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We propose and work out a reduced density matrix functional theory (RDMFT) for calculating energies
of eigenstates of interacting many-electron systems beyond the ground state. Various obstacles which
historically have doomed such an approach to be unfeasible are overcome. First, we resort to a
generalization of the Ritz variational principle to ensemble states with fixed weights. This in combination
with the constrained search formalism allows us to establish a universal functional of the one-particle
reduced density matrix. Second, we employ tools from convex analysis to circumvent the too involved N-
representability constraints. Remarkably, this identifies Valone’s pioneering work on RDMFT as a special
case of convex relaxation and reveals that crucial information about the excitation structure is contained in
the functional’s domain. Third, to determine the crucial latter object, a methodology is developed which
eventually leads to a generalized exclusion principle. The corresponding linear constraints are calculated
for systems of arbitrary size.
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Developing a comprehensive understanding of excita-
tions in many-body systems is of utmost importance from
both a fundamental and technological point of view. For
instance, quantum excitations intervene in crucial processes
such as vision [1], define the properties of advanced
materials [2] and of states of matter in general [3–5] and
give rise to distinctive functionalities of devices [6,7].
Although modern computational methodologies can deter-
mine the ground state energies of a wide range of systems
relatively inexpensively and rather accurately [8], meth-
odological innovations are called for handling excitations
on an equal footing [9].
The workhorse of modern electronic structure calcula-

tions is the Kohn-Sham formulation [10] of density-func-
tional theory (DFT) [11]. As far as excitations are
concerned, its time-dependent extension could deal with
them rigorously, at least in principle [12]. In practice,
however, the widely used time-dependent DFT is not only
blessed but unfortunately also cursed by the so-called
adiabatic approximation [13–15]. Circumventing at least
some of the deficiencies of adiabatic time-dependent DFT,
ensemble DFT has become in recent years a promising
alternative for calculating excitations [16–29]—for exam-
ple, it can capture charge transfers, double excitations, and
avoided or conical crossings.
From a general perspective, density functional theories

are, however, not particularly well suited for the description
of strongly correlated systems. The particle density,
namely, does not directly reflect the correlation strength,

in striking contrast to the full one-particle reduced density
matrix (1RDM) with fractional occupation numbers in case
of strong correlations. This motivates one-particle reduced
density matrix functional theory (RDMFT) [30] as a more
suitable approach to strongly correlated quantum systems
and explains why RDMFT has become an active field of
research in recent years [31–44]. While the accuracy of
ground state calculations compares favorably to those of
DFT [45], no proper foundation for targeting excited states
within RDMFT exists yet. For instance, a formal justifi-
cation of a fully dynamical RDMFT is lacking and the
approach based on an adiabatic approximation to be
exploited through linear response techniques turns out to
be technically involved and numerically rather demanding
[34,46]. Most remarkably, the RDMFT analog of ensemble
DFT for excited states has not even been considered yet,
despite its numerous potential advantages over time-de-
pendent functional theories.
In this Letter, we propose and work out the ensemble

version of RDMFT for calculating the energies of (selected)
low-lying excited states. For this, we put forward a
generalization of the Ritz variational principle which
together with the constrained search formalism leads to
the definition of a universal functional. The crucial ingre-
dient which makes this method viable is a convex relax-
ation scheme. It allows us to circumvent the corresponding
too intricate one-body N-representability constraints and
leads instead to an easy-to-calculate generalization of
Pauli’s exclusion principle for mixed states.
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RDMFT in a nutshell and relevance of Valone’s work.—
We briefly recall ground state RDMFT. Here and in the
following, we consider Hamiltonians of the form HðhÞ ¼
hþ V on the N-fermion Hilbert space HN≡ ∧N ½H1�,
where h is a one-particle Hamiltonian and V some fixed
interaction (e.g., Coulomb pair interaction). We denote the
set of pure states Γ≡ jΨihΨj by PN and the d-dimensional
one-particle Hilbert space by H1.
Calculating the ground state energy EðhÞ ofHðhÞ via the

Ritz variational principle leads immediately to a universal
functional of the 1RDM [47,48],

EðhÞ ¼ min
Γ∈PN

TrN ½ðhþ VÞΓ�

¼ min
γ∈P1

N

½Tr1½hγ� þ F ðγÞ�; ð1Þ

where

F ðγÞ≡ min
PN∋Γ↦γ

TrN ½VΓ�: ð2Þ

Indeed, F is universal in the sense that it depends only on
the fixed interaction V but not on the one-particle
Hamiltonian h. This version of RDMFT based on
Eqs. (1), (2) has, however, not been practical at all. This
is due to the fact that describing the functional’s domain
P1

N ≡ NTrN−1½PN � of pure N-representable 1RDMs γ has
been an almost impossible task. Only recently, a formal
solution to this problem has been found [49,50]. Yet, the
corresponding generalized Pauli constraints defining P1

N
could be calculated so far only for systems of up to five
electrons and eleven spin orbitals [49–52].
It has been Valone’s crucial idea [53] to apply the

constrained search formalism (1) by relaxing the Ritz
variational principle from pure to all ensemble states
Γ ∈ EN . In analogy to Eqs. (1), (2) this then leads to a
universal functional

‾F ðγÞ≡ min
EN∋Γ↦γ

TrN ½VΓ�; ð3Þ

defined on the larger domain E1
N ≡ NTrN−1½EN � of ensem-

ble N-representable 1RDMs. Since the latter is just
described by the simple Pauli exclusion principle con-
straints [54], restricting the eigenvalues λi of γ as
0 ≤ λi ≤ 1, Valone’s work [53] has marked the starting
point of RDMFT, at least from a practical perspective.
Finally, we would like to stress that ‾F follows as the lower
convex envelope of F ðγÞ, ‾F ≡ convðF Þ [36]. As the
following will show, this key result has its origin in a
fruitful geometrical structure which will be pivotal to our
approach.
Ensemble-RDMFT for excited states.—To develop an

RDMFT for targeting the excitation spectrum we resort to
the generalization [55] of the Ritz variational principle to

ensemble states with fixed spectrum: let H be a Hermitian
operator on a D-dimensional Hilbert space with increas-
ingly ordered eigenvalues Ej and eigenstates jΨji and
denote by ENðwÞ the set of density operators Γ with
decreasingly ordered spectrum w≡ ðw1;…; wDÞ. Then,
the following variational principle can be proven in a
straightforward manner [55]

Ew ≡XD

j¼1

wjEj ¼ min
Γ∈ENðwÞ

Tr½HΓ�; ð4Þ

and the minimizer of the right-hand side follows
as ΓH;w ¼ P

D
j¼1 wjjΨjihΨjj.

At this point, it is crucial to appreciate that the knowl-
edge of the function Ew would obviously allow one to
determine various excitation energies Ej. In analogy to the
derivation of ensemble DFT for excited states by Gross,
Oliviera, and Kohn [55,56], the variational principle (4) is
the key ingredient for establishing an RDMFT for excited
states. Combining the constrained search (1) and the
variational principle (4) with H ≡HðhÞ leads immediately
to a universal functional of the 1RDM,

FwðγÞ≡ min
ENðwÞ∋Γ↦γ

TrN ½VΓ�: ð5Þ

In practice, one would restrict this w-RDMFT to just a few
finite weights w1;…; wr and the minimization of the total
energy functional Tr1½hγ� þ FwðγÞ would eventually yield
the energy Ew. It is also worth stressing, that pure ground
state RDMFT is included in our general w-RDMFT as the
special case w0 ≡ ð1; 0; 0;…Þ. This observation also
implies, however, that finding a practically useful descrip-
tion of the underlying domain E1

NðwÞ of w-ensemble N-
representable 1RDMs is impossible, at least for realistic
system sizes [49,50,57].
This fundamental concern also explains why ensemble

RDMFT for calculating excitation energies has never been
established. It will therefore be a major achievement of our
work to find and work out in the following a methodology
for circumventing the too intricate one-body w-ensemble
N-representability constraints.
Convex relaxation.—Given the prominence of the Ritz

variational principle in quantum physics, Valone’s idea to
apply the constrained search formalism to the larger set EN

of ensemble states was rather natural. Since the generali-
zation of this seminal idea to the variational principle (4) is
less obvious, we take the relation ‾F ≡ convðF Þ [36] in
ground state RDMFT as an inspiration: A prominent
concept in convex analysis explains that any minimization
problem, at least in principle, can be turned into a convex
one without altering the result. This exact convex relaxation
applied in our context is illustrated in Fig. 1: First, one
extends the “blue” domain of Fw to its convex hull
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Ē1
NðwÞ ¼ conv½E1

NðwÞ� by adding the “red” region and
defining there Fw ≡∞. Then, one replaces Fw by its
lower convex envelope

‾Fw ≡ convðFwÞ on Ē1
NðwÞ≡ conv½E1

NðwÞ�: ð6Þ

Per construction, the sought-after energy Ew can now be
obtained by minimizing the energy functional Tr1½hγ� þ
‾FwðγÞ on the set Ē1

NðwÞ,

Ew ¼ min
γ∈Ē1NðwÞ

½Tr1½hγ� þ ‾FwðγÞ�; ð7Þ

rather than Tr1½hγ� þ FwðγÞ on E1
NðwÞ. This convex relax-

ation of w-ensemble RDMFT has two pleasant and far-
reaching consequences. As we will show below, a compact
description of the convex set Ē1

NðwÞ can be found and the
convexity of ‾Fw implies that the minimization cannot get
stuck in local minima.
We conclude this section by presenting an equivalent but

constructive expression for ‾Fw. As it is shown in the
Supplemental Material [58], the definition of the lower
convex envelope leads in a straightforward (but technical)
manner to

‾FwðγÞ≡ min
ĒNðwÞ∋Γ↦γ

TrN ½VΓ�: ð8Þ

The underlying search space ĒNðwÞ is nothing else than
the convex hull of ENðwÞ, which can also be characterized
as [58]

ĒNðwÞ≡ convðENðwÞÞ ¼ fΓ ∈ EN jspecðΓÞ ≺ wg: ð9Þ
Here, v is said to be majorized by w, v ≺ w, if for all
k ¼ 1; 2;…; D one has

v↓1 þ � � � þ v↓k ≤ w↓
1 þ � � � þ w↓

k ; ð10Þ

where v↓, w↓ denote the vectors with the same entries, but
sorted in descending order. Intriguingly, relations (8) and
(9) reveal that the functional ‾Fw could also have been
defined in the spirit of Valone’s work [53] by replacing

in (4) the set ENðwÞ by its convex hull ĒNðwÞ. This
modification of (4) can be seen as the historically missed
variational principle for establishing a viable ensemble
RDMFT for excited states. Moreover, since the partial trace
TrN−1½·� is linear we obtain

Ē1
NðwÞ ¼ NTrN−1½ĒNðwÞ�: ð11Þ

Calculation of functional domain Ē1
NðwÞ.—In general,

without knowing the functional domain, the common
process of developing more and more accurate and sophis-
ticated approximations to the universal functional cannot be
initiated. Also, having just a formal definition of Ē1

NðwÞ as
in Eqs. (6) or (11) is actually not sufficient. Instead, a
concrete description is needed, allowing one in minimiza-
tion algorithms to easily check whether a given 1RDM γ
belongs to Ē1

NðwÞ. In the following, we achieve the ideal
scenario: A description of Ē1

NðwÞ in terms of just a few
linear inequalities is found, similar to the Pauli exclusion
principle constraints in ground state RDMFT.
For this we resort to analytical tools some of which have

extensively been used in quantum chemistry since the
1960s (see, e.g., Refs. [54,59] for a comprehensive intro-
duction). The first one is a very well-known duality
correspondence which is illustrated in Fig. 2 for a general
convex, compact subset S of an Euclidean space: the
minimization of a linear function h·; hi on S means to
shift the hyperplane of constant value hγ; hi (shown as red
lines in the left panel) along its normal direction −h until
the boundary is reached. By realizing such minimizations
for all possible “directions” −h, we obtain a complete
characterization of S through its boundary points.
In our context, dual characterization of Ē1

NðwÞ means to
study the minimization of Tr1½hγ� on the convex, compact
set Ē1

NðwÞ for all Hermitian operators h on the one-particle
Hilbert space H1. It is exactly this aspect which reveals a
fruitful equivalence of our theoretical problem of character-
izing the set Ē1

NðwÞ and describing systems of N non-
interacting fermions with a one-particle Hamiltonian h.
Since Ē1

NðwÞ is invariant under unitary conjugation,
uĒ1

NðwÞu† ¼ Ē1
NðwÞ, we can restrict to h with a fixed

eigenbasis, h ¼ P
d
i¼1 hijiihij, and increasingly ordered

FIG. 1. Schematic illustration of the convex hull Ē1
NðwÞ of the

blue set E1
NðwÞ (left) and the convex envelope ‾Fw of Fw (right).

