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We use unbiased computational methods to elucidate the onset and properties of pair superfluidity in
two-species fermionic and bosonic systems with onsite interspecies attraction loaded in a uniform, i.e., with
no confining potential, one-dimensional optical lattice. We compare results from quantum Monte Carlo
(QMC) and density matrix renormalization group (DMRG), emphasizing the one-to-one correspondence
between the Drude weight tensor, calculated with DMRG, and the various winding numbers extracted from
the QMC. Our results show that, for any nonvanishing attractive interaction, pairs form and are the sole
contributors to superfluidity; there are no individual contributions due to the separate species. For weak
attraction, the pair size diverges exponentially, i.e., Bardeen-Cooper-Schrieffer (BCS) pairing, requiring
huge systems to bring out the pair-only nature of the superfluid. This crucial property is largely overlooked
in many studies, thereby misinterpreting the origin and nature of the superfluid. We compare and contrast
this with the repulsive case and show that the behavior is very different, contradicting previous claims about
drag superfluidity and the symmetry of properties for attractive and repulsive interactions. Finally, our
results show that the situation is similar for soft-core bosons: superfluidity is due only to pairs, even for the
smallest attractive interaction strength compatible with the largest system sizes that we could attain.
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Introduction.—Multicomponent quantum systems have
long attracted interest, whether bosonic, fermionic, or
mixtures thereof. Andreev and Bashkin [1] considered a
two-component mixture of 4He and superfluid (SF) 3He and
showed that, in addition to the superflows of the individual
components, there is a “drag” superfluid (DSF) density
caused by the repulsive interaction between the 4He atoms
and the Cooper pairs formed by the 3He. Interest increased
with the experimental realization of trapped ultracold
bosonic and fermionic atoms and mixtures of the two. In
these systems, parameters such as relative densities and
interaction strength are highly tunable and can be studied in
the bulk or loaded in optical lattices. In this context,DSFwas
demonstrated with a microscopic model of a weakly
interacting dilute gas in the bulk [2] and on optical lattices
[3,4]. In the bulk or at low densities on a lattice, theDSF flow
is along the SF flow of the separate components. However,
when the coupling is strongly repulsive and the lattice filling
is commensurate, supercounterflow can be observed [5–8].
The two- and three-component DSF densities were also
studied with mean field [9–11] and quantum Monte Carlo
(QMC). On the other hand, because bosons can be more
easily cooled to very low temperatures, it was argued
that pairing between fermions can be studied on optical
lattices using a two-component bosonic system with large

intra-atomic repulsion, mimicking hard-core bosons, and
attractive intercomponent interaction [12]. It is well known
that attracting fermions undergo pairing correlations: BCS-
like for weak and tight binding (molecular) for strong
attraction [13–23]. Consequently, in this picture, all trans-
port is expected to be superconducting (SC): there is no
normal metallic transport when fermions are paired. This
should imply the same behavior in the attractive bosonic
case too, but this is not quite the picture emerging in the
recent literature [10,24,25]. Whereas there is obvious con-
sensus that, for strong enough attraction, the bosons are
tightly paired and transport is only via pair superfluidity
(PSF), there is no consensus on the weakly attractive case.
Mean field calculations [9–11] show that for weak inter-
species coupling, the DSF in the repulsive case is equivalent
to the PSF in the attractive case and that the corresponding
SF densities are symmetric with respect to the interaction
sign. This would mean that for both repulsive and attractive
interactions there are three contributions to the superflow:
those due to the two individual bosonic components and to
the DSF component. For bosons with strong but finite
intraspecies repulsion in one dimension, renormalization
group calculations [24] argue that, for weak interaction, one
needs a minimum attraction to form PSF and that PSF may
coexist with charge density wave (CDW).
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We address these issues in this Letter and present QMC
and DMRG results arguing that the balanced-population
two-component boson system exhibits very different
behavior for positive and negative interspecies interaction.
Specifically, we show that while the repulsive case displays
simultaneous DSF and individual component SF as dis-
cussed in the literature [1–3,10,11,26–28], the attractive
case has only pair SF for both hard-core and soft-core
boson systems with no single-component superfluidity. In
other words, in the attractive case, transport takes place
only via strongly or weakly paired particles, depending on
the jUj. The single-particle Green’s function decays expo-
nentially, signifying an absence of single-particle transport;
the pair Green’s function decays as a power indicating
quasi-long-range order, i.e., a critical phase in the
Berezinskii-Kosterlitz-Thouless (BKT) universality class
[29–33]. Using the analogy between fermions and hard-
core bosons, these results confirm the similarities in SF
flow between fermion and boson systems. We study one-
dimensional systems because the sizes needed to exhibit
pairing at weak attraction are very large and cannot be
reached in two dimensions with current algorithms and
computers. In addition, interest in one-dimensional super-
conductivity has sharply intensified as a result of a
potentially wide range of applications, especially in quan-
tum technologies, nanocircuits, single-photon detectors,
etc. [34,35]. For these systems, it is crucial to have a clear
understanding of their SF properties and the mechanisms
that could disrupt them (temperature, defects…). Recent
progress in understanding the impact of quantum phase
slips was not based on actual pair formation but on simpler
bosonic models [36–38]. From that viewpoint, this Letter
addresses models that are more directly connected to
conventional one-dimensional superconductivity.
Model and methods.—Westudy two-componentHubbard

models on a one-dimensional chain governed by the Uð1Þ
symmetric Hamiltonian H ¼ H0 þHF=B

int :

H0 ¼ −t
X

i;σ

ðc†i;σciþ1;σ þ H:c:Þ;

HF
int ¼ U

X

i

ni;↑ni;↓;

HB
int ¼ U

X

i

ni;↑ni;↓ þU0

X

i;σ

ni;σðni;σ − 1Þ: ð1Þ

F (B) refers to fermions (bosons); the creation (destruction)
operator c†i;σ (ci;σ) creates (destroys) fermions and soft- or
hard-core bosons; and the number operator is ni;σ. The two
components are labeled by σ ¼ ↑;↓. The interspecies
interaction is U > 0 (U < 0) for the repulsive (attractive)
cases. U0 > 0 is the intraspecies repulsion and U0=t → ∞
gives the hard-core boson (HCB) limit. t ¼ 1 fixes the
energy scale. HCB and fermions are related by the Jordan-
Wigner (JW) transformation [29,39] and share many

properties that we will delineate. For fermions at incom-
mensurate filling and U ¼ 0, the renormalization group
predicts a BKT-like transition between a gapless (metallic)
phase for U > 0 to a spin gapped phase (BCS-like) for
U < 0 [29].
We studied these models [Eq. (1)] using the ALPS

library [40] DMRG [41,42] with open and periodic [43]
boundary conditions (OBC, PBC) and the stochastic
Green’s function (SGF) QMC algorithm[44,45] with
PBC. The OBC DMRG calculations were performed on
lattices up to L ¼ 420; the PBC DMRG and QMC were
performed on L up to 120. In all cases, we verified that the
numbers of DMRG states and sweeps were sufficient for
convergence to the ground state. The various phases are
characterized by the single-particle and pair Green’s
functions, GσðrÞ and GpðrÞ,

GσðrÞ ¼ hc†iþr;σci;σi; ð2Þ

GpðrÞ ¼ hP†
iþrPii; ð3Þ

Pi ≡ ci;↑ci;↓; ð4Þ

wherePj is a pair annihilationoperator at site i. Pair formation
is signaled by power-law decay of GpðrÞ concurrent with
exponential decay [29,46] of GσðrÞ∼expð−r=ξÞ. It is
important to note that the JW string terms cancel for the
pair Green’s function, meaning that fermionic and HCB
pair correlations always exhibit identical behavior in any
dimension. In addition, we compute the single-particle
charge gap [47,48],

Δ¼EðN↑þ1;N↓ÞþEðN↑−1;N↓Þ−2EðN↑;N↓Þ
¼EðN↑;N↓þ1ÞþEðN↑;N↓−1Þ−2EðN↑;N↓Þ; ð5Þ

where EðN↑; N↓Þ is the ground state energy with N↑ (N↓)
up (down) particles.
We probe transport via the 2 × 2 symmetric Drude

weight tensor, D,

Dσσ0 ¼
πL
2t

∂2E0ðΦσ;Φσ0 Þ
∂Φσ∂Φσ0

����
ðΦσ ;Φσ0 Þ¼ð0;0Þ

: ð6Þ

The phase twists Φσ are applied via the replacement
cnσ → einϕσcnσ, where ϕσ ¼ Φσ=L is the phase gradient.
This endows the hopping termswith a phase exp ðiϕσÞ (or its
complex conjugate). The full tensor D can be reconstructed
by fitting the curvature of the ground state energy as a
function of a phaseΦ in the following four cases. The single-
particle weights are given by the diagonal Dσσ, calculated
with ðΦ↑;Φ↓Þ ¼ ðΦ; 0Þ or ðΦ↑;Φ↓Þ ¼ ð0;ΦÞ. The corre-
lated weight corresponds to applying the same phase
gradient on both components, ðΦ↑;Φ↓Þ ¼ ðΦ;ΦÞ giving
D ¼ DC ¼ D↑↑ þD↓↓ þD↑↓ þD↓↑. The anticorrelated
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weight is obtained by applying opposing gradients on
the two components, ðΦ↑;Φ↓Þ ¼ ðΦ;−ΦÞ, giving DA ¼
D↑↑ þD↓↓ −D↑↓ −D↓↑.
For bosonic systems, these quantities probe SF transport

and correspond to the variance of the winding numbers
[49,50] Wσ ,

ρsσ ¼
LhW2

σi
2tβ

¼ Dσσ; ð7Þ

ρCs ¼ LhðW↑ þW↓Þ2i
2tβ

¼ DC; ð8Þ

ρAs ¼ LhðW↑ −W↓Þ2i
2tβ

¼ DA; ð9Þ

where β is the inverse temperature. This yields
D↓↑ ¼ D↑↓ ¼ LhW↑W↓i=2tβ: the off-diagonal term of
D and the cross-winding can be used to study directly
the drag and pair SF densities. We calculate Dσσ0 using
DMRG and for the SF densities we use SGF QMC, where
windings can be measured directly.
Results.—We first verify Eqs. (7)–(9) numerically, and

that our QMC and DMRG results are in agreement. The top
panel of Fig. 1 shows the anticorrelated and PSF densities
for fermions and HCB for −5 ≤ U < 5. In addition, we
show DMRG results for three U values obtained from the
Drude weight tensor: agreement is excellent, confirming
the coherence of our treatment of fermions and HCB using
QMC and DMRG. The bottom panel of Fig. 1 shows the

QMC evolution of the anticorrelated and PSF densities with
system size for HCB (and equivalently for fermions) and
exhibits some noteworthy features. For U > 0, the SF
densities suffer very little from finite size effects, and the
DSF (LhW↑W↓i=2β) is small and increases very slowly
with U. The situation is different when U < 0. For large
jUj, the anticorrelated SF density vanishes (indicating
hW↑W↓i ¼ hW2

↑i ¼ hW2
↓i) and the PSF density suffers

very little finite size effects, indicating that only PSF is
present. For small jUj, we observe large finite size effects.
The anticorrelated SF density vanishes more rapidly for
larger systems while the PSF density rises more rapidly.
The latter effect suggests that, in the thermodynamic limit,
for any U < 0, the system is in the PSF phase and all
transport is via pair hopping. This of course is expected
from the relation between fermions and HCB via the JW
transformation but it emphasizes the importance of finite
size effects for small jUj. Another important feature is the
lack of symmetry between U < 0 and U > 0, a feature
that persists for soft-core bosons, contrary to mean field
results [9–11].
To elucidate the PSF nature when U < 0, Fig. 2 shows,

for HCB, the ratio of pair to single-species SF densities as a
function of U. For U > 0, this ratio is small (less than 0.1
for U ≤ 5) and insensitive to finite size effects. On the
contrary, when U < 0, the ratio rises rapidly to unity and
more rapidly the larger the system. The inset shows this
ratio as a function of L−1 for four values of U. ForU ¼ −2,
the ratio reaches unity for L ¼ 120, but is much smaller for
smaller L. For U ¼ −1.8;−1.6, the ratio does not saturate
for the attainable L, but it does rise sharply. For U ¼ −1.4
the ratio remains small. It is very well known that any
finite attractive interaction between fermions triggers the
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FIG. 1. (a) Anticorrelated and pair SF density for HCB and
fermions using SGF QMC show excellent agreement. The plus
and star (orange) symbols show DMRG results using the Drude
weight tensor. (b) Finite size dependence of anticorrelated and
pair SF densities for HCB.
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FIG. 2. The ratio of pair to single-component SF density rises
rapidly to unity for U < 0. The saturation ratio is reached more
rapidly as the system size increases. Inset: the same ratio as a
function of L−1 for selected values of U. Even for the weakest
attraction, U ¼ −1.4, the ratio increases toward saturation as L
increases.

PHYSICAL REVIEW LETTERS 127, 025301 (2021)

025301-3



formation of Cooper pairs. Therefore, the mapping of HCB
to the fermion system implies that this ratio is unity for any
U < 0. The reason it is not unity for weak attraction is that
this is the regime of BCS pairing where the correlation
length ξ between the pair constituents increases exponen-
tially. For ξ > L, a false nonzero single-particle SF density
will be measured because the members of such a large pair
can still wind around the system independently. DMRG
allows access to larger systems (with OBC) than QMC, and
so, we show in Fig. 3, DMRG results for the single-particle
and pair Green’s functions atU ¼ −1.75 and L ¼ 420. It is
clear in this figure that the pair Green’s function decays as a
power and that the single-particle function decays expo-
nentially. We note, however, that even though it is unam-
biguously clear from this figure that, at U ¼ −1.75, only
paired HCB participate in superflow, Fig. 2 shows that the
ratio of pair to single-particle SF density is only 0.8 on a
lattice with L ¼ 120 sites. The system size needs to be
greater than L ¼ 120 to see the full effect of pairing at this
interaction.
In Fig. 4 we show the growth (decay) of the single-

particle correlation length ξHCB (charge gap, ΔHCB) as jUj
gets smaller. We see that for HCB, when U ¼ −1, the
correlation length is already ξHCB ≈ 100, necessitating
much larger system size. We note that the pair gap (energy
cost for adding or removing a pair, not shown in Fig. 4) is
always smaller than the numerical precision, as expected
for a gapless pair SF.
How these results might extend to soft-core bosons

[finite U0 in Eq. (1)] was studied [12] for large jU0j,
where they were shown to hold true. Lower values of jU0j
are more difficult to study because of the exponential

divergence of ξ. This was addressed [24,25] numerically
and analytically with the renormalization group. It was
shown that, below full filling, there is critical negative value
of the interparticle attraction U, Uc needed to trigger pair
formation,

