
 

Chaos in the Quantum Field Theory S-Matrix
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A number of studies have shown that chaos occurs in scattering: the outgoing deflection angle is seen to
be an erratic function of the impact parameter. We propose to extend this to quantum field theory and to use
the erratic behavior of the many-particle S-matrix as a probe of chaos.
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Introduction.—How can we characterize chaos in quan-
tum field theory? Based on intuition from studies of chaotic
scattering in classical and quantum mechanics, we will
propose that chaos is visible in the quantum field theory
scattering (S)-matrix.
Chaos in classical physics is characterized by stretching

and folding: a region of phase space experiences stretching
along unstable directions, with an average rate given by the
Lyapunov exponents, along with folding, in order to remain
confined to a finite region of phase space. An initially
localized patch of phase space evolves into a highly
complex structure that is spread throughout the available
phase space while still maintaining the same volume as the
initial patch, as required by Liouville’s theorem.
In quantum systems, the state space is not phase space

but rather that of the eigenfunctions and eigenvalues of the
Hamiltonian. Quantum systems that are classically chaotic
are known to exhibit universal features, such as Wigner-
Dyson statistics for energy eigenvalues [1]. Semiclassical
theory based on the Gutzwiller trace formula [2], a kind of
generalization of Bohr-Sommerfeld quantization, provides
a bridge between the spectral data of the quantum
Hamiltonian and the dynamics of the classical system.
Chaos in many-body systems and field theories is far

more challenging to study yet is of essential importance as
it provides the microscopic underpinning of thermodynam-
ics [3–6]. A recent insight has been to extend the appli-
cation of the out-of-time-order correlator [7], which gives a
quantum mechanical analog of a Lyapunov exponent, to
quantum field theories with a large number of fields [8,9],
e.g., the Sachev-Ye-Kitaev model [10–14]. However, a
deeper understanding of chaos in quantum field theory will
require knowing much more. Certainly within classical

mechanics, knowing that there are positive Lyapunov
exponents does not by itself tell one of the full richness
of chaotic dynamics.
In looking for a characterization of chaos in quantum

field theory, we will neither seek a quantum generalization
of chaos in classical field theory nor the continuum limit of
a lattice system, either classical or quantum. Instead, we
will immediately go to the natural observable of quantum
field theory: the S-matrix. In a scattering experiment, one
starts with far-separated wave packets at early times, which
interact at intermediate times, leading to far-separated wave
packets at late times. The S-matrix is the overlap of the in
state with the out state. The vast majority of the infinite
number of degrees of freedom that a field theory possesses,
and which make it so challenging to study chaos, are never
excited in a scattering experiment.
The phenomenon of chaos in scattering, while less

familiar than chaos in systems with bounded phase space,
is well-established. We will recall a few canonical examples
in classical and quantum mechanics, and then we will
propose extending this to the S-matrix in quantum field
theory. A special case, which has recently been discussed,
is chaos in the black hole S-matrix [15].
Chaos in scattering.—A classic example of chaotic

scattering, discussed in [16], is that of elastic scattering
of a particle against three fixed disks [17–22], as shown in
Fig. 1(a). The particle enters with some impact parameter, it
scatters off of the three disks, perhaps hitting several of the
disks multiple times, and it emerges at some outgoing
scattering angle. A plot of the scattering angle versus the
impact parameter is shown in Fig. 1(b). Strikingly, the
scattering angle is a highly erratic function of the impact
parameter: the system is chaotic.
The result appears puzzling at first: for most impact

parameters, the particle will undergo only a few collisions
with the disks before emerging, and restricting to those
initial conditions would surely not give an erratic scattering
angle. Indeed, the fraction of impact parameters that lead to
the particle spending longer than time T within the
scattering region decays exponentially, e−γT . However,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 127, 021601 (2021)

0031-9007=21=127(2)=021601(5) 021601-1 Published by the American Physical Society

https://orcid.org/0000-0002-4906-6209
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.021601&domain=pdf&date_stamp=2021-07-09
https://doi.org/10.1103/PhysRevLett.127.021601
https://doi.org/10.1103/PhysRevLett.127.021601
https://doi.org/10.1103/PhysRevLett.127.021601
https://doi.org/10.1103/PhysRevLett.127.021601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


crucially, there exist infinitely many impact parameters that
lead to the particle spending an arbitrarily long amount of
time within the scattering region, bouncing around between
the disks. It is this property that gives the erratic behavior
shown in Fig. 1(b): an arbitrarily small range of impact
parameters will lead the particle to scatter into the full range
of deflection angles.
The quantum version of a particle scattering off of a

