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We propose to optimally control the harmonic potential of a levitated nanoparticle to quantum delocalize
its center-of-mass motional state to a length scale orders of magnitude larger than the quantum zero-point
motion. Using a bang-bang control of the harmonic potential, including the possibility of inverting it, the
initial ground-state-cooled levitated nanoparticle coherently expands to large scales and then contracts to
the initial state in a time-optimal way. We show that this fast loop protocol can be used to enhance force
sensing as well as to dramatically boost the entangling rate of two weakly interacting nanoparticles. We
parameterize the performance of the protocol, and therefore the macroscopic quantum regime that could be
explored, as a function of displacement and frequency noise in the nanoparticle’s center-of-mass motion.
This noise analysis accounts for the sources of decoherence relevant to current experiments.
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A levitated nanoparticle in high vacuum is a promising
system to explore quantum mechanics at large scales for
three reasons. (i) The center-of-mass motion of a nano-
particle of massm in the regime of 108 to 1011 atomic mass
units can be prepared in a pure quantum state via ground-
state cooling in a tight harmonic potential of frequency ω0

(∼2π × 100 kHz) [1–7]. The corresponding zero-point
motion x0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mω0Þ

p
is minute (∼10−12 m). (ii) The

harmonic potential can be tuned to induce dynamics in
which the position probability distribution is expanded to
scales larger than x0, ideally approaching the length scale
given by the size of the nanoparticle (∼10−7 m) [8–11].
(iii) Levitation in ultra-high vacuum provides a high degree
of isolation of its center-of-mass motion, enabling the
induced dynamics to be coherent. In this Letter, we
combine these three ingredients in an optimal way to
propose feasible nanomechanical experiments [12] explor-
ing and exploiting quantum mechanics at scales orders of
magnitude larger than the zero-point motion (see Fig. 1).
This proposal is particularly timely given the recent experi-
ments on cooling an optically levitated nanoparticle into the
quantum regime [5–7,13,14]. In contrast to other signifi-
cantly more challenging proposals [8,10,15–17], here we
do not require the preparation of quantum superposition
states.
More specifically, we propose to dynamically manipu-

late the harmonic potential of a nanoparticle, including the
possibility of inverting it, to first coherently expand its state
to large scales and then compress it back to its initial state in

a time-optimal way. By measuring the purity of the final
state (e.g., via its center-of-mass temperature) as well as the
position probability distribution at the point of maximum

FIG. 1. Applications of the proposed loop protocol. (a) coherent
expansion to large scales, (b) static force sensing, and (c) en-
tangling two particles via weak forces. (d) Dimensionless vari-
ance vx ≡ hX̂2i=x20 (solid black line, left axis in logarithmic scale)
and ω2=ω2

0 of the harmonic potential (solid blue line, right axis in
linear scale) as a function of time in the optimal bang-bang loop.
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expansion (on different experimental runs), one could
conclude that the center-of-mass expanded coherently to
scales larger than the zero-point motion [Fig. 1(a)]. In
addition, returning to the initial contracted state is benefi-
cial both to minimize decoherence, as the expanded state is
very fragile, and to facilitate the required repetition of
experimental runs. The loop protocol can be used to
explore quantum physics of massive objects at large scales,
thereby falsifying collapse models [9,18]. The loop proto-
col can also be used for force sensing [11], as the presence
of a static force critically alters the final state of the protocol
[see Fig. 1(b)]. Furthermore, if two nanoparticles interact
via a weak force (e.g., Coulomb [19], Casimir [20], or
gravity [21,22]), the loop protocol dramatically enhances
the entangling rate due to the expansion of the wave
function [see Fig. 1(c)]. In the following, we describe
and analyze these ideas in detail by taking into account
the effect of displacement and frequency noise in the
nanoparticle, which encompass the relevant sources
of decoherence in current experiments with levitated
nanoparticles [23,24].
Let us consider the center-of-mass motion of a nano-

particle along the x axis. The motion along the other axes as
well as rotational degrees of freedom are assumed to be
either decoupled or to effectively induce displacement and
frequency noise. We assume the experimental possibility of
dynamically controlling a harmonic potential in the form
VðX; tÞ ¼ mω2ðtÞX2=2 with ω2ðtÞ ∈ ½−ω2

