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Notions of circuit complexity and cost play a key role in quantum computing and simulation where they
capture the (weighted) minimal number of gates that is required to implement a unitary. Similar notions also
become increasingly prominent in high energy physics in the study of holography. While notions of
entanglement have in general little implications for the quantum circuit complexity and the cost of a unitary,
in this work, we discuss a simple such relationship when both the entanglement of a state and the cost of a
unitary take small values, building on ideas on how values of entangling power of quantum gates add up.
This bound implies that if entanglement entropies grow linearly in time, so does the cost. The implications
are twofold: It provides insights into complexity growth for short times. In the context of quantum
simulation, it allows us to compare digital and analog quantum simulators. The main technical contribution
is a continuous-variable small incremental entangling bound.
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The circuit complexity of a computation captures the
number of elementary steps it minimally takes to determine
its outcome. A reading of the famous Church-Turing thesis
states that all reasonable models of computation give rise to
the same class of “easy” problems computable in poly-
nomial time, a statement that can presumably also be
applied to processes occurring in nature. Alas, ultimately
the world is quantum. Indeed, notions of quantum circuit
complexity have long been considered in quantum infor-
mation science: They provide a quantitative account on the
shortest quantum computation that implements a given
unitary. Similarly, one can think of the complexity of a
quantum state as the circuit complexity of the quantum
circuit preparing it, starting from a given fiducial state.
Such notions play a similarly central role in quantum as
classical circuit complexities do in classical computing.
Seminal work [1–4] has introduced a geometric picture of
circuit complexities, showing that finding the shortest
circuit amounts to identifying the shortest path between
two points in a curved geometry. In fact, this program has
become so successful that the cost associated with a unitary
in such a geometric picture has itself been identified with a
notion of circuit complexity.
Yet, it was relatively recently that notions of circuit

including those of costs rose to prominence outside the
field of quantum computing [5–15]. Again eluding to the
physical Church Turing thesis, such an approach is well
motivated: One can think of a quantum state—say, one that
is being generated by a quantum chaotic Hamiltonian
evolution—being highly complex if the quantum circuit
that could have prepared it on a quantum computer would
have to be long. Since one can argue about how many
quantum gates one would have needed to emulate a given

Hamiltonian time evolution, such notions also immediately
allow us to compare the effort in digital and analog
quantum simulation [16]. The possibly most compelling
application of quantum circuit complexity is in the realm of
high energy physics in the context of holography [5–15].
These thoughts provide fuel for a motivation to actually

compute quantum circuit complexities and circuit costs.
Yet, to actually quantitatively determine any variant of
these quantities is not obvious. After all, there are many
ways to decompose a given unitary into a quantum circuit,
with the best known algorithms for decomposing given
circuits in Clifford and T gates featuring an exponential
run-time in the circuit size [17], and the computation
of the complexity requires the optimization over such
decompositions. In any decomposition, one may expect

FIG. 1. A schematic picture relating the cost of a circuit with the
entanglement over cuts for a system of n constituents. The dark
gray triangle represents the Lieb-Robinson cone [32,33,36] that
depicts at what rate one expects a linear growth of the entangle-
ment entropy over all cuts in nonequilibrium dynamics generated
by a local Hamiltonian.
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cancellations of some sort, with the impact of a unitary gate
being partially compensated by the later action of another,
rendering naive combinatoric arguments involved. The
geometrically motivated notion of a cost of a quantum
circuit substantially lessens the technical burden [1–4], but
it is still not obvious how to come up with meaningful
lower bounds.
This work provides a compellingly simple lower bound

for the cost of a quantum circuit that is tight for small values
of the cost. It has indeed rightfully been argued that
complexity is not entanglement [14], and neither is the
cost of a circuit. No quantity based on entanglement can
accommodate the presumed linear growth of state complex-
ity until a time exponential in the system size [5], for
obvious reasons. That said, for small values of the circuit
cost and entanglement there is a simple connection: One
can basically add up—if properly put together—potential
entangling powers of quantum gates to arrive at tight
bounds. The bounds presented are rooted in notions of
entanglement capabilities of quantum gates: The argument
captures the insight that quantum gates that are close to the
identity in operator norm have little capability to create
entanglement from product states (which is very easy to
show). They can also add very little entanglement to a given
entangled state (which is less obvious to prove), but
grasped in terms of the small incremental entangling
property [18,19], and which is here freshly proven for
Gaussian continuous-variable systems. As such, the simple
bound applies both to spin systems as to Gaussian bosonic
continuous-variable settings, which are specifically impor-
tant when approximating noninteracting bosonic quantum
fields. Simple as the bound is, it is easily stated and proven
(with some of the arguments delegated to the Supplemental
Material [20]). It can be also straightforwardly applied to
important cases of quantum evolutions, for which quenched
Hamiltonian many-body dynamics constitute an example.
Quantum circuit complexity and cost.—The exact circuit