See text for more details.

FIG. 2. Geometric illustration of the dual characterization of a
convex, compact set S, based on the minimization of all possible
linear functions (see text for more details).
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energies hj. To proceed, since the definition (11) of Ē1
NðwÞ

refers to the set ĒNðwÞ, we lift our minimization problem
from the one- to the N-particle level, according to

min
γ∈Ē1NðwÞ

Tr1½hγ� ¼ min
Γ∈ĒNðwÞ

TrN ½hΓ�: ð12Þ

The minimizers of the right side of Eq. (12) then lead via

h ↦ Γh;w ↦ γh;w ↦ λh;w ð13Þ
to all extremal points λh;w of the polytope

ΣðwÞ≡ spec½Ē1
NðwÞ� ð14Þ

of natural occupation numbers λ≡ specðγÞ. Just to recall,
determining ΣðwÞ is sufficient for the description of Ē1

NðwÞ
because of its unitary invariance.
To determine the required minimizers Γh;w of the right-

hand side of Eq. (12), notice that the eigenstates of the one-
particle Hamiltonian h are given by the configuration states
i≡ ji1;…; iNi with energies

P
N
j¼1 hij . Consequently, as

explained by the variational principle (4), the minimizers
follow as

Γh;w ¼
XD

j¼1

wjjijihijj; ð15Þ

where ij is the N-fermion configuration with the jth lowest
energy. Because of the noninteracting character, one can
easily determine for any Γh;w its natural occupation
numbers λ as required by Eq. (13).
To obtain the vertex representation of the polytope ΣðwÞ,

it remains to determine for each choice h1 ≤ � � � ≤ hd the
corresponding sequence of eigenstates jiji ordered accord-
ing to their energy. Since there are only finitely many
different sequences, this amounts to a purely combinatorial
problem. The example of N ¼ 3 fermions with r ¼ 3 finite
weights, w ¼ ðw1; w2; w3; 0;…Þ, will be sufficiently rep-
resentative for the general case. According to Eq. (15), we
need to determine all possible sequences i1, i2, i3 of the
three energetically lowest configurations. Independent of
the values of various hj, the first two configurations are
always given by i1 ¼ ð1; 2; 3Þ and i2 ¼ ð1; 2; 4Þ. The third
lowest will be either (1,2,5) or (1,3,4), depending on the
ordering between h2 þ h5 and h3 þ h4. Consequently, there
are in total two different minimizers Γh;w and according to
Eq. (13) two vertices of decreasingly ordered natural
occupation numbers,

vð1Þ ¼ ð1; 1; w1; w2; w3; 0;…Þ;
vð2Þ ¼ ð1; w1 þ w2; w1 þ w3; w2 þ w3; 0;…Þ: ð16Þ

The polytope ΣðwÞ is eventually obtained as the convex
hull of vð1Þ, vð2Þ and all their permutations. The supporting

information [58] provides a graphical illustration of ΣðwÞ
for different w.
As a help for dealing with larger numbers r of non-

vanishing weights, we illustrate in Fig. 3 the so-called Gale
order [60]. All configurations are systematically arranged,
where the ≤-sign between two configurations i and j means
that i has always a lower energy than j for all h. Figure 3
also confirms that the first two configurations are always
given by i1 ¼ ð1; 2; 3Þ, i2 ¼ ð1; 2; 4Þ and that the dimension
d of the one-particle Hilbert space does not play any role. In
addition, it shows that increasing the particle number from
3 to N will not change the excitation structure but just add
another N − 3 ‘1’s at the very beginning of each spectral
vector in Eq. (16).
Generalization of Pauli’s exclusion principle.—The

vertex representation of the polytope ΣðwÞ can also be
turned into a half-space representation, leading according
to Eq. (14) to the desired practical description of the
domain Ē1