potential is much richer. Semiclassically, one can form a
wave packet of high momentum modes and, for instance,
study possible interference effects of classical paths. More
generally, quantum scattering is described by the S-matrix,
which, in the basis of plane waves, is the overlap of the in
state and the out state, Sðp⃗ → q⃗Þ ¼ outhqjpiin, where p⃗ and
q⃗ are the ingoing and outgoing momenta, respectively. One
can alternatively consider a discrete basis of states, jni, so
that the S-matrix is a matrix, SnmðEÞ ¼ outhmjniin, where E
is the energy of the state. Extrapolating from examples,
Blümel and Smilansky [23–25] conjectured that, for
systems whose classical analog is chaotic, “the statistical
properties of the S-matrix (for ℏ → 0) are determined by
Dyson’s theory for the orthogonal ensemble of random
unitary matrices” [16].
For most chaotic systems, the S-matrix must be found

numerically. A remarkable analytic example is that of a
leaky torus [26–29]: one cuts out a piece of hyperbolic
space and identifies the sides, as shown in Fig. 2. The result
is a torus, of negative curvature, that has a cusp extending to
infinity [30]. In terms of Fig. 2(a), y ¼ ∞ along with the
three points at y ¼ 0: x ¼ −1, 0, 1 are identified with
infinity. One can send ingoing waves from infinity through

the cusp and observe the phase shift of the outgoing waves.
The solution to the Schrödinger equation at large y, and
after integrating over the x direction, is a superposition of
an incoming and outgoing wave, y

1
2
−ik þ SðkÞy1

2
þik, with the

S-matrix,

SðkÞ ¼ Zð1þ 2ikÞ
Zð1 − 2ikÞ where ZðxÞ ¼ π−x=2Γðx=2ÞζðxÞ;

ð1Þ

where ζðxÞ is the Riemann zeta function; see Fig. 2(c). The
phase is erratic: even though the Riemann zeta function is
analytic, it is seemingly unpredictable.
Chaos in the quantum field theory S-matrix.—We would

like to generalize the discussion of chaos in nonrelativistic
scattering to relativistic quantum mechanics. This requires
the language of quantum field theory. In quantum
field theory, one computes the n to m S-matrix,
outhp0

1;…; p0
mjp1;…; pniin, where the in state in the

asymptotic past consists of n particles with d-dimensional
momenta pi, and the out state in the asymptotic future
consists of m particles with momenta p0

i.
Proposal: We propose that the N þ 1 to M þ 1 quantum

field theory S-matrix,

outhp0
1;…; p0

M; qjp1;…; pN ;piin; ð2Þ

x

y

-1 0 1

(a) (b)

(c)

FIG. 2. A piece of hyperbolic space is cut out and the sides are
identified, as indicated in (a). The result is a torus with a cusp that
extends to infinity (a “leaky torus”), as shown in (b). One
considers a quantum mechanics scattering problem on the leaky
torus. A wave is sent into the torus from the end of the cusp, at
infinity. The relative phase of the reflected wave involves the
Riemann zeta function, an analytic yet erratic function, as shown
in (c).

(a)

(b)

FIG. 1. (a) A particle scattering off of three disks. (b) A plot
from [16] of the outgoing deflection angle as a function of the
impact parameter. The left plot includes the full range of impact
parameters, while the right plot enlarges a subset. The plot clearly
demonstrates chaos: the deflection angle undergoes wild fluc-
tuation under variation of the impact parameter.
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in the limit N þM ≫ 1 may exhibit chaos in some regions
of phase space in the sense of erratic behavior under
variation of some of the individual momenta such as p.
The motivation for this proposal comes from the exam-

ple of the three-disk scattering problem discussed in the
previous section. The quantum field theory S-matrix is
much richer than the one-to-one S-matrix in the mechanics
problem of a particle scattering off of a potential. To imitate
the latter, we think of the N particles with momenta pi as
playing the role of the potential (the three disks) and the
additional particle with incoming momentum p and out-
going momentum q as playing the role of the particle
scattering off of the potential. We must take N to be large in
order to have a state that is far from the vacuum. Note that
in the three-disk problem, a single disk is already a state
that is far from the vacuum; for quantum field theory, each
particle is a fundamental excitation, so we need a state with
many particles [31].
A possibly instructive setup to study, which models a

static potential, is in a theory with two species of fields, one
heavy and one light. The light field is taken to have an
interaction with the heavy field but no self-interaction.
Taking the N particles with momentum pi in the in state to
be excitations of the heavy field and the in particle with
momentum p to be an excitation of the light field, the S-
matrix will be concentrated around N ≈M and p0

i ≈ pi
(since N is large, q can differ significantly from p, with the
process still conserving momentum). The incoming particle
with momentum p, after interacting with the N other
particles, will exit with momentum q. The setup is thus
like that of a one-to-one S-matrix, p → q, in the back-
ground of N particles with momenta pi; see Fig. 3.
Finding explicit examples in which the chaos effect in

the S-matrix can be computed will be a challenge. Working
perturbatively to a few orders in the coupling is not
sufficient. Moreover, replacing the background state of
N particles pi with a thermal state is not appropriate; this
would wash out the chaos [32].