complexity basically counts the number of quantum gates
from a given gate set that is needed to exactly match the
given unitary. An approximate reading thereof merely asks
for an approximation in operator norm to a given small
error. Lower bounds of the circuit complexity are provided
by the cost of a given circuit, which is increasingly
commonly seen as a notion of circuit complexity in its
own right [1,2]. For n quantum systems of local dimension
d (d ¼ 2 for spins or qubits), one chooses a collection of
2-local traceless Hamiltonian terms O1;…; OJ, normalized
in operator norm as kOjk ¼ 1 for j ¼ 1;…; J. We consider
both the situation in which fOjg are geometrically local
and the situation where they are merely local in their
support. For a given U ∈ SUðdnÞ, one sees the unitary as
being generated by a path-ordered integral

U ¼ P exp

�
−i

Z
1

0

dsHðsÞ
�
; ð1Þ

with

HðsÞ ¼
XJ
j¼1

yjðsÞOj; ð2Þ

where yj∶½0; 1� → R are appropriate continuous cost func-
tions. This path ordered integral can in operator norm be
arbitrarily well approximated by

VN ¼
YN
k¼1

exp

�
−

i
N

XJ
j¼1

yjðk=NÞOj

�
; ð3Þ

in the limit of N → ∞, as follows immediately from the
definition of the path-ordered integral. The cost of a unitary
U ∈ SUðdnÞ can then be defined in such terms [1,2].
Definition 1.—(Circuit cost [1]) For a given set

fO1;…; OJg in the Lie algebra suðdnÞ of traceless
Hermitian matrices normalized as kOjk ¼ 1 for all
j ¼ 1;…; J, the cost of a quantum circuit U ∈ SUðdnÞ
is the infimum

CðUÞ ≔ inf
Z

1

0

XJ
j¼1

jyjðsÞjds ð4Þ

over all continuous functions yj∶½0; 1� → R so that
Eqs. (1), (2) are satisfied. We call it the geometrically
local circuit cost CgðUÞ if all fOjg are geometrically local.
That is to say, the cost of a quantum circuit expressed in

terms of the limit

lim
N→∞

1

N

XN
k¼1

XJ
j¼1

jyjðk=NÞj ð5Þ

of many time steps. In what follows, the notion of a
potential entangling power of a quantum gate provides
some useful intuition. It captures the “coupling strength”
and simply takes into account the fact that gates that are
close to the identity cannot create much entanglement from
products. A somewhat related, but integer-valued, notion of
entangling power has been invoked in Ref. [24].
Definition 2.—(Potential entangling power) A unitary

U ∈ SUðd2Þ has the potential entangling power

eðUÞ ≔ logðdÞ min fkHk∶U ¼ e−iH; H ¼ H†g: ð6Þ

It is indeed perfectly meaningful to refer to this quantity
as the potential entangling power: If ρ ¼ ρA ⊗ ρB, both ρA
and ρB being pure and supported on Cd each, then the
resulting degree of entanglement S½trBðUρU†Þ� as quanti-
fied in terms of the von-Neumann entanglement entropy
over the cut A∶B is expected to be small if eðUÞ is small,
and converging to zero for eðUÞ → 0. Notions of entan-
gling powers of quantum gates have long been connected to
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coupling strengths of interactions [25–28]. As is well
known, notions of entangling power of unitary gates are
altered depending on whether or not auxiliary quantum
systems are allowed for: The swap gate obviously has no
entangling power, if no auxiliary systems are made use of,
while it has 2 log2ðdÞ when auxiliary systems are included.
It is less obvious to see how much entanglement can be
generated, however, if one initially already encounters an
intricate entangled state and the unitary acts only on a small
subsystem of the total system. The question of how much
entanglement can be generated in this fashion has been
largely settled in Ref. [18], however, which we can make
use of here.
Entanglement bounds circuit costs.—Such notions of

potential entanglement power can be related to tight bounds
of circuit costs. In what follows, we denote for a pure state ρ
defined on a spatially one-dimensional system of n con-
stituents for s ∈ f1;…; n − 1g with

Eðρ∶sÞ ≔ S½trBðρÞ�; ð7Þ

being the entanglement entropy over the cut A ¼ f1;…; sg
and B ¼ fsþ 1;…; ng.
Observation 1.—(Entanglement lower bounds the cost)

The geometrically local circuit cost of a U ∈ SUðdnÞ is
lower bounded by

CgðUÞ ≥ 1

c logðdÞ
Xn−1
s¼1

EðUjϕihϕjU†∶sÞ; ð8Þ

for an absolute constant c > 0, where jϕi ∈ ðCdÞ⊗n is a
product state vector. For the cost one finds

