basis of natural diffusion eigenmodes identified from
the covariance matrix of the system itself. (4) Rotate back
Γ�ðτnÞ using the eigenbasis A to obtain the denoised
covariance matrix hC�ijðτnÞi to then use in Eq. (1). In
addition to helping reduce the conductivity variance, the
eigenbasis A also provides a microscopic understanding of
the fundamental modes of diffusion in correlated scenarios,
as discussed below. The details regarding the choice of the
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optimal τ1, as well as the mathematical robustness of this
approach, are thoroughly discussed in the Supplemental
Material [23], Sec. 3. We rigorously prove that the SD
method outperforms the FS method if the eigenbasis A is
ideal, i.e., calculated from the true covariance matrix
obtained with infinite statistics of the diffusion process.
In this limit the SD approach yields unbiased results,
while the estimate variance is always strictly lower than
that of FS:

Var

�X
ij

C�ij

�
¼ 2

X
i

ðλiw2
i Þ2

≤ 2

�X
i

λiw2
i

�
2

¼ Var

�X
ij

Cij

�
; ð2Þ

where λi ≥ 0 are the diagonal elements of the Γ matrix and
wi is the sum of all elements of the ith eigenvector, i.e.,
column of A. In practice, hCijðτ1Þi is a finite-sampling
approximation to the ideal covariance matrix. In this case,
we can also prove that the SD approach outperforms the FS;
full details of the proofs and derivations are given in the
Supplemental Material [23], Sec. 3.
Validation and applications.—Multivariate Gaussian

randomwalk: To establish the methodology in a controlled
model setting, we sample a multivariate Gaussian distribu-
tion to obtain correlated random displacement vectors that
mimic Brownian diffusion with exactly known correlation.
We consider a model with the covariance matrix with Ci¼j ¼
α and Ci≠j ¼ β that represents a homogeneous single-
component correlated system. The correlation factor is
then defined as fc ¼ ½ðPij CijÞ=ð

P
i CiiÞ� ¼ f½Nαþ

NðN − 1Þβ�=Nαg. A system with fc ¼ 1 possesses no
correlation (the sum of the off-diagonal covariance elements
equals 0; in this case β≡ 0), while fc > 1 and 0 < fc < 1
corresponds to systems with negative and positive interpar-
ticle correlation, respectively. Thus, we expect the SD
approach to provide the greatest improvement over the FS
for fc ¼ 1, while reducing to FS for fc ≪ 1 and fc ≫ 1.
More details are provided in the Supplemental Material [23],
Sec. 1. A time series of n Brownian steps is then constructed
by adding n sampled vectors, and our goal is to estimate the
slope D ¼ ð∂=∂τÞPijhCijðτÞi from the sampled displace-
ment trajectories. By modifying the covariance matrix, we
test the applicability and robustness of our approach on a
wide range of types and strengths of correlations. More
details on the Gaussian sampling are discussed in the
Supplemental Material [23], Sec. 2.
For our testing, we set the number of Brownian steps to

1000 and a minimum of 10 averaged position-position
correlation matrices hCijðτnÞi to perform linear regression
to obtain the slope D. The number N of simulated
Brownian walkers, representing diffusing particles, ranges
from 3 to 500. We study fc in the range of 0.25 to 2.75.

For every ðfc; NÞ combination, we perform 100 indepen-
dent simulations of the Brownian walkers.
Figure 1 shows two ways the SD approximation can be

used to improve the determination of correlated transport
properties with respect to the exact theory. Figure 1(a)
presents the reduction in the standard deviation of the D
estimate, calculated as the ratio between the standard error of
the FS and that of the SD approach. Figure 1(b) shows the
computational speedup, calculated as the ratio ðMFS=MSDÞ
of the number of Brownian steps required to achieve a given
uncertainty by each method. We chose MFS ¼ 1000; thus
the above expression conceptually reduces to how fast the
SD method reaches the same accuracy as FS when 100% of
the trajectory is used for the latter.
We make the following observations for this homo-

