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The complexity of many-body quantum wave functions is a central aspect of several fields of physics
and chemistry where nonperturbative interactions are prominent. Artificial neural networks (ANNs) have
proven to be a flexible tool to approximate quantum many-body states in condensed matter and chemistry
problems. In this work we introduce a neural-network quantum state ansatz to model the ground-state wave
function of light nuclei, and approximately solve the nuclear many-body Schrödinger equation. Using
efficient stochastic sampling and optimization schemes, our approach extends pioneering applications of
ANNs in the field, which present exponentially scaling algorithmic complexity. We compute the binding
energies and point-nucleon densities of A ≤ 4 nuclei as emerging from a leading-order pionless effective
field theory Hamiltonian. We successfully benchmark the ANN wave function against more conventional
parametrizations based on two- and three-body Jastrow functions, and virtually exact Green’s function
Monte Carlo results.
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Introduction.—The last two decades have witnessed
remarkable progress in our understanding of how the
structure and dynamics of atomic nuclei emerge from
the individual interaction among protons and neutrons.
This progress has been primarily driven by the widespread
use of nuclear-effective field theories to systematically
construct realistic Hamiltonians [1–3], and the concurrent
development of nuclear many-body techniques that solve
the time-independent Schrödinger equation with controlled
approximations [4–8]. The variational Monte Carlo (VMC)
and Green’s function Monte Carlo (GFMC) methods are
ideally suited to tackle this problem and have been
extensively applied to study properties of light nuclei
[9]. Monte Carlo techniques also face important challenges.
For example, the calculation of the spin-isospin dependent
Jastrow correlations used in the VMC and GFMC scales
exponentially with the number of nucleons, limiting the
applicability of these methods to relatively small nuclear
systems. Also, the auxiliary-field diffusion Monte Carlo
[10] (AFDMC) samples the spin and isospin degrees of
freedom to treat larger nuclei and infinite nucleonic matter
[11,12], but it can only take as inputs somewhat simplified
interactions [13]. In addition, the use of wave functions that
scale polynomially with the number of nucleons exacer-
bates the AFDMC fermion sign problem for A > 16 nuclei.
Therefore, extending VMC and GFMC calculations to
medium-mass nuclei requires devising accurate wave
functions that exhibit a polynomial scaling with A.

An alternative class of approaches being actively
explored is based on machine learning (ML) techniques.
These techniques typically rely on the ability of artificial
neural networks (ANNs) to compactly represent com-
plex high-dimensional functions, as already leveraged in
several domains of physics [14]. For many-body quantum
applications, neural-network-based variational representa-
tions have been introduced in Ref. [15], and have found
applications as a tool to study ground state and dynamics
of several interacting lattice quantum systems [16–24]. In
a series of recent works [25–27] deep neural networks
have been further developed to tackle ab initio chemistry
problems within variational Monte Carlo, often resulting
in accuracy improvements over existing variational
approaches traditionally used to describe correlated mol-
ecules. While applications of ML approaches to the many-
body problem in condensed matter, quantum chemistry,
and quantum information have been proliferating in the
past few years, the adoption in low-energy nuclear theory
is still in its infancy [28,29]. Pioneering work in the field
[30] has provided a proof-of-principle application of ANN
to solve the Schrödinger equation of the deuteron.
Extending the nonstochastic approach of Ref. [30] to larger
nuclei, however, presents an intrinsically exponentially
scaling challenge.
In this work, we expand the domain of applicability

of ANN-based representations of the wave function and
compute ground-state properties of A ≤ 4 nuclei as they
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emerge from a leading-order pionless effective field theory
(EFT) Hamiltonian, containing consistent two- and three-
body potentials. Specifically, we develop a novel VMC
algorithm based on an ANN representation of the spin-
isospin dependent correlator that captures the vast majority
of nuclear correlations and scales favorably with the
number of nucleons. We benchmark our results against a
more conventional parametrization of the variational wave
function in terms of two- and three-body Jastrow functions,
and virtually exact GFMC calculations.
Hamiltonian.—We employ nuclear Hamiltonians derived

within pionless EFT, which is based on the tenet that the
typical momentum of nucleons in nuclei is much smaller
than the pionmassmπ [3,31]. Under this assumption, largely
justified for studying the structure and long-range properties
of A ≤ 4 nuclei, pion exchanges are unresolved contact
interactions and nucleons are the only relevant degrees of
freedom. The singularities of the contact terms are con-
trolled introducing a Gaussian regulator that suppresses
transferred momenta above the ultraviolet cutoff Λ. This
regulator choice directly leads to a Gaussian radial depend-
ence of the potential, which is local in coordinate [32,33].
The leading-order (LO) Hamiltonian reads