CðUÞ ≥ 1

c logðdÞmaxsEðUjϕihϕjU†∶sÞ: ð9Þ

The potential cancellation of gates in notions of com-
plexity is faithfully captured in this bound: If most gates
in a circuit commute, they will give rise to a lower circuit
cost, but at the same time also to a smaller entanglement.
So even if the bound is simple indeed, it does capture a key
feature of the relationship of the circuit cost to those of
entanglement.
Proof.—The proof of this observation is straightforward,

acknowledging the results of Ref. [18]. We start by
decomposing the circuit in a convenient manner. Making
use of a Trotter decomposition, we find that U can in
operator norm kU −WNk arbitrarily well approximated as
a product

WN ≔
YN
k¼1

Vk ð10Þ

with each term being given by

Vk ≔ exp

�
−

i
N

XJ
j¼1

yjðk=NÞOj

�

¼ lim
m→∞

ðV1=m
k;1 …V1=m

k;J Þm; ð11Þ

where

Vk;j ≔ exp

�
−

i
N
yjðk=NÞOj

�
: ð12Þ

Building upon this, let

jψ li ≔
Yl
k¼1

Vkjψi; ð13Þ

be the state vector after l ∈ f1;…; Ng temporal layers,
with jψ0i ≔ jϕi. Then, for l ¼ 1;…; N, using the time
integrated instance of Lemma 1, one finds that the
entanglement growth over the cut A ¼ f1;…; sg and B ¼
fsþ 1;…; ng in each step can at most be

Eðjψ lihψ lj∶sÞ − Eðjψ l−1ihψ l−1j∶sÞ
¼ EðVljψ l−1ihψ l−1jV†

l ∶sÞ − Eðjψ l−1ihψ l−1j∶sÞ

≤
mc
N

XJ
j¼1

1

m
yjðl=NÞkOjk logðdÞ ð14Þ

which gives

Eðjψ lihψ lj∶sÞ − Eðjψ l−1ihψ l−1j∶sÞ

≤
c logðdÞ

N

XJ
j¼1

jyjðl=NÞj: ð15Þ

Iterating this expression, one finds

EðUjϕihϕjU†∶sÞ − Eðjϕihϕj∶sÞ

≤
c logðdÞ

N

XN
k¼1

XJ
j¼1

jyjðl=NÞj: ð16Þ

Acknowledging that the right-hand side approximates the
circuit cost CðUÞ arbitrarily well, find finds the latter
statement of Observation 1, by applying the argument to the
cut A ¼ f1;…; sg and B ¼ fsþ 1;…; ng providing the
tightest bound. For the geometrically local circuit cost
CgðUÞ, the argument can be applied to each such cut,
leading to the proof of the statement of observation 1. ▪
In the above statement, the following statement from

Ref. [18] has been made use of.
Lemma 1.—(Small incremental entanglement [18]) For a

pure state ρ and a Hamiltonian h supported on a d × d-
dimensional subspace acting over the cut f1;…; sg and
fsþ 1;…; ng, the entangling rate defined as
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Γðh; ρÞ ≔ d
dt

Eðe−ithρeith∶sÞ
���
t¼0

ð17Þ

is upper bounded by

Γðh; ρÞ ≤ c logðdÞkhk: ð18Þ

The constant presented in the proof is c ¼ 22, but
numerical evidence is presented that rather c ¼ 2 actually
provides a tight bound. Interpreted in terms of the above
notion of a potential entangling power of a unitary X ∈
Uðd2Þ acting on two constituents connecting both sub-
systems over the cut, one can argue that

jEðXρX†∶sÞ − Eðρ∶sÞj ≤ ceðXÞ; ð19Þ

so that up to an absolute constant, the maximum increase of
entanglement is indeed nothing but the potential entangling
power: In each application, a quantum gate with a certain
potential entangling power can increase the value of
entanglement only to some extent, no matter how entangled
the initial state has been. From the above Trotter decom-
position it also follows that the circuit cost is nothing but
the weighted quantum circuit complexity, weighted by the
potential entangling power of each quantum gate.
Corollary 1.—(Weighted quantum circuit complexity)

For a given U ∈ SUð2nÞ, the infimum of the sum of
weights eðUjÞ of a circuit consisting of quantum gates
fUjg generated by fOjg is given by CðUÞ.
Gaussian circuit cost.—In fact, there is a small incremen-

tal entanglement bound as well as a harmonic equivalent of
the above relationship between entanglement and quantum
circuit cost for Gaussian bosonic settings [11,13], including
ones motivated by evolutions of noninteracting bosonic
quantum fields. For such bosonic systems, characterized
by canonical coordinates R ¼ ðx1; p1; x2; p2;…; xn; pnÞ,
the Supplemental Material [20] present the proof of the
following small incremental entanglement statement for such
continuous-variable systems.
Theorem 1.—(Gaussian small incremental entanglement)