geneous single-component model example. (i) The off-
diagonal elements of ΓðτnÞ that are set to zero are in fact
distributed with a zero mean, confirming that they can be
regarded as noise (Supplemental Material [23], Sec. 4).
This numerically confirms our theoretical proof that the SD
method is unbiased. (ii) Figures 1(a) and 1(b) show that the
SD method produces more significant improvement in
the weak-to-moderate correlation regimes, 0.5<fc <1.5.
For strongly correlated single-component systems, the SD
approach does not provide a considerable advantage over
the FS method. Physically, in the latter regimes fluctuations
of the ionic flux comprise the whole system; thus the total
center of mass displacement of the system should be used
to compute transport properties. (iii) The advantage of the
SD method over the FS grows for larger system sizes. This
is because the fluctuations of the center of mass decrease
for larger systems, increasing estimate variance and thus
requiring longer trajectories to converge. (iv) Crucially, the
SD method always outperforms the FS method, as, for both
heatmaps, the values never fall below 1. Rigorous justifi-
cation of this point and derivations of the proofs of variance
reduction are given in the Supplemental Material [23],

FIG. 1. Improvement of the SD estimates of the slope D of the
multivariate Gaussian walk model. (a) The standard deviation
reduction. (b) The computational speedup of the SD method,
relative to the FS method.
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Sec. 3. The last observation implies that the SD approxi-
mation can be applied to any system without prior
assumptions on the correlation structure.
Lennard-Jones liquid: We illustrate our approach by

studying the physical meaning of the eigenvectors of
hCijðτ1Þi. Additionally, Sec. 7 of the Supplemental
Material [23] reports the calculation of D for a Lennard-
Jones (LJ) interacting molecular system. We perform
molecular dynamics (MD) simulations to generate atomic
trajectories of one dimer and one trimer immersed in a
bath of 500 monomers. Figure 2 presents the study on the
meaning of the eigenvectors of hCijðτ1Þi. Figure 2(a)
represents the structure of hCijðτ1Þi, consisting of three
components: the diagonal, the interspecies off-diagonal, and
the intraspecies off-diagonal entries. In this dilute case the
interspecies off-diagonal entries of Fig. 2(a) converge to
zero. On the contrary, the bonded atoms constituting
the dimer and trimer have strong immutable correlation,
as they are bound tomove together. As a result, hCijðτ1Þi has
the structure of a block diagonalmatrix, as sketched in Fig. 2
(a), and the SD approach reduces to the Nernst-Einstein
description in the basis of molecules, which is equivalent to
the cluster Nernst-Einstein method [17]. Correspondingly,
the eigenvectors of hCijðτ1Þi are partitioned into two sets.
One set corresponds to the diffusive drift of the center of
mass of each molecule [Fig. 2(b)], and another set corre-
sponding to nondiffusive intramolecular motions, rotations,
and vibrations [Fig. 2(c)]. Specifically, for the dimer
(highlighted in purple), there are two eigenvectors. The
first eigenvector, approaching ½ð1= ffiffiffi

2
p Þ; ð1= ffiffiffi

2
p Þ; 0; 0; 0�,

describes the center-of-mass motion of the duplet, while
the second, ½ð−1= ffiffiffi

2
p Þ; ð1= ffiffiffi

2
p Þ; 0; 0; 0�, corresponds to

internal motion not contributing to diffusion and has
vanishing eigenvalue in the limit of infinite statistics. In
general, any eigenvector whose eigenvalue and vector
components sum approach zero does not contribute to
diffusion. Thus, eigenvectors of hCijðτ1Þi have intuitive
physical interpretation as collective diffusion modes of the
system and form an efficient basis for analyzing diffusive
transport. This method thus additionally provides an unsu-
pervised automatic way to identify diffusing clusters and
molecules in the case of strong short-range correlations,
from only atomic motion without any prior information.
Electrolyte conductivity: As a realistic test of our

