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40Università di Trento, 38123 Povo, Trento, Italy
41Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy

42INFN Sezione di Roma 1, 00185 Roma, Italy
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We report the properties of sodium (Na) and aluminum (Al) cosmic rays in the rigidity range 2.15 GV to
3.0 TV based on 0.46 million sodium and 0.51 million aluminum nuclei collected by the Alpha Magnetic
Spectrometer experiment on the International Space Station. We found that Na and Al, together with
nitrogen (N), belong to a distinct cosmic ray group. In this group, we observe that, similar to the N flux,
both the Na flux and Al flux are well described by the sums of a primary cosmic ray component
(proportional to the silicon flux) and a secondary cosmic ray component (proportional to the fluorine flux).
The fraction of the primary component increases with rigidity for the N, Na, and Al fluxes and becomes
dominant at the highest rigidities. The Na=Si and Al=Si abundance ratios at the source, 0.036� 0.003 for
Na=Si and 0.103� 0.004 for Al=Si, are determined independent of cosmic ray propagation.

DOI: 10.1103/PhysRevLett.127.021101

Sodium and aluminum cosmic rays, like nitrogen, are
thought to be produced both in astrophysical sources and
by the collisions of heavier nuclei with the interstellar

medium [1]. Previously, measurements of the cosmic nitro-
gen flux with the Alpha Magnetic Spectrometer experiment
(AMS) have been reported [2,3]. Remarkably, the nitrogen
flux is well described over the entire rigidity range by the
sum of a primary component (proportional to the oxygen
flux [3,4]) and a secondary component (proportional to the
boron flux [3,5]). Recently, AMS also reported the properties
of primary heavy Ne, Mg, and Si fluxes [3,6] and the
secondary F flux [7]. The AMS results revealed that there are
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two classes of primary cosmic rays, He-C-O and Ne-Mg-Si.
They also revealed that there are two classes of secondary
cosmic rays, Li-Be-B and F.
Over the past 50 years, a few cosmic ray experiments

have measured the Na and Al fluxes in kinetic energy
[8–14]. The measurement errors exceed 50% at
∼50 GeV=n (∼100 GV in rigidity). There are no measure-
ments of the Na and Al fluxes in rigidity. Precise knowl-
edge of the rigidity dependence of the Na, Al, and N fluxes
will provide important insights on cosmic ray production
and propagation.
In this Letter we report the precise measurement of the

Na and Al fluxes in cosmic rays in the rigidity range from
2.15 GV to 3.0 TV based on 0.46 million sodium and
0.51 million aluminum nuclei collected by AMS during
the first 8.5 years (May 19, 2011 to October 30, 2019) of
operation aboard the International Space Station. The total
flux errors at 100 GV are 5.0% for Na and 4.8% for Al.
Detector.—The layout and description of the AMS

detector are presented in Refs. [3,15] and shown in
Fig. S1 of the Supplemental Material (SM) [16]. The
key elements used in this measurement are the permanent
magnet [17], the nine layers, L1 − L9, of the silicon tracker
[18–20] and the four planes of the time of flight (TOF)
scintillation counters [21]. Further information on the AMS
layout, performance, trigger and the Monte Carlo (MC)
simulations [22,23] is detailed in the SM [16].
Event selection.—In the first 8.5 years AMS has col-

lected 1.50 × 1011 cosmic ray events. Na and Al events are
required to be downward going and to have a reconstructed
track in the inner tracker, see Fig. S2 of the SM [16] for a
reconstructed sodium event. Details of the event selection
are contained in the SM [16] and in Refs. [24–28].
With this selection, the charge confusion from non-

interacted nuclei (Ne, Mg, and Si) due to the finite AMS
charge resolution is negligible, < 0.5% over the whole
rigidity range, see Fig. S3 of the SM [16].
The main source of background comes from heavier

nuclei, such as Mg and Si, which interact above tracker L2.
The background resulting from interactions in the material
between L1 and L2 (transition radiation detector and upper
TOF) is evaluated by fitting the charge distribution of
tracker L1 with charge distribution templates of Ne, Na,
Mg, Al, and Si. Then cuts are applied on the L1 charge as
shown in Fig. S4 of the SM [16]. The charge distribution
templates are obtained using L2. These templates contain
only noninteracting events by requiring that L1 and
L3 − L8 measure the same charge value. This background
varies smoothly from 8% below 10 GV to 25% at 3 TV for
Na and from 9% below 10 GV to 16% at 3 TV for Al. The
uncertainty of this background was obtained by taking into
account the statistical and systematic uncertainties in the
template fit, see Fig. S4 of the SM [16]. The background
from interactions on materials above L1 (thin support
structures made by carbon fiber and aluminum honeycomb)

has been obtained and its uncertainty was estimated from
simulation using MC samples generated according to AMS
flux measurements. The simulation of nuclear interactions
has been validated with data using nuclear charge changing
cross sections (Mg → Naþ X, Si → Naþ X and
Si → Alþ X) [23] measured by AMS, as shown in
Fig. S5 of the SM [16] together with the background
and its uncertainties as functions of rigidity.
After background subtraction we obtain 0.46 × 106 Na

and 0.51 × 106 Al nuclei. The overall uncertainty due to
background subtraction was obtained by taking in quad-
rature the uncertainties of two backgrounds described
above. It is 1.5% at 2 GV, 1.5% at 100 GV, and 6% at
3.0 TV for Na, and 1% at 2 GV, 1.5% at 100 GV, and 5% at
3.0 TV for Al.
Data analysis.—The isotropic flux Φi in the ith rigidity

bin ðRi; Ri þ ΔRiÞ is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where Ni is the number of events corrected for bin-to-bin
migration, Ai is the effective acceptance, ϵi is the trigger
efficiency, and Ti is the collection time. In this Letter the
flux was measured in 49 bins from 2.15 GV to 3.0 TV, with
bin widths chosen according to the rigidity resolution and
available statistics.
The bin-to-bin migration of events was corrected using

the unfolding procedure described in Ref. [25]. These
corrections, ðNi − ℵiÞ=ℵi where ℵi is the number of
observed events in bin i, are þ20% at 3 GV decreasing
smoothly to þ6% at 10 GV, −1% at 100 GV, −10% at
300 GV, and −20% at 3.0 TV for Na and similar for Al.
Extensive studies were made of the systematic errors.

These errors include the uncertainties in the background
evaluation discussed above, the trigger efficiency, the
geomagnetic cutoff factor, the acceptance calculation, the
rigidity resolution function, and the absolute rigidity scale.
The systematic error on the fluxes associated with the

trigger efficiency measurement is < 1% over the entire
rigidity range.
The geomagnetic cutoff factor was varied from 1.0 to

1.4, resulting in a negligible systematic uncertainty
(<0.1%) in the rigidity range below 30 GV.
The effective acceptances Ai were calculated using MC

simulation and corrected for small differences between
the data and simulated events related to (i) event
reconstruction and selection, namely, in the efficiencies
of velocity vector determination, track finding, charge
determination, and tracker quality cuts and (ii) the details
of inelastic interactions of nuclei in the AMSmaterials. The
total corrections to the effective acceptance from the
differences between data and MC simulation were found
to be < 5% over the entire rigidity range. The systematic

PHYSICAL REVIEW LETTERS 127, 021101 (2021)

021101-3



errors on the fluxes associated with the reconstruction and
selection are <1% over the entire rigidity range.
The material traversed by nuclei from the top of AMS

to L9 is composed primarily of carbon and aluminum. The
survival probabilities of Na and Al nuclei due to inter-
actions in the materials were evaluated using cosmic ray
data collected by AMS as described in Ref. [23]. The
systematic error due to uncertainties in the evaluation of the
inelastic cross section is <3.5% up to 100 GV. Above
100 GV, the small rigidity dependence of the cross section
from the Glauber-Gribov model [22] was treated as an
uncertainty and added in quadrature to the uncertainties
from the measured interaction probabilities [23]. The
corresponding systematic error on both the Na and Al
fluxes is <3.5% up to 100 GV and rises smoothly to 4%
at 3.0 TV.
The rigidity resolution functions for Na and Al have

pronounced Gaussian cores characterized by widths σ and
non-Gaussian tails more than 2.5σ away from the center
[24]. The systematic error on the fluxes due to the rigidity
resolution function was obtained by repeating the unfolding
procedure while varying the width of the Gaussian cores of
the resolution functions by 5% and by independently
varying the amplitudes of the non-Gaussian tails by 10%
[24]. The resulting systematic error is 3.5% at 2 GV, <1%
from 3 GV to 300 GV for both Na and Al fluxes and
increases smoothly to 5% for Na and 4% for Al at 3.0 TV.
There are two contributions to the systematic uncertainty

on the rigidity scale [3,25]. The first is due to time
dependent residual tracker misalignment. This error was
estimated by comparing the E=p ratio for electrons and

positrons, where E is the energy measured with the
electromagnetic calorimeter and p is the momentum
measured with the tracker. It was found to be
1=30 TV−1 [29]. The corresponding errors on Na and Al
fluxes were obtained by repeating the unfolding procedure
with rigidity scale shifts of �1=30 TV−1 and amount to
<0.4% up to 100 GV for both fluxes increasing to 7%
for Na and 6% for Al at 3.0 TV. The second systematic
error on the rigidity scale arises from the magnetic field
map measurement and its temperature corrections [25].
This amounts to an uncertainty of < 0.6% for both fluxes
over the entire rigidity range. The overall error due to
uncertainty on the rigidity scale is < 1% up to 200 GV for
both Na and Al fluxes and increases smoothly to 7% for Na
and 6% for Al at 3.0 TV.
Most importantly, several independent analyses were

performed on the same data sample by different study
groups. The results of those analyses are consistent with
this Letter.
Results.—The measured Na fluxΦNa including statistical

and systematic errors is reported in Table SI of the SM [16]
as a function of the rigidity at the top of the AMS detector.
Figure 1(a) shows the Na flux as a function of rigidity R̃
with the total errors, together with the AMS N flux [3]. In
this and subsequent figures the data points are placed along
the abscissa at R̃ calculated for a flux ∝ R−2.7 [30]. The
measured Al flux ΦAl including statistical and systematic
errors is reported in Table SII of the SM [16] as a function
of the rigidity at the top of the AMS detector. Figure 1(b)
shows the Al flux as a function of rigidity R̃ with the total
errors together with the AMS N flux.
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FIG. 1. As functions of rigidity, the AMS (a) sodium (Na) and (b) aluminum (Al) fluxes together with the rescaled AMS nitrogen (N)
flux [3] multiplied by R̃2.7 with total errors; (c) Na and (d) Al flux spectral indices together with the N flux spectral index.
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To examine the rigidity dependence of the Na and
Al fluxes, the variation of the flux spectral indices with
rigidity was obtained in a model independent way from
γ ¼ d½logðΦÞ�=d½logðRÞ� over nonoverlapping rigidity
intervals with a variable width to have sufficient sensitivity
to determine γ. The interval boundaries are 7.09, 12.0, 16.6,
28.8, 45.1, 80.5, 211.0, and 3000.0 GV. The results are
presented in Figs. 1(c) and 1(d) in comparison with N [3].
As seen from Fig. 1, below ∼100 GV, the Na flux and
spectral index follow the N flux and spectral index and,
above ∼100 GV, the Al flux and spectral index follow the
N flux and spectral index.
Figure 2 shows the AMS sodium and aluminum fluxes as

a function of kinetic energy per nucleon EK together with
earlier measurements [8–13]. Data from other experiments
have been extracted using Ref. [31]. Also shown in the
figure are the predictions of the latest GALPROP–HELMOD

