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For two molecules to react they first have to meet. Yet, reaction times are rarely on par with the first-
passage times that govern such molecular encounters. A prime reason for this discrepancy is stochastic
transitions between reactive and nonreactive molecular states, which results in effective gating of product
formation and altered reaction kinetics. To better understand this phenomenon we develop a unifying
approach to gated reactions on networks. We first show that the mean and distribution of the gated reaction
time can always be expressed in terms of ungated first-passage and return times. This relation between
gated and ungated kinetics is then explored to reveal universal features of gated reactions. The latter are
exemplified using a diverse set of case studies which are also used to expose the exotic kinetics that arises
due to molecular gating.
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The first-passage properties of a random walker are
central to the study and analysis of stochastic phenomena
[1–4]. The classic problem of a random walker in search of
a target arises naturally in a variety of fields, be it biology
[5–13], finance [14,15], or network science [16–21], to
name a few. Markedly, the first-passage problem is central
to the theory of diffusion limited reactions, where a reaction
between two species can be modeled as stochastic motion
that terminates on contact [22–24]. However, while having
two molecules at the same place and at the same time is a
necessary condition for the occurrence of a chemical
reaction, more is oftentimes required for the reaction to
actually take place.
It has long been realized that in order to better depict

chemical reactions one has to consider the possibility of
infertile molecular collisions [25–35]. This realization later
matured to the concept of gated reactions, which occur only
when molecules collide while in a reactive state (alter-
natively, the gate is open) [36–51], see Fig. 1. A similar idea
of a gated boundary was applied in narrow gated-escape
problems [52,53] and search for gated targets [54,55].
Depending on the context, the first time of arriving at the
boundary while at the reactive state is interchangeably
referred to as reaction time, first-absorption time or first-
hitting time. Throughout the years many examples of gated
processes were explicitly solved for, but a general under-
standing of the relations between gated- and ungated-
reaction kinetics is still lacking. A notable step in that
direction is the formalism developed by Spouge, Szabo,
and Weiss [44].
At the heart of this Letter is a renewal approach that is

used to build a unified framework to gated reactions on
networks. Specifically, we employ this approach to provide
simple and general relations between gated and ungated

reaction times. These, in turn, are used to show that it is
enough to solve for the ungated problem to readily obtain a
solution for the corresponding gated problem.
Solving the ungated problem is generally a much simpler

task, which, e.g., allows for clean rederivation of classic
results that were previously obtained via brute-force
methods. Moreover, the relations derived below open the
door for systematic and widespread analysis of gated
kinetics by providing ready-made solutions in all cases
where the underlying, i.e., ungated, problem has already
been (or can be) solved. This important feature of our
framework has already proven extremely useful in the
context of stochastic resetting where similar renewal
methods were heavily employed [56–72].

FIG. 1. Illustration of a gated reaction on a network. The
reactant, here depicted as a small sphere, performs a continuous-
time random walk while switching between the nonreactive (NR,
blue) and reactive (R, red) states. Reaction occurs when two
conditions are met: (i) the reactant is at the target (shown as
bullseye); and (ii) the reactant is in the reactive state.
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The framework developed herein is also used to unravel
the existence of universal features of gated reactions.
Specifically, we point to the effect of fluctuations in the
time between consecutive molecular collisions and show
that these always lead to an increase in the mean com-
pletion time of a gated reaction. Moreover, in cases where
wild fluctuations lead to diverging means, we show that the
exponent governing the heavy-tailed asymptotics of the
ungated reaction is inherited by the gated reaction; thus
generalizing earlier observations made for simple diffusion
[41,42,55]. Finally, the framework is utilized to expose
exotic kinetic features that arise due to gating. As we show,
these can be observed even in simple model systems such
as the 1D random walk, yet they have so far been over-
looked. In what follows, we use hZi, σðZÞ, and Z̃ðsÞ≡
he−sZi to denote, respectively, the expectation, standard
deviation, and Laplace transform of a real-valued random
variable Z.
Gated reactions on networks.—The set of problems we

analyze below is formulated as follows. Consider a reactant
(particle) performing a continuous-time random walk
(CTRW) [73] on a network (see Fig. 1, for an example
of a finite network embedded in a 2D lattice). In addition to
its spatial motion, the reactant also undergoes stochastic
internal dynamics flipping between a reactive state and a
nonreactive state. A reaction is deemed to occur if the
reactant is found in the reactive state while its spatial
position overlaps with the origin—a designated target site
which, e.g., harbors a complementary reactant. To keep
things general, we make no assumptions on the network on
top of which the dynamics takes place, the distributions that
govern waiting times in the different sites, and the
distributions that govern the random motion (jumps) of
the particle between network sites. Importantly, waiting
time distributions can be nonexponential, thus allowing for
non-Markovian spatial dynamics. In addition, both waiting
time and jump distributions can be site dependent, thus
allowing treatment of inhomogeneous media of vari-
ous kinds.
To progress, we assume that the position of the particle is

decoupled from its internal state. The strategy is then to
“divide and rule.” First, we tackle the reactant’s internal
dynamics which is hereby assumed to be governed by a
continuous-time Markov chain composed of two states:
reactive (R) and nonreactive (NR). The transition rate from
R to NR is denoted by α and the transition rate from NR to
R is denoted by β (Fig. 1, top left). We are interested in the
conditional probability to be in each of the states after time
t, given an initial internal state q0 ∈ fR;NRg. For example,
when q0 ¼ NR, this is given by PðR; tjNRÞ ¼ πRð1 − e−λtÞ
and PðNR; tjNRÞ ¼ πNR þ πRe−λt, where λ ¼ αþ β is the
effective relaxation rate and with πR ¼ β=λ and πNR ¼ α=λ
standing for the equilibrium occupancies.
Consider now the time Tðx0Þ it takes the particle to react

given an initial location r0 and an initial internal state q0

which we jointly denote by x0 ¼ ðr0; q0Þ. Two contribu-
tions feed into Tðx0Þ as illustrated in Fig. 2: (i) TFPðr0Þ
which is the first-passage time of the particle to the origin;
and (ii) the time it takes the particle to react after it has
first reached the origin. If the particle arrives at the origin in
the reactive state it reacts immediately. Otherwise, the
particle—which is now found at the origin in the non-
reactive state—can be seen to start its motion anew with the
following initial conditions 0NR ≡ ð0;NRÞ. Thus, letting
Tð0NRÞ denote the reaction time starting from 0NR, we have

Tðx0Þ ¼ TFPðr0Þ þ IFPTð0NRÞ; ð1Þ
where IFP is an indicator random variable that receives the
value 1 if the particle first arrived at the origin in the
nonreactive state and 0 otherwise. Clearly, IFP depends on
the initial state q0 and on the first-passage time TFPðr0Þ, but
is independent of Tð0NRÞ due to renewal [74].
Taking expectations in Eq. (1) we find [74]

hTðx0Þi¼hTFPðr0Þiþ½πNR�ð1−πq0ÞT̃FPðr0;λÞ�hTð0NRