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We report the experimental realization of a new kind of optical lattice for ultracold atoms where
arbitrarily large separation between the sites can be achieved without renouncing to the stability of ordinary
lattices. Two collinear lasers, with slightly different commensurate wavelengths and retroreflected on a
mirror, generate a superlattice potential with a periodic “beat-note” profile where the regions with large
amplitude modulation provide the effective potential minima for the atoms. To prove the analogy with a
standard large spacing optical lattice we study Bloch oscillations of a Bose Einstein condensate with
negligible interactions in the presence of a small force. The observed dynamics between sites separated by
ten microns for times exceeding one second proves the high stability of the potential. This novel lattice is
the ideal candidate for the coherent manipulation of atomic samples at large spatial separations and might
find direct application in atom-based technologies like trapped-atom interferometers and quantum
simulators.
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Optical lattices are powerful tools to study and manipu-
late ultracold gases [1]. They are used to investigate
superfluidity in quantum gases [2,3], to study nonlinear
dynamics of matter waves [4], to perform quantum sim-
ulation of solid-state physics models [5] and to operate
atom interferometers for high precision measurements of
forces [6] and fundamental constants [7,8]. The optical
interference on which optical lattices are based determines
their key stability properties. Optical lattices created by
retroreflecting a laser beam of wavelength λ on a single
mirror are particularly appealing since the lattice period is
exactly λ=2, is strongly immune to beam pointing insta-
bilities [9] and the phase noise can be suppressed by
stabilizing the mirror motion [6]. In addition, the residual
intensity noise of optical lattices is normally not an issue,
since it induces common-mode fluctuations of the site
potentials. The spatial periodicity of optical lattices based
on counterpropagating beams is limited to the range from
0.2 to 0.7 μm with only few exceptions [10], mainly due to
the available narrow-linewidth laser sources. There is,
however, a strong interest in creating periodic potentials
with larger separations between the different sites for a
variety of applications ranging from trapped-atom inter-
ferometry, where the device sensitivity scales proportion-
ally to the separation of the trapped modes [11],
atomtronics [12], quantum simulation of Hubbard-like
models [13–16], studies on low dimensional systems
[17], and quantum computing [18,19]. This has led to
the realization of different kinds of trapping potentials
using acousto-optic deflectors [20], spatial light modulators

[21], laser beams crossing at small angles [22], and
magnetic traps [23]. However, none of these methods
can offer the stability of optical lattices realized with
counterpropagating laser beams.
In this work we demonstrate an innovative, large-spacing

optical superlattice based on the beating note between two
retroreflected optical lattices with slightly different wave-
lengths λ1 and λ2, i.e., jλ1 − λ2j < λ1;2. We show that, when
the two wavelengths fulfill the condition nλ1 ¼ ðnþ 1Þλ2
with n integer, the resulting potential is periodic and, for
sufficiently low lattice depths, the energy spectrum of the
superlattice is equal to the one of an optical lattice with
wavelength nλ1. Working with n ¼ 20 and standard laser
wavelengths around 1 μm, we realize an effective lattice
period around 10 μm. Our “beat-note” superlattice (BNSL)
is analog to the well-known superlattices that have revo-
lutionized the field of semiconductors [24], allowing the
creation of effective lattice periods one order of magnitude
larger than the intrinsic one [25]. Similar approaches have
been used also in optics using multilayer dielectric struc-
tures to observe transport phenomena typical of charged
particles using light waves [26,27]. In quantum gas experi-
ments, second harmonic superlattices, i.e., for n ¼ 1, have
been used to create arrays of double well potentials [28].
To investigate the properties of the BNSL, we prepare a

Bose-Einstein condensate (BEC) in its ground state, we
employ it to measure the energy gaps between the first three
bands and we study Bloch oscillations in the presence of an
external force. These measurements demonstrate that the
BNSL is equivalent to a standard lattice up to depths of the
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order of the recoil energy of the two combined lattices.
Moreover, when canceling the interatomic interactions by
means of a magnetic Feshbach resonance, the dynamics
exhibits a coherence up to 1 s, demonstrating how this new
technique provides very stable potentials with an arbitrarily
long periodicity. The experimental measurements are
compared to numerical simulations, which are also useful
to assess the behavior of the BNSL in the large depth limit.
The superposition of two standing waves with the same

optical depth V0 and with a relative phase ϕ provides a
trapping potential for the atoms

VðxÞ ¼ V0½1 − cosðk−x − ϕÞ cosð2kþxþ ϕÞ� ð1Þ

with kþ ¼ ðk1 þ k2Þ=2, k− ¼ k2 − k1, and k1;2 ¼ 2π=λ1;2
[29]. The potential is the sum of a constant term V0 plus a
sinusoidal one with a fast spatial modulation of periodicity
dþ ¼ π=kþ and with an amplitude varying over a distance
d− ¼ π=k−. When the two wavelengths fulfill the com-
mensurability condition nλ1 ¼ ðnþ 1Þλ2, the potential is
periodic over a distance d− ¼ nλ1=2 realizing a BNSL [see
Fig. 1(a)]. As pointed out in [30], a quantum particle
evolving in a potential with a periodic spatial modulation
experiences an attractive effect in comparison to a constant
one with the same average value. The reason is that,
although the modulation naturally increases the kinetic
energy due to a coupling to high momentum states, the
resultant modulation of the wave function, with maxima
localized at the minima of the trap, causes a stronger

reduction of the potential energy. In the perturbative limit,
i.e., V0 ≪ ERþ with ERþ ¼ ℏ2k2þ=2m, this attractive effect
can be quantified with a negative potential equal to the
square of the modulation amplitude divided by 8ERþ

[29,31]. As a consequence, we can approximate Eq. (1)
with the effective potential

VeffðxÞ ¼ V0 −
V2
0 cos

2ðk−x − ϕÞ
8ERþ

; ð2Þ

which is equivalent to the one of an optical lattice with
periodicity d−. The low V0 limit implies that the tunneling
between local minima of the potential in Eq. (1) is larger
than the on-site energies such that the wave function is
minimally affected by the fast spatial modulation of the trap
[see Fig. 1(b)]. This is no longer true for V0 ≃ ERþ where
the perturbative approach of Eq. (2) cannot be applied.
However, by rescaling the energies with an effective mass,
the first bands of the BNSL continue to map onto those of a
single-wavelength lattice [29]. Interestingly, for V0 ≫ ERþ,
the lowest states of the BNSL are strongly localized by the
short-period lattice, but their separation is set by the large
spacing lattice. This opens interesting perspectives for the
creation of strongly confined systems with macroscopic
separation [29].
In order to study the properties of the BNSL in the low

V0 limit we employ techniques similar to those we used
previously with long-period lattices based on angled laser
beams [11]. We work with a Bose-Einstein condensate of
39K in the state j1; 1iwhere the interatomic interactions can
be tuned close to zero exploiting a broad magnetic
Feshbach resonance at 400 G [32,33]. Once we have
evaporatively cooled the gas to condensation, we adiabati-
cally ramp up two optical lattices along the x axis [see
Fig. 1(c)] with wavelengths λ1 ¼ 1064.5 nm and
λ2 ¼ 1013.7 nm. A dipole trap beam that propagates along
the same axis provides a radial harmonic potential with
ωy;z ≈ 2π × 200 Hz. The two lattices provide a BNSL with
dþ ≃ 0.5 μm and d− ¼ 10.6 μm with n ¼ 20. Since the
positionof the effectiveminimadepends on the relative phase
ϕ between the two combined lattices, both the laser frequen-
cies are locked to the same reference cavity with a relative
stability of the order of 10 kHz and tuned to provide ϕ ¼ 0
[29]. We finally detect the in situ atomic density from the
orthogonal z direction [see Fig. 1(c)], ramping up the optical
lattices to a final depth V0 ∼ 200 nK ≈ ERþ ∼ 220 nK. The
observed spatial separation of 10 μm between independent
condensates localized in the effective sites of the BNSL
confirms our expectations.
In our system we cannot calibrate the lattice depth using

standard techniques based on atomic diffraction, since the
initial size of the condensate is smaller than d−. We
therefore use a different method based on the study of
the oscillation frequency of the condensate in a single site
of the BNSL, in regimes where the tunneling energy Jeff to

(a)

(b)

(c)