HLO ¼ −
X

i

∇⃗2
i

2mN
þ
X

i<j

ðC1 þ C2σ⃗i · σ⃗jÞe−r
2
ijΛ

2=4

þD0

X

i<j<k

X

cyc

e−ðr
2
ikþr2ijÞΛ2=4; ð1Þ

where mN is the mass of the nucleon, σ⃗i is the Pauli matrix
acting on nucleon i, and

P
cyc stands for the cyclic

permutation of i, j, and k.
Following Ref. [34], the low-energy constants C1 and C2

are fit to the deuteron binding energy and to the neutron-
neutron scattering length. In Eq. (1) we picked the operator
basis 1 and σ⃗i · σ⃗j, but this choice can be replaced by any
other form equivalent under Fierz transformations in SU(2).
Solving A ≥ 3 nuclei with purely attractive two-nucleon
potentials leads to the “Thomas collapse” [35], which can
be avoided promoting a contact three-nucleon force to LO
[36]. The values of the low-energy constants’ adopted in
this work can be found in Ref. [34]; since C1ðΛÞ is much
larger than C2ðΛÞ, the LO Hamiltonian has an approximate
SU(4) symmetry.
Variational wave function.—A fundamental ingredient

of the VMC method is the choice of a suitable variational
wave function ΨV , whose parameters are found exploiting
the variational principle

hΨV jHjΨVi
hΨV jΨVi

¼ EV ≥ E0 ð2Þ

where E0 is exact the ground-state energy:
HjΨ0i ¼ E0jΨ0i. The metropolis Monte Carlo algorithm

is used to evaluate the variational energy EV by sampling
the spatial and spin-isospin coordinates. We introduce the
following ANN representation of the variational wave
function:

jΨANN
V i ¼ eUðr1;…;rAÞ tanh½Vðs1; r1;…; rA; sAÞ�jΦi ð3Þ

where fr1;…; rAg and fs1;…; sAg denote the set of
single-particle spatial three-dimensional coordinates
and the z projection of the spin-isospin degrees of
freedom si ¼ fszi ; tzig, respectively. For the s-shell nuclei
considered in this work, we take jΦ2Hi ¼ Aj↑p↑ni,
jΦ3Hei ¼ Aj↑p↓p↑ni, and jΦ4Hei ¼ Aj↑p↓p↑n↓ni, with
A being the antisymmetrization operator [37].
The real-valued correlating factors Uðr1;…; rAÞ

and Vðs1; r1;…; rA; sAÞ are parametrized in terms of
permutation-invariant ANNs, so that the total wave func-
tion is antisymmetric. To achieve this goal, we make use
of the Deep Sets architecture [38,39], and map each of
the single-particle inputs separately to a latent-space
representation. We then apply a sum operation to destroy
the ordering of the information and ensure permutation
invariance

F ðx1;…;xAÞ ¼ ρF

�X

xi

ϕF ðxiÞ
�
; F ¼ U;V: ð4Þ

Both ϕU and ρU are represented by ANNs comprised of
four fully connected layers with 32 nodes each, while ϕV
and ρV are made of two fully connected layers, again
with 32 nodes, for total of 13 058 trainable parameters.
The calculation of the kinetic energy requires using dif-
ferentiable activation functions. We find that tanh and
softplus [40] yield fully consistent results. The single-
particle inputs are xi ≡ fr̄ig and xi ≡ fr̄i; sig for U and V,
respectively, where we defined intrinsic spatial coordinates
as r̄i ¼ ri −RCM, with RCM being the center-of-mass
coordinate. This procedure automatically removes spurious
center-of-mass contributions from all observables [41].
Since the parameters of the network are randomly
initialized, in the initial phases of the training, during
the metropolis walk, the nucleons can drift away from
RCM. To control this behavior, a Gaussian function is
added to confine the nucleons within a finite volume
Uðr1;…; rAÞ → Uðr1;…; rAÞ − α

P
i r̄

2
i where we take

α ¼ 0.05.
The choice of correcting a mean-field state jΦi with a

flexible ANN correlator factor is similar in spirit to neural-
network correlators introduced recently in condensed-
matter [16,24] and chemistry applications [26], but it is
more general as it encompasses spin-isospin dependent
correlations. An appealing feature of the ANN ansatz is that
it is more general than the more conventional product of
two- and three-body spin-independent Jastrow functions
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jΨJ
Vi ¼

Y

i<j<k

�
1 −

X

cyc

uðrijÞuðrjkÞ
�Y

i<j

fðrijÞjΦi; ð5Þ

which is commonly used for nuclear Hamiltonians that do
not contain tensor and spin-orbit terms [33,42].
Analogously to standard VMC calculations, as well as

ML applications, the optimal set of weights and biases
of the ANN is found minimizing a suitable cost function.
Specifically, we exploit the variational principle of Eq. (2)
and minimize the expectation value of the energy. The
gradient components Gi ¼ ∂iEðpÞ of the energy with
respect to the variational parameters pi read

Gi ¼ 2

�h∂iΨV jHjΨVi
hΨV jΨVi

− EV
h∂iΨV jΨVi
hΨV jΨVi

�
ð6Þ

and can be efficiently estimated through Monte Carlo
sampling. While stochastic gradient descent can be readily
used to compute parameters updates, for VMC applications
it has been found that using a preconditioner based on the
quantum Fisher information

Sij ¼
h∂iΨV j∂jΨVi
hΨV jΨVi

−
h∂iΨV jΨVihΨV j∂jΨVi
hΨV jΨVihΨV jΨVi

ð7Þ

is significantly more efficient. During the optimization,
then parameters at step s are updated as psþ1 ¼ ps −
ηðSþ ΛÞ−1G, where η is the learning rate and Λ is a small
positive diagonal matrix that is added to stabilize the method.
This approach, known as the stochastic-reconfiguration (SR)
algorithm [43,44] is equivalent to performing imaginary-
time evolution in the variational manifold and it is in turn
related to the natural gradient descent method [45] in
unsupervised learning. Our computational techniques are
based on the general ML framework TensorFlow [46], and it
is scalable across more than 100 GPUs. We also maintain an
additional developmental repository written in JAX [47] for
fast prototyping of new features. More information about the
architecture and performance of the software is available in
the Supplemental Material [48].
Figure 1 displays the convergence pattern as a

function of the optimization step of the 2H energy for
the LO pionless EFT Hamiltonians with Λ ¼ 4 fm−1 and
Λ ¼ 6 fm−1. In the initial phase of the optimization, the
softer cutoff exhibits a faster convergence than the stiffer
one. However, the asymptotic value of the energy is
reached after about 300 iterations for both values of the
regulator. These results have been obtained using an
adaptive learning rate in the range 10−7 ≤ η ≤ 10−2, which
has proven to yield robust convergence patterns for all the
nuclei and regulator choices that we have analyzed. The
adaptive schedule of this AdaptiveEta algorithm is selected
performing heuristic tests on the parameter change, similar
to the ones introduced in Refs. [33,41] for regularizing the
linear optimization method [58].

Results and discussion.—We analyze the accuracy of the
ANN wave function ansatz by computing the ground-state
energies of 2H, 3H, and 4He. In Table I we benchmark the
ANN representation of ΨT (VMC-ANN) against conven-
tional VMC calculations carried out using a spline para-
metrization for the Jastrow functions [33] (VMC-JS), and
virtually exact GFMC results.
The three methods provide fully compatible energies

for 2H nucleus, within statistical errors, showing the
flexibility of the ANN to accurately represent the
ground-state wave function of the deuteron, consistent
with the findings of Ref. [30]. Note that, since the LO
pionless EFT Hamiltonian does not contain tensor or spin-
orbit terms, the VMC-JS ansatz is exact. The perfect
agreement with the experimental value is not surprising,
as the potential has been fit to the deuteron binding energy
using numerically exact few-body methods [32].
The VMC-ANN noticeably improves upon the VMC-JS

energies of 3H, by ≃0.5 MeV for both Λ ¼ 4 fm−1 and
Λ ¼ 6 fm−1. On the other hand, the GFMC results are
≃0.1 MeV more bound than the VMC-ANN ones. This
difference is due to spin-dependent correlations that are
automatically generated by the GFMC imaginary-time
propagation, but are not fully accounted for by the
correlator ansatz of Eq. (3). To better quantify the
spin-independent correlations entailed in the ANN, we
have considered a simplified “ANNc” ansatz jΨANNc