cosmic ray propagation model [32] based on published
AMS data on the two primary cosmic ray classes, He-C-O
and Ne-Mg-Si and other AMS data. Note that the
GALPROP–HELMOD model agrees well with the AMS
aluminum data above 3 GeV=n.
To examine the difference in the rigidity dependence of

the sodium and aluminum fluxes with respect to the fluxes
of heavy primary cosmic rays, we use the silicon flux ΦSi
[6] as a characteristic primary flux. The sodium to silicon
flux ratio ΦNa=ΦSi and the aluminum to silicon flux ratio
ΦAl=ΦSi were computed and are reported in Tables SIII and
SIV of the SM [16], respectively, as functions of rigidity
with statistical and systematic errors.
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and ΦS
Na ¼ ð1.36� 0.04Þ ×ΦF with a χ2=DOF ¼ 19=36.

(b) The AMS aluminum flux ΦAl fit to the weighted sum of
the silicon flux ΦSi and the fluorine flux ΦF above 6 GV, i.e.,
ΦAl ¼ ΦP

Al þΦS
Al. The fit yields ΦP

Al ¼ ð0.103� 0.004Þ ×ΦSi

and ΦS
Al ¼ ð1.04� 0.03Þ ×ΦF with χ2=DOF ¼ 24=36. In both

(a) and (b), the contributions of the primary and secondary
components are indicated by the shading (yellow and green,
respectively). As seen, with increasing rigidity, the contributions
of the secondary component in both the sodium and aluminum
fluxes decrease and the contributions of the primary component
correspondingly increase.
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To examine the rigidity dependence of the sodium and
aluminum fluxes with respect to heavy secondary cosmic
rays, we use the fluorine flux ΦF [7] as a characteristic
secondary flux. The sodium to fluorine flux ratio ΦNa=ΦF
and the aluminum to fluorine flux ratio ΦAl=ΦF were
computed and are reported in Tables SVand SVI of the SM
[16], respectively, as functions of rigidity with statistical
and systematic errors.
To obtain the primary ΦP

Na and secondary ΦS
Na compo-

nents in the Na flux ΦNa ¼ ΦP
Na þΦS

Na, a fit of ΦNa to the
weighted sum of a heavy primary cosmic ray flux, namely,
silicon ΦSi [6], and of a heavy secondary cosmic ray
flux, namely, fluorine ΦF [7], was performed above 6 GV.
The fit yields ΦP

Na ¼ ð0.036� 0.003Þ ×ΦSi and ΦS
Na ¼

ð1.36� 0.04Þ ×ΦF with a χ2=DOF ¼ 19=36, as shown in
Fig. 3(a). Figure S6 of the SM [16] shows the result of this
fit in terms of ΦNa=ΦSi and ΦNa=ΦF.

Similarly, to obtain the primary ΦP
Al and secondary ΦS

Al
components in the Al flux ΦAl ¼ ΦP

Al þΦS
Al, a fit of ΦAl

to the weighted sum of the silicon flux and the fluorine
flux was performed above 6 GV. The fit yields ΦP

Al ¼
ð0.103� 0.004Þ ×ΦSi and ΦS

Al ¼ ð1.04� 0.03Þ ×ΦF

with χ2=DOF ¼ 24=36, as shown in Fig. 3(b). Figure S7
of the SM [16] shows the result of this fit in terms of
ΦAl=ΦSi and ΦAl=ΦF.
As seen from Fig. 3, the contributions of the secondary

component in both the sodium flux and the aluminum flux
decrease with rigidity, and the contributions of the primary
component increase with rigidity. The same dependence
was also observed for the nitrogen flux ΦN [3], see also
Fig. S8 of the SM [16]. Table I details the primaryΦP

N,ΦP
Na,

and ΦP
Al and secondary ΦS

N, ΦS
Na, and ΦS

Al components and
also the primary fractions ΦP

N=ΦN, ΦP
Na=ΦNa, and ΦP

Al=ΦAl
at different rigidities.
The observation that, similar to N [2,3], both the Na and

Al fluxes can be fit over a wide rigidity range as the linear
combinations of primary and secondary fluxes is a new and
important result, which permits the direct determination
of the Na=Si and Al=Si abundance ratios at the source,
0.036� 0.003 for Na=Si and 0.103� 0.004 for Al=Si,
without the need to consider the Galactic propagation of
cosmic rays. To study the effect of cosmic ray propagation
on the Na=Si and Al=Si abundance ratio measurements at
the source we used the models from Ref. [33]. The results
are detailed in the SM [16] and show that the propagation
effects on the Na=Si and Al=Si abundance ratio measure-
ments at the source are negligible.
Figure 4 presents cosmic nuclei fluxes measured by

AMS as a function of rigidity from Z ¼ 2 to Z ¼ 14. It
shows that there are two classes of primary cosmic rays,
He-C-O and Ne-Mg-Si, and two classes of secondary
cosmic rays, Li-Be-B and F [7]. As seen from Fig. 4, N,
Na, and Al belong to a distinct group and are the
combinations of primary and secondary cosmic rays.
In conclusion, following the study of nitrogen, we have

presented the precision measurement of the Na and Al
fluxes as functions of rigidity from 2.15 GV to 3.0 TV, with
detailed studies of the systematic errors. We found that Na
and Al, together with N, belong to a distinct cosmic ray
group and are the combinations of primary and secondary

TABLE I. The N [3], Na, and Al cosmic ray nuclei primary ΦP
N, ΦP

Na, and ΦP
Al and secondary ΦS

N, ΦS
Na, and ΦS

Al
flux components, and their corresponding primary fractions ΦP

N=ΦN, ΦP
Na=ΦNa, and ΦP

Al=ΦAl at 6 GV, 100 GV, and
2 TV. As seen the primary fractions for all three fluxes increase with rigidity.

Primary fraction,%

Nuclei flux Primary Secondary 6 GV 100 GV 2 TV

ΦN ð0.092� 0.002Þ ×ΦO ð0.61� 0.02Þ ×ΦB 31� 1 56� 1 77� 3
ΦNa ð0.036� 0.003Þ ×ΦSi ð1.36� 0.04Þ ×ΦF 17� 2 35� 2 62� 12
ΦAl ð0.103� 0.004Þ ×ΦSi ð1.04� 0.03Þ ×ΦF 43� 1 67� 1 78� 8
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FIG. 4. The fluxes of cosmic nuclei measured by AMS as a
function of rigidity from Z ¼ 2 to Z ¼ 14 above 30 GV. As
seen, there are two classes of primary cosmic rays, He-C-O and
Ne-Mg-Si, and two classes of secondary cosmic rays, Li-Be-B
and F [7]. Nitrogen (N), sodium (Na), and aluminum (Al),
belong to a distinct group and are the combinations of primary
and secondary cosmic rays. For clarity, data points above
400 GV are displaced horizontally. For display purposes only,
fluxes were rescaled as indicated. The shaded tan band on N,
Na, and Al is to guide the eye.
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cosmic rays. Similar to the N flux, which is well described
by the sum of a primary cosmic ray component (propor-
tional to the oxygen flux) and a secondary cosmic ray
component (proportional to the boron flux), both the Na
and Al fluxes are well described by the sums of a primary
cosmic ray component (proportional to the silicon flux) and
a secondary cosmic ray component (proportional to the
fluorine flux). The fraction of the primary component
increases with rigidity for the N, Na, and Al fluxes and
becomes dominant at the highest rigidities. The Na=Si and
Al=Si abundance ratios at the source, 0.036� 0.003 for
Na=Si and 0.103� 0.004 for Al=Si, are directly determined
independent of cosmic ray propagation. These are new and
unexpected properties of cosmic rays.
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