FIG. 1. (a) Plot of the beat-note optical lattice (thin line) and the
correspondent effective potential Veff (thick line). (b) Profile of
the ground-state atomic wave function in the presence of a BNSL
with a depth V0 ¼ 0.5ERþ (thin line) and in the presence of a
standard large spacing optical lattice with a depth equal to the
effective depth of the BNSL (thick line). (c) Density distribution
of a noninteracting condensate in the ground state of the BNSL
that shows the spatial modulation with a period of 10 μm.
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neighboring sites is negligible. The dynamics is simply
triggered by a sudden shift of the minima of the potential. A
typical measurement is shown in Fig. 2(a) where we
intentionally shift the minima by an amount sufficiently
large to project the initial condensate wave function on the
first three bands. The center of mass oscillation of the gas is
then characterized by the beating of two frequencies that
correspond to the first two energy gaps. In Fig. 2(b) we
compare the measured values with the theoretical expect-
ations. If V0 ≲ ERþ , according to Eq. (2), the effective
potential is sinusoidal and its anharmonicity leads to two
slightly distinct frequencies that scale with the square root
of Veff , i.e., linearly with V0. For larger values of V0, where
the analogy with a large spacing standard lattice is no
longer valid, the first energy gap of the BNSL deviates from
the linear behavior, while the second one reaches a
maximum and then decreases to zero. In the left inset of
Fig. 2(b) we understand that the first gap becomes
asymptotically equal to the potential shift of the two sites
adjacent to the one with the lowest energy. The reduction of
the second gap is instead due to the negligible energy
difference between the antisymmetric and symmetric states
of the second and third band respectively, as shown in the
right inset of Fig. 2(b).

In order to prove the analogy between a BNSL and a
single-wavelength large spacing optical lattice in the low
V0 limit, we finally need to measure Jeff and observe the
coherent dynamics between its different sites. We then
perform spatial Bloch oscillations, starting with a conden-
sate loaded in a single site of the BNSL and detecting the
subsequent oscillation of the density distribution, which
spans few sites of the BNSL, driven by an external force
[34–36]. In the following we describe the experimental
procedure. We implement a condensate of N ≃ 5 × 103 and
an initial depth of the BNSL V0 ≈ 1.5ERþ , which ensures a
negligible tunneling between neighboring sites. A spurious
external magnetic field gradient that causes an acceleration
≈10−2g, where g ¼ 9.81 m=s2, is compensated by the
optical force provided by the dipole trap propagating along
the x axis whose focus position is shifted with respect to the
condensate by a distance equal to the Rayleigh range of the
beam. In this way, by tuning the intensity of the dipole trap,
we can finely adjust the total external force F around zero,
both in magnitude and sign, over a range of �5 × 10−4 mg
[29]. Once set the working value of the force, we switch off
the dipole trap that provides confinement along x and we
decrease the BNSL depth to V0 ¼ 70ð�2Þ nK ∼ 0.3ERþ .
The procedure is performed adiabatically with respect to
the trapping frequencies of a single site but on a timescale
much shorter then the Bloch period. During the oscillation
we reduce the scattering length to the level of 0.05 a0,
where a0 is the Bohr radius, in order to minimize the
decoherence induced by interactions [37]. In Fig. 3(a) we
report examples of absorption images of the condensate
during one Bloch oscillation. Since at t ¼ 0 all the atoms
are localized in a single site, the center of mass motion is
frozen and we observe only a symmetric breathing evolu-
tion of the size [34,36]. The on-site fractional populations
evolve in time as [36]:

nlðtÞ ¼
�
�
�
�
J l

�
4Jeff
δ

sin

�
δt
ℏ

���
�
�
�

2

; ð3Þ

whereJ l are Bessel functions of the first kind and δ ¼ Fd−
is the energy difference between neighboring sites.
Experimentally we count the atoms that remain in the
starting well N0 and the ones that tunnel to the other sites
Ntr. In Fig. 3(b) we report a typical time evolution of Ntr ¼P

i≠0ðNþi þ N−iÞ in unit of the total number Ntot at each
time. We observe a clear oscillation with the average
amplitude reducing on a timescale of ≈1 s. To our knowl-
edge the observed dynamics is characterized by the longest
coherence time reported in the literature for trapped
condensates separated by a distance of tens of microns
[20,38–41]. These results prove the high intrinsic stability
of the BNSL. The observed decay of the oscillation contrast
might be due the presence of a spurious harmonic potential
of the order of 1 Hz along the x axis. Another source of
decoherence could be the residual interaction energy. Bloch

(a)

(b)