V i ¼
eUðr1;…;rAÞjΦi. In this case, the NN potential of Eq. (1) is
equivalent to the SUð4Þ-symmetric interaction ṽcðrijÞ ¼
vcðrijÞ − vσðrijÞ. For Λ ¼ 4 fm−1 and Λ ¼ 6 fm−1 ANNc

yields −7.85ð2Þ and −7.85ð4Þ MeV, respectively. These
numbers are in excellent agreement with the GFMCc
calculations reported in Table I, which have also been
carried out using ṽcðrijÞ.
A similar pattern emerges for 4He, with ANN wave

functions outperforming the JS ones: the energy is
improved by about 0.8 and 1.0 MeV for Λ ¼ 4 fm−1

and Λ ¼ 6 fm−1, respectively. The small discrepancies

FIG. 1. Convergence pattern of the 2H variational energy for
Λ ¼ 4 fm−1 and Λ ¼ 6 fm−1 as a function of the number of
optimization steps of the SR AdaptiveEta algorithm. The dashed
line denotes the asymptotic value.
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with the GFMC are again due to missing spin-isospin
dependent correlations in the ANN. In fact, the ANNc
energies turn out to be −22.76ð2Þ MeV and −24.05ð5Þ for
Λ ¼ 4 fm−1 and Λ ¼ 6 fm−1, which are fully compatible
with the GFMCc results listed in Table I.
To further elucidate the quality of the ANN wave

function we consider the point-nucleon density

ρNðrÞ ¼
1

4πr2
hΨV j

X

i

δðr − jrinti jÞjΨVi; ð8Þ

which is of interest in a variety of experimental settings
[59,60]. In the upper, medium, and lower panels of Fig. 2
we display ρNðrÞ of 2H, 3H, and 4He as obtained from
VMC-ANN and GFMC calculations that use as input the
LO pionless-EFT Hamiltonian with Λ ¼ 4 fm−1. There is
an excellent agreement between the two methods, which
further corroborates the representative power of the ANN
ansatz for the wave functions of A ≤ 4 nuclei. The VMC-
ANN and GFMC densities overlap both at short distances
and in the slowly decaying asymptotic exponential tails,
highlighted in the insets of Fig. 2. It should be emphasized
that the ANN learns how to compensate for the original
Gaussian confining function and reproduce the correct
exponential falls off of the nuclear wave function, which
is notoriously delicate to obtain within nuclear methods that
rely on harmonic-oscillator basis expansions [61,62].
Conclusions.—In this work we have carried out proof-of-

principle calculations that demonstrate the capability of
ANNs to represent the variational state of A ≤ 4 nuclei
encompassing the vast majority of nuclear correlations and
scale favorably with the number of nucleons. Exploiting the
Deep Sets architecture, we have devised permutation-
invariant, spin-isospin dependent correlators whose com-
putational cost scales polynomially with the number of
nucleons. Using the stochastic-reconfiguration algorithm,
we solve the Schrödinger equation of a LO pionless-EFT
Hamiltonian that contains two- and three-nucleon poten-
tials characterized by highly nonperturbative, spin-depen-
dent, short-range components. The spin-isospin dependent
ANN variational wave function outperforms the routinely
employed two- and three-body Jastrow parametrization of
the correlation function. The small remaining differences

with the exact GFMC result will likely be solved once spin-
dependent backflow correlations are introduced in the
Slater determinant, as in Ref. [25–27], paving the way

TABLE I. Ground-state energies in MeV of the 2H, 3H, and 4He for the LO pionless-EFT Hamiltonian for Λ ¼ 4 fm−1 and
Λ ¼ 6 fm−1. Numbers in parentheses indicate the statistical errors on the last digit.

Λ VMC-ANN VMC-JS GFMC GFMCc

2H 4 fm−1 −2.224ð1Þ −2.223ð1Þ −2.224ð1Þ � � �
6 fm−1 −2.224ð4Þ −2.220ð1Þ −2.225ð1Þ � � �

3H 4 fm−1 −8.26ð1Þ −7.80ð1Þ −8.38ð2Þ −7.82ð1Þ
6 fm−1 −8.27ð1Þ −7.74ð1Þ −8.38ð2Þ −7.81ð1Þ

4He 4 fm−1 −23.30ð2Þ −22.54ð1Þ −23.62ð3Þ −22.77ð2Þ
6 fm−1 −24.47ð3Þ −23.44ð2Þ −25.06ð3Þ −24.10ð2Þ

FIG. 2. Point-nucleon densities of 2H (upper panel), 3H (middle
panel), and 4He (lower panel) for the LO pionless-EFT Hamil-
tonian with Λ ¼ 4 fm−1. The solid points and the shaded area
represent the VMC-ANN and GFMC results, respectively.
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for performing accurate quantum Monte Carlo studies of
medium-mass nuclei.
The single-particle densities obtained with ANN

wave functions are also in excellent agreement with
GFMC results, both at short distances and in the slowly
decaying exponential tails, which are notoriously difficult
to reproduce.
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