method, we calculate the conductivity κ for two battery

electrolyte systems: (1) a lithium salt Liþ½TFO�− in an ionic
liquid (IL), ½Emim�þ½TFO�−, and (2) an amorphous lithium
phosphate ceramic, Li3PO4. For the former, we also inves-
tigate the improvement in standard deviation of the estimate
as a function of temperature. Additionally, Sec. 8 of the
Supplemental Material [23] reports the same analysis for a
highly correlated (fc ≈ 4.4), garnet, Li7La3Zr2O12. As
expected from Fig. 1, the SD applied to the highly correlated
garnet reduces to the FS for both computational cost and
estimation. The above systems have been shown to exhibit
significant ion-ion correlation both theoretically [9,11,33]
and experimentally [12,34,35], with fc from 0.6 (for ionic
liquids) to as high as 5 (for garnets). The computed fc are 0.8
and 1.2 for the ionic liquid and solid-state electrolyte,
respectively. Consequently, the MSD method would result
in a 20% overestimation and underestimation, respectively.
We perform MD simulations and analyze the atomic

displacement correlations to compute κ with the three
methods: trace, FS, and SD. The ionic liquid-based
electrolyte is composed of 178 1-ethyl-3-methylimidazo-
lium (½Emim�þ), 19 Liþ, and 197 trifluoromethanesulfonate
(½TFO�−) molecules, leading to a Liþ salt molar fraction of
0.1. The interatomic potentials, the structure generation,
and equilibration protocols are inherited from our previous
works [8,11,36]. For Li3PO4, we create a supercell of the
crystalline structure with 3456 atoms, 1296 of which are
Liþ the force field is from [37]. We note that, while the
force field from Pedone et al. compromises between
computational cost and accuracy, the SD method can be
equally applied to position-position covariance matrices
obtained with any energy model, provided a diffusive
timescale can be reached. The simulated temperatures
are 358 K for the ionic liquid and 600 K for Li3PO4.
Full details are in Sec. 6 of the Supplemental Material [23].
Figures 3(a) and 3(c) show the drift over time ofP

ijhCijðτÞi for the trace (green), FS (red), and SD (blue)
approaches. As in the other models discussed above, the
displacement correlation

P
ijhCijðτÞi is significantly less

noisy for the SD method compared to the FS approach, and
this translates to lower residuals, Figs. 3(b) and 3(d) for
both systems, with κ matching the FS values. The uncer-
tainty of the κ estimate is reduced by ∼70% for both
electrolyte systems.
Finally, Fig. 3(e) shows the Arrhenius plot for the ionic

liquid system, as well as the ratio in standard deviation
between the SD and FS and trace, full and empty diamonds,
respectively. In this wide temperature range, while provid-
ing unbiased estimates of the fully correlated conductivity,
the SD approach outperforms the FS, as it reduces the
uncertainty on the estimate by an average of 90%, provid-
ing performances comparable to those of the Trace method
as ðσTrace=σSDÞ ≈ 1. A systematically lower standard
deviation for all temperatures will also yield a better
estimation of the activation energy because it is the slope
of the Arrhenius plot.

FIG. 2. Lennard-Jones liquid diffusion results. (a) Structure of
hCijðτ1Þi for a single dimer and trimer in a bath of monomers. (b),
(c) Covariance matrix eigenvectors.
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Conclusions.—In summary, we provide a superior
approach capable of reducing the uncertainty of conduc-
tivity estimates of correlated systems. This is achieved by
leveraging the correlation information encoded in the well-
converged short-time position-position covariance matrix.
The spectral analysis of the position-position covariance
matrix is shown to be an unsupervised way to uncover
stable collective diffusion modes and particle clusters,
automatically revealing the microscopic physical mecha-
nisms underpinning ionic transport in complex systems,
without prior information as required for previously avail-
able methods. Consequently, it enables accurate estimates
of transport properties from significantly shorter molecular
dynamics trajectories, by several orders of magnitude for
larger systems, while capturing the full correlation con-
tribution of the total flux, exact full summation approach.
We derive formal justification that the results are unbiased
and provide rigorous bounds on the reduction of the
variance of the estimates. In addition, we numerically
demonstrate the improvement and applicability of our
approach on controlled models and two realistic electrolyte
systems: Liþ½TFO�− in ½Emim�þ½TFO�− ionic liquid-based
and Li3PO4 solid-state battery electrolytes. These results
open the possibility of rapid investigation of transport
characteristics in complex concentrated electrolytes where
correlation effects cannot be neglected.
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