Uc

U0

¼ −32
t2

U2
0

sin2ðπρÞ; ð10Þ

where ρ is the particle density of each species. For
Uc < U < 0, pairs do not form and the system is in a
phase made of an equal mixture of two independent SFs.
For U < Uc, a PSF phase is established that may even
coexist with CDW. We investigated these claims using
DMRG with U0 ¼ 10, and ρ ¼ 1=3 and system sizes up to
L ¼ 420. Equation (10) then predicts Uc ¼ −2.4. Our
DMRG results for the one-body and pair Green’s functions,
for soft bosons at U ¼ −1.75, are presented in Fig. 3 and
show clearly that pair correlations decay as a power law
while one-body correlations decay faster (exponential).
Figure 4 shows the decay length ξSoft down to
jUj ¼ −1.5, where the correlation function is still expo-
nential, and ξSoft ≈ 100. Even at this very small value, the
system is still in the PSF phase whereas it is predicted to be
[24] in a mixture of two independent SFs. Note that, even
though our results do not definitively exclude the possibil-
ity that the PSF phase does terminate at a much smaller
but finite negative U, we see no evidence for this. This
agrees with Ref. [12], where the overlap between the exact
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FIG. 3. Single-particle and pair Green’s functions for HCB and
soft-core bosons (U0 ¼ 10). Pair Green’s functions decay as
powers whereas the single-particle correlations decay exponen-
tially for both HCB and soft-core bosons. L ¼ 420 was necessary
to expose the exponential decay for the soft-core case due to the
much longer correlation length. For HCB, the power law
exponent is slightly higher than unity, the value predicted at
the transition [29].
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FIG. 4. Single-particle charge gap ΔHCB [Eq. (5)] and Green’s
function decay length ξHCB for HCB as functions of the jUj, at
fixed density n↑ ¼ n↓ ¼ 1=3. Because of BCS-like behavior at
small jUj, ξHCB (ΔHCB) diverges (vanishes) exponentially. For all
jUj, the pair gap is always smaller than the numerical precision
and is consistent with zero. For soft-core bosons at U0 ¼ 10, our
results show that ξ exceeds 100 sites at U ¼ −1.5, but the
accuracy is limited by the numerics. Nevertheless, our results
clearly emphasize that the system is still in a PSF phase for jUj
much smaller than predicted in Ref. [24]; see Eq. (10).
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soft-core boson and HCB ground states was shown to be
close to 1 and a smooth function of U.
Conclusion.—We have shown with DMRG and QMC

that two-species HCB and fermions in one-dimensional
optical lattices exhibit identical transport properties; in
particular, both systems exhibit the same PSF phase for
U < 0 on the finite lattice sizes accessible to QMC and
DMRG. Furthermore, it is well known for fermions that for
any U < 0, Cooper pairs form and the system becomes
superconducting even for infinitesimal U [13,14], and that,
because of the Uð1Þ symmetry of the Hamiltonian, this
transition is expected to be in the BKT universality class
[29]. This, and our demonstration that the two-species HCB
model behaves like the fermionic system, lead us to the
conclusion that, as soon as an attractive interaction is
present, HCB will also undergo a BKT transition to PSF
where single-particle transport is suppressed and SF is due
only to pairs. As we demonstrated, for U < 0 the BCS-like
exponential growth of the one-body Green’s function decay
length ξHCB has been widely overlooked, leading to
misinterpreted finite size–driven transport properties.
This is in sharp contrast with the repulsive case (U > 0),
where transport comprises both a single-particle and a two-
body component (drag SF), i.e., where power-law decays
are much less sensitive to finite size. We expect a similar
pairing behavior to hold for higher dimensions, i.e., a BCS-
like transition to pair superfluidity as soon as U < 0 for
HCB, making finite size effects even more of a limiting
issue for numerical simulations.
For soft bosons, our results show that even at rather weak

attractive interaction, the transport properties are very
similar to those of HCB and fermions. We emphasize that,
if it exists, the phase made of two independent SFs and no
pairing would be present only for a much narrower
interaction range than predicted in Ref. [24]. A more
thorough study of this problem is beyond the scope of
this Letter and would require both a much more extended
computational effort and a revised renormalization group
analysis.
Finally, as explained in the Introduction, one-dimen-

sional nanowires have become crucial components in
quantum technologies, as long as they remain perfectly
superconducting. However, defects (or temperature) cause
excitations leading to quantum phase slips and loss of SF.
We expect similar behavior in our fermionic and bosonic
Hubbard models. Consequently, cold atoms in optical
lattices could serve as perfect theoretical and experimental
test beds for probing the effect of phase slips on trans-
port [37,38].

The computations were performed with resources of the
National Supercomputing Centre, Singapore (www.nscc
.sg). This research is supported by the National Research
Foundation, Prime Minister’s Office, and the Ministry of
Education (Singapore) under the Research Centres of
Excellence program.
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