0;ω
2
0�. That is,

the harmonic frequency that determines the strength of the
spring constant is upper bounded to ω0, but the potential
can be inverted. We are interested in the optimal control
problem of transitioning between states in a time-optimal
way [25] in order to be faster than decoherence. With
potentials of the form VðX; tÞ, the so-called bang-bang
solutions are known to be time optimal [26,27]. Bang-bang
solutions make ω2ðtÞ alternate, with sudden changes,
between the two extreme available values �ω2

0.
Hereafter, we thus consider the two Hamiltonians given by

Ĥ� ¼ P̂2

2m
� 1

2
mω2

0X̂
2 ¼ ℏω0

4
ðp̂2 � x̂2Þ: ð1Þ

Here, X̂ ¼ x̂x0 and P̂ ¼ p̂p0, with ½X̂; P̂� ¼ iℏ, are the
position and momentum operators. We have defined
dimensionless operators using the zero-point motion posi-
tion x0 and momentum p0 ≡ ℏ=ð2x0Þ. We define the
thermal state of Ĥþ as ρ̂th ¼

P∞
n¼0 PðnÞjnihnj, where

PðnÞ ¼ ½n̄=ð1þ n̄Þ�nð1þ n̄Þ−1, jni with n ¼ 0; 1;… being
a Fock state [Ĥþjni ¼ ℏω0ðnþ 1=2Þjni] and n̄ the phonon
mean number.
The loop protocol proposed in this Letter [see Fig. 1(d)],

is based on the following key equality

e−iĤ−tI=ℏe−iĤþtH=ℏe−iĤ−tI=ℏ ¼ e−iĤþtH=ℏ; ð2Þ

which holds for tHω0 ¼ πð2lþ 1Þ=2 with l ¼ 0; 1;… and
arbitrary tI (see [28]). The left-hand side of Eq. (2) is a
unitary operator, labeled by Ûloop, that describes the
time evolution of the loop protocol from t ¼ 0 to
t ¼ T ≡ 2tI þ tH in three steps: (i) inverted harmonic
potential Ĥ− for 0 < t < tI, (ii) harmonic potential Ĥþ for
tI < t < tI þ tH, and (iii) inverted harmonic potential for
tI þ tH < t < 2tI þ tH. The loop protocol starts and ends
with the particle in the harmonic potential, that is, one has
Ĥþ for t < 0 and t > T. Equation (2) shows that an initial
state ρ̂ð0Þ evolves during the loop protocol into
ρ̂ðTÞ ¼ Ûloopρ̂ð0ÞÛ†

loop ¼ e−iĤþtH=ℏρ̂ð0ÞeiĤþtH=ℏ. The state
at t ¼ T is thus very similar to the one at t ¼ 0. In fact,
ρ̂ðTÞ ¼ ρ̂ð0Þ whenever ρ̂ð0Þ is diagonal in the Fock basis
(e.g., thermal state). However, the state at t ¼ T=2 is
dramatically different as it has expanded and squeezed
due to the action of Ĥ−. To quantify the expansion,
we define the coefficient η≡ ΔxðT=2Þ=Δxð0Þ, where
ΔxðtÞ≡ ½hx̂2ðtÞi − hx̂ðtÞi2�1=2. If the initial state is thermal
ρ̂ð0Þ ¼ ρ̂th, the expansion coefficient is given by
η ¼ expðtIω0Þ, that is, it exponentially grows with the
time invested in the inverted potential [32]. The motional
quantum state at t ¼ T=2 is a highly squeezed state with
large spatial extension, which is very different from a large
coherent state with small spatial extent that has been
realized with an ion using a bang-bang protocol where
the center of the trap is displaced [33].
Let us discuss how we model noise and decoherence in

the loop protocol. We remark that during the protocol
0 < t < T, there is neither active nor passive cooling acting
on the nanoparticle. Hence, we consider displacement
(ν ¼ 1) and frequency (ν ¼ 2) noise, as described by the
master equation

∂tρ̂ ¼ 1

iℏ
½Ĥ�; ρ̂� − Γ1½x̂; ½x̂; ρ̂�� − Γ2½x̂2; ½x̂2; ρ̂��: ð3Þ

This master equation is the result of averaging the noise
[34] described by the stochastic Hamiltonian Ĥ� þ
ĤnoiseðtÞ with

ĤnoiseðtÞ ¼
ℏω0

4
½2f1ðtÞx̂þ f2ðtÞx̂2�: ð4Þ

Here, fνðtÞ is a stochastic variable with zero
mean and power spectral density given by SνðωÞ≡
ð2πÞ−1 R∞

−∞ dτhfνðtÞfνðtþ τÞieiωτ (here, h·i is an ensemble
average over the stochastic variable). In Eq. (3), the
decoherence rates are then given by Γν ≡ πω2

0Sνðνω0Þ=4ν.
Equation (3) can also be derived by tracing out an Ohmic
bath modeled as a set of quantum harmonic oscillators in
the high-temperature limit [29] (see [28]). Standard sources
of decoherence in experiments with levitated nanoparticles
(e.g., laser recoil heating, blackbody radiation, vibrations,
intensity field fluctuations) can be modeled using Eq. (3)
with the corresponding contribution to the decoherence rate
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Γν [23,24]. In addition, note that fluctuations in the
switching times are already taken into account as they
are equivalent to frequency noise. This is explicitly shown
in [28]. Decoherence due to scattering of background gas
particles [9,35] can be neglected whenever γgasT ≪ 1,
where γgas ¼ 16π

ffiffiffiffiffiffi
2π

p
PR2=½ ffiffiffi

3
p

mgasv̄gas� is the gas scatter-
ing rate with R the nanoparticle’s radius, P the gas pressure,
andmgas and v̄gas the averaged mass and thermal velocity of
a gas particle, respectively. It is one of the key aspects of
our proposal that the loop protocol is fast enough to easily
guarantee γgasT ≪ 1 at ultra-high vacuum P ∼ 10−9 mbar
[36], that is, that the probability for a single scattering event
in each experimental run is negligible. The dynamics
induced by Eq. (3) lead to closed equations of motion
for the first and second moments [28] that can thus be
easily solved. Note, however, that the dissipator modeling
frequency noise generates mixed non-Gaussian states.
Hereafter, we use expressions that are valid only for
Gaussian states. In the presence of frequency noise,
we have numerically checked that they are an excellent
approximation in the relevant parameter regimes.
Nonharmonic terms in the potential might become relevant
for large expansions. Experiments with optically levitated
nanoparticles [37] show that these nonlinear contributions
are not significant for expansions of up to η ∼ 104,
where the spatial extent of the nanoparticle’s center-of-
mass position is of around 10 nm. Furthermore, one could
consider shallower traps to prevent nonlinearities provided
the protocol is short enough such that γgasT ≪ 1 and hence
decoherence due to gas scattering is kept irrelevant.
In Fig. 2, we show the purity P ¼ tr½ρ̂2ðTÞ� of the state

after the loop protocol, where ρ̂ðTÞ is calculated using
Eq. (3) with ρ̂ð0Þ ¼ j0ih0j. In Fig. 2(a) [Fig. 2(b)], we
consider the impact of displacement (frequency) noise only.
A coherent expansion of η ¼ 102, namely a quantum
delocalization over a length scale 100 × x0 requires
Γ1=ω0 ≈ 10−7 and Γ2=ω0 ≈ 10−11, that is, a displacement
noise x0

ffiffiffiffiffi
S1

p
∼ 10−18 m=

ffiffiffiffiffiffi
Hz

p
and a frequency noise offfiffiffiffiffi

S2
p

∼ 10−8 =
ffiffiffiffiffiffi
Hz

p
. Figure 2 quantifies the experimental

challenge (decoherence rate levels) required to explore
macroscopic quantum physics. It might be convenient in
order to reduce decoherence to consider protocols where the
harmonic frequency in Ĥ− is smaller than in Ĥþ. While this
will make the protocol longer in time (larger T), it might be
convenient if decoherence due to gas scattering is still
negligible γgasT ≪ 1. These modifications can be analyzed
and optimized for a given experimental scenario in a
systematic way using the results presented here. Figure 2
illustrates the fragility of macroscopic quantum physics. It
quantifies how decoherence modeled by displacement and
frequency noise limits the scale of quantum delocalization
that can be achievedwith a nanoparticle. In this regard, since
collapse models effectively induce displacement noise
[9,18], the loop protocol can also be directly used to falsify
them by measuring a high state purity.