For a pure Gaussian state ρ and a Hamiltonian H ¼ RhRT

supported on one of the modes each of A ¼ f1;…; sg and
B ¼ fsþ 1;…; ng, the entangling rate defined as

Γðh; ρÞ ≔ d
dt

Eðe−itHρeitH∶sÞ
���
t¼0

ð20Þ

is upper bounded by

Γðh; ρÞ ≤ khkfðkγð0ÞkÞ; ð21Þ

where f∶½1;∞Þ → R is a monotone increasing function.
Interestingly, it is not the operator norm of the

Hamiltonian as such (which would make little sense
anyway and would not be finite) but that of the kernel
matrix when expressed as a polynomial in canonical

coordinates that features in this small incremental entan-
glement statement. In the same way as above, and elab-
orated upon in the Supplemental Material [20], we can
conclude the following.
Observation 2.—(Gaussian entanglement lower bounds

Gaussian circuit cost) The geometrically local Gaussian
quantum circuit cost of a bosonic Gaussian unitary U that
prepares a state vector Ujϕi from the product state vector
jϕi associated with the covariance matrix γð0Þ is lower
bounded by

Gg ≥
1

fðkγð0ÞkÞ
Xn−1
s¼1

EðUjϕihϕjU†∶sÞ: ð22Þ

For the Gaussian quantum circuit cost one finds

G ≥
1

fðkγð0ÞkÞmaxsEðUjϕihϕjU†∶sÞ: ð23Þ

Making use of these statements, one can infer about non-
interacting bosonic theories in largely the same way as for
spin systems, despite the presence of unbounded operators.
Quenched quantum many-body systems.—Simple as the

above bounds are, they provide tight and relevant bounds to
circuit costs and complexities for small times in a number
of settings. An interesting insight along these lines of
thought is the point that whenever a quantum many-body
system undergoing nonequilibrium dynamics leads to a
linear increase in the entanglement entropy over suitable
cuts, so does the quantum state complexity. This is in
particular true for quenched quantum many-body systems,
for which the linear growth of entanglement entropies is
generic [29–31]. In fact, both upper [32,33] and lower
bounds [34] for the entanglement entropy as a function of
time have readily been established. That is to say, whenever
the right-hand side of Eq. (9) grows linearly in time, so does
the left-hand side, as an immediate corollary (see Fig. 1).
We state this explicitly for the Ising Hamiltonian, but it
should be clear that the same behavior is expected for any
local Hamiltonian.
Observation 3.—(Growth of circuit cost in dynamics)

For any time T > 0 there exists a system size n for a
translationally invariant Ising Hamiltonian such that the
unitary dynamics e−itH applied to a product state vector jϕi
leads to Cðe−iHtÞ > δt for an absolute constant δ > 0, for
all times t ∈ ½0; T�.
The upper bound in time T is merely accommodating the

possibility of having a finite system of finitely many
degrees of freedom n, for which at some point, the
respective entanglement entropies will no longer grow in
time (rendering the bound then uninteresting). The result
stated here is a corollary of observation 1, together with the
results of Ref. [35]. Since the model is translationally
invariant, any cut serves to show the linear growth of the
quantum state complexity in time. For the geometrically
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local circuit cost, one also finds a growth linear in time, but
now the largest value of Cgðe−iHTÞ attained at intermediate
times scales as Θðn2Þ in the system size n, instead of the
essentially linear scaling ΘðnÞ in case of the quantity
Cðe−iHTÞ.
Summary and outlook.— In this work, we have carefully

and quantitatively revisited the connection between entan-
glement and notions of circuit cost and complexity. While
there is in general no tight connection between these
quantities, for small values, there is, as this work shows:
Indeed, one arrives at compellingly simple bounds. The
usefulness of such bounds is manifest. One can argue, for
example, how deep a weighted quantum circuit has to be at
least to give rise to a given entanglement pattern in a
desired final state; at least for pure states, but it seems
perfectly conceivable to establish similar techniques for
mixed quantum states. Also, it helps assessing the power
and capabilities of analog quantum simulators [16]. Using
such tools, one can argue that a digital quantum simulator
would have required a precisely defined computational
effort to produce the same results as a given analog
quantum simulator. In this sense, it makes the computa-
tional effort of digital and analog quantum simulators
comparable. It is the hope that this simple bound provides
a useful and versatile tool in various studies of this kind.
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