NðwÞ. This mathematical procedure for arbitrary
r will be discussed in Ref. [61] and we present it here
only for r ¼ 1, 2. These two cases are particularly
relevant from a physical point of view since the corre-
sponding w-RDMFT describes the ground state energy
and its gap.
For r ¼ 1 and r ¼ 2, the permutation-invariant polytope

ΣðwÞ is generated by only one vertex, ð1;…; 1; 0;…Þ and
ð1;…; 1; w1; w2; 0;…Þ, respectively. According to Rado’s
theorem [62], a vector λ lies in such distinctive polytope if
and only if λ is majorized by the vertex vð1Þ, λ ≺ vð1Þ. The
definition (10) of majorization is nothing else than the half-
space representation of ΣðwÞ.
Most remarkably, referring to different values r, there is a

hierarchy of linear inequalities for ΣðwÞ which generalize
Pauli’s exclusion principle. On its lowest level, r ¼ 1, one
recovers the Pauli exclusion principle λ↓1 ≤ 1. For r ¼ 2,
one additional constraint,

XN

j¼1

λ↓j ≤ N − 1þ w1; ð17Þ

occurs. This already manifests a generalization of the
exclusion principle. Next, for r ¼ 3 again one additional
constraint emerges, namely,

FIG. 3. Illustration of the excitation spectrum for the case of
N ¼ 3 fermions (see text for more details).
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2
XN−1

j¼1

λ↓j þ λ↓N þ λ↓Nþ1 ≤ 2N − 2þ w1 þ w2: ð18Þ

The inequalities of this hierarchy for larger r are presented
in Ref. [61], while in Table I we just list the number of
generating vertices vðkÞ and inequalities of ΣðwÞ for r ≤ 9.
It is worth recalling that all these results are independent
of the particle number N and the dimension d of
the one-particle Hilbert space (provided N ≥ r − 1,
d ≥ N þ r − 1).
Outlook.—We have proposed and worked out in the

form of w-RDMFT a viable generalization of ground
state RDMFT for targeting the energies of the first few
excitations. The crucial ingredient has been a convex
relaxation scheme which allowed us to overcome the
obstacles which have historically doomed such an approach
to be unfeasible. As a major achievement, our work has,
namely, overcome the too involved one-body w-ensemble
N-representability constraints. Instead, a hierarchy of easy-
to-calculate generalizations of Pauli’s exclusion principle
constraints has been revealed, providing a practical descrip-
tion of the functional domain Ē1

NðwÞ.
We expect a broad significance of those novel constraints

across the quantum sciences. For instance, since they
describe the compatibility of N-fermion and one-fermion
density operators our work solves a certain class of
quantum marginal problems. The latter play a crucial role,
e.g., for quantum communication and quantum information
processing [57,63]. Moreover, since realistic systems in
nature are described by mixed states due to the finite
temperature, it is primarily not Pauli’s exclusion principle
which dictates their physics but our generalized exclusion
principle for mixed states. The spectral polytopes ΣðwÞ
are also strongly related to a possible generalization
of the Fermi-Dirac distribution to interacting fermions:
Increasing the temperature T of a system makes the
spectrum wðTÞ of the Gibbs state ΓðTÞ ∝ e−H=kBT more
mixed which in turn reduces the size of the polytope
Σ½wðTÞ�. In that sense the generalized exclusion principle
constraints provide a tool to determine the maximal
temperature of a system which is still compatible to given
occupation numbers.
Equipped with the definition (8) of the universal func-

tional ‾Fw and the practical description of its domain
Ē1
NðwÞ, the common process of developing more and more

accurate and sophisticated functional approximations can

be initiated. Actually, the ground state functional may
serve as a first approximation to ‾Fw, as it is explained in
the Supplemental Material [58]: At least for weakly
interacting systems, the energy difference Ew ≤ Ew0 (where
w0 ≺ w) is primarily a direct geometrical consequence,
following from Ē1

Nðw0Þ ⊂ Ē1
NðwÞ. In particular, knowing

the boundary of Ē1
NðwÞ is sufficient for determining

approximately Ew. Another promising and particularly
sophisticated strategy would be to work out in the context
of mixed states exactly the same three steps [64–66] that led
to the rather accurate BBC ground state functionals.
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