Let us now show that the loop protocol also enhances
static force sensing. Similarly to the experiment done with
free falling nanoparticles in [11], we consider the loop
protocol in the presence of a static force F. That is, the
Hamiltonians Ĥ� in the protocol are modified to

Ĥf
� ¼ Ĥ� þ FX̂ ¼ Ĥ� þ ℏω0fx̂: ð5Þ

Here f ¼ Fx0=ðℏω0Þ is the dimensionless static force to be
detected. The state after the loop protocol will now depend
on f, that is, ρ̂ðT; fÞ. Using standard methods in quantum
metrology, we consider the quantum Fisher information
[38] of ρ̂ðT; fÞ, denoted as I , and the Cramér-Rao bound to
calculate the minimal force fmin ≡ 1=

ffiffiffiffi
I

p
that can be

detected with the loop protocol. For a Gaussian state, I
can be calculated from first and second order moments [30]
(see [28]). In Fig. 3, we display fmin as a function of T. The
solid, dashed, and dotted-dashed black lines (the same
in both panels) are fmin in the absence of decoherence
(Γ1 ¼ Γ2 ¼ 0) for the loop protocol, free evolution
(ω0 ¼ 0), and evolution in a constant inverted potential,
respectively. These lines show the enhanced force sensing,
as compared to free dynamics [11], provided by the fast and

(a)

(b)

FIG. 2. Coherent expansion. The purity at the end of the
protocol as a function of the total protocol time T and the
decoherence rate (a) Γ1 [(b) Γ2]. The lower panel in (a) relates
the decoherence rate Γ1 to the displacement noise spectrum S1 for
ω0 ¼ 2π × 105 Hz and several typical particle masses m. The
lower panel in (b) relates the decoherence rate Γ2 to the frequency
noise spectrum S2 for two different frequencies (there is no
mass dependence for frequency noise). As the initial state, we
consider the ground state n̄ ¼ 0 with P ¼ 1. We considered a
silica nanoparticle of R ¼ 100 nm and mass density
ϱ ¼ 2201 kg=m−3.
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large expansion induced by an inverted potential. In [28],
we provide the analytical expressions of fmin in these three
cases as well as the modified key equality [Eq. (2)] of the
loop protocol in the presence of a static force. The colored
lines in Fig. 3(a) [Fig. 3(b)] show fmin in the presence of
displacement noise (frequency noise). Interestingly, dis-
placement noise saturates fmin as a function of time. In
contrast, frequency noise provides an optimal time where
fmin is minimal. In both Figs. 2 and 3, one can see that,
as expected from the form of the dissipators in Eq. (3),
frequency noise becomes dominant whenever Γ2η

4 ≳ Γ1η
2,

that is, as soon as the nanoparticle expands to
regimes η≳ ffiffiffiffiffiffiffiffiffiffiffiffi

Γ1=Γ2

p
.

Let us also show how the loop protocol can enhance the
entanglement generation via a weak static interaction of
two nanoparticles. We consider two particles, one with
position vector ðX̂1; 0; 0Þ and the other with ðX̂2; d; 0Þ,
interacting via the general central potential

V̂ int ¼
b

½ðX̂1 − X̂2Þ2 þ d2�a=2 : ð6Þ

We therefore assume that the motion of the two particles in
their corresponding trapping potential, as described by the
position X̂1ð2Þ and momentum P̂1ð2Þ for particle 1 (2), is

parallel and separated by a constant distance d. The
dimensional real parameter b and the dimensionless
integer a determine the type of interaction (e.g.,
Coulomb [19], Casimir [20], gravitational [21,22]). By
assuming d2 ≫ hðX̂1 − X̂2Þ2i, one can Taylor expand
Eq. (6) to get, together with Eq. (1), the total quadratic
Hamiltonian