Of course, since relativistic quantum field theory sub-
sumes nonrelativistic quantum mechanics, with appropriate
choices of initial state one can achieve, to arbitrarily good
accuracy, scattering in classical mechanics or in quantum
mechanics. For instance, one could take an in state that
gives a long-lived intermediate state that looks like three
disks. It would be interesting to study scattering of a
relativistic particle in this background, thereby extending
the nonrelativistic analysis. One would hope, however, to
also be able to see chaos in the S-matrix in regions of
parameter space in which there is no intermediate
classical state.
Chaos in the black hole S-matrix: There is one case in

which chaos in a field theory S-matrix has in a sense
already been seen in the context of a black hole, as
discussed in [15], building on earlier work [8,33–35].
By appropriately sending in a large number of particles,
we can form a black hole as an intermediate state, which
decays into Hawking quanta at late times. The question is
what impact a change in one of the in particles has on
the S-matrix. The setup, shown in Fig. 4, is the following:
we add an additional particle to the in state so that the in
state has N þ 1 particles, where the additional particle
interacts with the others much later at a time at which they
have already formed a black hole that is decaying into
Hawking radiation. The effect of the additional particle is to
shift the black hole horizon slightly outward. The sub-
sequent outgoing Hawking quanta find themselves slightly
closer to the horizon, which in turn causes them to take
longer to escape. More precisely, in Schwarzschild coor-
dinates and for a horizon of radius rs, a Hawking
quanta that is at radius rs þ δ takes a Schwarzschild time
t ∼ ðβ=2πÞ logðrs=δÞ to escape. Decreasing δ → δ − Δrs
increases the escape time by an amount Δt ∼ Δrse2πt=β,
where β is the inverse temperature of the black hole, which

p1 pN
p

q

FIG. 3. We expect a many-particle S-matrix in quantum field
theory to exhibit chaos. The interactions occur within the shaded
region. In certain settings, one may view the collection of
particles pi, with i ¼ 1;…; N, as analogous to the three disks
in Fig. 1.

FIG. 4. A sector of the quantum gravity S-matrix that exhibits
chaos [15]. Incoming particles collide to form a black hole as an
intermediate state. The green shaded region is the interior of the
black hole; the edge is the horizon. An additional particle falls
into the black hole (blue line on the right). The dashed vertical
line indicates where the horizon would have been had the extra
particle not been sent in. The outgoing Hawking quanta, one of
which is shown, are closer to the new horizon than to the old
horizon.
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is proportional to its mass, which we can take to be the
center of mass energy of the in state [36]. This is chaos:
slightly increasing the energy of the in state causes an
exponentially large change in the out state.
The Horowitz-Polchinski correspondence principle [37]

relates black holes and strings, suggesting one may be able
to observe chaos in scattering involving highly excited
strings. This is indeed the case and will be discussed for
bosonic string theory in [38]. An excited string is charac-
terized by the occupation numbers of the different modes
and can be formed by repeatedly scattering photons off of
an initial unexcited string (a tachyon), with the occupation
numbers determining the momenta of the photons.
Consequently, scattering of highly excited strings is an
example of an S-matrix with a large number of particles,
and the observed erratic behavior of the S-matrix in [38] is
an illustration of the chaos effect proposed here.
Discussion.—Decades of progress in quantum field

theory have given rise to both special field theories that
are tractable even at finite coupling, as well as quantitative
statements, such as a c-theorems, that are valid for all
theories. Nevertheless, even a qualitative understanding of
the dynamics of general quantum field theories remains an
open problem. The primacy of the S-matrix within quantum
field theory, combined with the generic appearance of
chaos in classical field theory, suggests that studying chaos
in the S-matrix of quantum field theory may be a productive
route. We have proposed one look for erratic behavior of
the many-particle S-matrix under a small change in the
momenta of a few particles. It will be important to find
explicit examples of this and to give a quantitative measure
of the degree of chaos.
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