FIG. 2. (a) Center of mass oscillation of a BEC trapped in a
single site of the BNSL. The evolution is the result of the beating
between the frequencies related to the first two energy gaps of the
spectrum ω1 and ω2. The line is a fit to the data. (b) Measured
values of ω1 and ω2 as a function of V0 compared with the
theoretical values, line and dashed line, respectively. Error bars
on the lattice depth take into account the uncertainties of the beam
size on the atoms and of the optical power. The insets show the
BNSL potential around the minimum and compare two by two
the wave functions of the first three on-site energy eigenstates for
V0 ¼ 4ERþ, using dashed, solid and dotted lines, respectively.
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oscillations using more homogeneous forces and experi-
ments performed with variable atom numbers will allow the
identification of what is currently limiting the performance
of our Bloch oscillations interferometer.
We fit the data with a phenomenological model that

includes Eq. (3) and an exponential decay of the amplitude
toward a steady state population [29]. From the fit we can
estimate the Bloch period tB, that is related to the external
force via the relation tB ¼ h=δ ¼ h=ðFd−Þ, and the ampli-
tude of oscillationA, that is linked to the tunneling energy via
the equality A ¼ 4Jeff=δ [see Eq. (3)]. We finally investigate
the linear dependence of δ on the external forceF, calibrated
as a function of the dipole trap power performing time
of flight experiments (see [29]). Results are reported in
Fig. 4(a), where the dotted line indicates the theoretical
predictions, while the shaded area takes into account the
uncertainty in the calibration of the external force. Note that
only a limited range of forces has been explored because
outside it, the small depth Veff ≈ 3 nK ∼ 0.015ERþ imple-
mented, would cause Landau-Zener interband transitions
and atom losses. This could be prevented increasing V0, but
the consequent reduction of the tunneling energy Jeff would
reduce also A and the visibility of the spatial oscillations.

In Fig. 4(b) we finally plot the amplitude A as a function of δ
and compare the results with the values we expect from the
estimation Jeff ¼ ð0.7� 0.05Þ Hz, derived from the exper-
imental calibration of V0. We note that a good agreement is
achieved in both plots, although a deviation of the measure-
ments from the expected values is observed for Bloch
frequencies ≈2 Hz. For small values of the force, precise
measurements are currently limited by the decoherence
sources described above.
In conclusion, we reported the realization of an inno-

vative superlattice based on the beat note between two
retroreflected laser beams with commensurate wavelengths.
Our studies prove that the resulting potential is equivalent
to a large-spacing single-wavelength optical lattice in the
limit of small depths, i.e., V0 < ERþ . For larger values of
V0, BNSLs can be used to create arrays of atomic
ensembles with negligible tunneling between the sites.
The high stability of a BNSL is demonstrated observing the

t=0 t=50 ms t=100 ms

t=150 ms t=250 ms t=300 ms

(a)

(b)

FIG. 3. (a) Absorption images of the BEC during a spatial
Bloch oscillation in the presence of an external force, charac-
terized by a breathing motion of the width. In (b) we report the
time evolution of the sum of the populations in the neighboring
sites Ntr. The solid line is a fit performed using Eq. (3) times an
additional exponential decay of the amplitude. The error bars
represent the statistical uncertainty and correspond to the stan-
dard deviation of the mean.

(a)

(b)

FIG. 4. (a) Energy difference between lattice sites (dots) derived
from the Bloch frequencymeasurements as a function of the optical
power of the beam used to tune the external force. The horizontal
error bars correspond to the uncertainty on the optical power. The
dotted line is the theoretical prediction for the best fit parameter
provided by the calibration and the shaded area takes into account its
indetermination [29]. (b)Amplitudeof theoscillationA asa function
of the energy difference between lattice sites. The error bars
correspond to the uncertainty of the amplitude and the frequency
provided by the fit of the oscillations. The solid line corresponds to
A ¼ 4Jeff=δ.At lowervaluesofδ the effect offorce inhomogeneities
aremore significant and both frequency and amplitude deviate from
theory.Thedashed line is the result ofnumerical simulationswhere a
longitudinal harmonic potential of 1.5 Hz is included.
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longest coherent evolution ever reported for a BEC trapped
in spatial modes separated by tens of microns. We expect
that BNSLs will strongly contribute to the improvement of
the sensitivity of trapped-atom interferometers [42], for
example realizing arrays of double wells potentials with
two collinear BNSLs with a periodicity of one twice the
other [43]. In addition, the intrinsic stability of BNSLs
makes them a valuable tool for the precise manipulation of
atoms at large distances in several future quantum tech-
nologies [44–46].
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