Ĥtwo
�

ℏω̃0

¼ 1

4

X

j¼1;2

ðp̂2
j � x̂2jÞ þ

g
ω̃0

x̂1x̂2: ð7Þ

Here ω̃2
0 ≡ ω2

0 þ ba=ðdaþ2mÞ is the shifted harmonic
oscillator and g≡ ba=ðdaþ22mω̃0Þ the coupling rate.
The dimensionless position and momentum operators are
defined with the zero-point motion that depends on the
shifted frequency ω̃0. From Eq. (7), one can realize that the
coupling rate between nanoparticles in a center-of-mass
state that is expanded by a factor η, as it is achieved in the
loop protocol, will be enhanced to η2g. In the loop protocol,
the state is in the expanded phase during an amount of time
tH. To generate entanglement one requires η2gtH > 1, a
condition that profits from the η2 enhancement. To confirm
this reasoning, let us assume that the initial state is the
product state ρ̂ð0Þ ¼ j0i1h0j ⊗ j0i2h0j and that the evolu-
tion during the loop protocol is coherent. In Fig. 4(a), we

(b)

(a)

FIG. 3. Force sensing. Minimal detectable force as a function of
the total time T. Results are shown in the complete absence of
decoherence (black lines) and in color for various values of (a) Γ1

with Γ2 ¼ 0 [(b) Γ2 with Γ1 ¼ 0]. Solid lines show the perfor-
mance of the loop protocol. Dashed (dash-dotted) lines show the
performance of a particle that is evolving freely (in an inverted
potential) for a time T. The right (top) axis shows the values in
Newton (microseconds) for a silica nanoparticle of R ¼ 100 nm
and ω0 ¼ 2π × 105 Hz.

FIG. 4. Entanglement via weak forces. (a) The purity at the end
of the protocol as a function of the protocol time T and coupling
strength g. In the absence of decoherence, the decrease of purity
signals the creation of entanglement (starting from the ground
state n̄ ¼ 0with initial P ¼ 1). (b) Coupling g as a function of the
particle separation d=R for Coulomb, Casimir, and gravitational
interaction for a silica nanoparticle of R ¼ 100 nm and
ω̃0 ¼ 2π × 105 Hz. In the case of Coulomb interaction, each
particle is assumed to carry a single electron charge. See [28] for
further details.
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show the purity P ¼ tr½ρ̂21ðTÞ� of the reduced state of
particle 1, namely ρ̂1ðTÞ ¼ tr2½ρ̂ðTÞ� (here, tr2½·� is the
partial trace over particle 2). Since the initial state is a
product of pure states and the evolution is coherent, the
reduced purity at the end of the loop protocol is a measure
of the entanglement generated between the two particles.
As an example, if the loop can be done coherently up to
η ¼ 103 (see Fig. 2 for the required decoherence rates),
entanglement could be generated with a weak coupling rate
of g ≈ 2π × 0.1 Hz in the T ≈ 25 μs that the loop protocol
requires. As shown in Fig. 4(b), this coupling rate corre-
sponds to the Coulomb interaction of two nanoparticles of
R ¼ 100 nm, each having a single charge, separated by a
distance d ≈ 3.2 μm. Entangling two nanoparticles inter-
acting with such a week coupling rate would be a proof-of-
principle demonstration of the enhancement induced by
large expansions. Entangling via Casimir interaction [20]
would offer a novel approach to measure these weak forces.
Entangling via gravity would have fundamental implica-
tions regarding the quantum character of gravity [39].
However, as shown in Fig. 4(b), the gravitational inter-
action leads to a coupling rate of the order of g=ω̃0 ∼ 10−23,
which shows that entangling via gravitational force is a
formidable task.
In summary, we have proposed a loop protocol to delo-

calize the center-of-mass state of a nanoparticle over large
distances and compress it back to the initial localized state.
The state in the expanded phase is very fragile to its
environment. The loop protocol can thus be used to detect
the environment, either its noisy signals, the presence of a
static weak force, or the coherent interaction with another
nanoparticle. We have presented the results in a way that one
can easily extract the required levels of decoherence and noise
in order to explore macroscopic quantum physics. From the
current state of the art in experiments, where ground-state
cooling of nanoparticles has been recently achieved, our
results provide a quantitative path to progressively venture
into the exciting regime of macroscopic quantum physics.
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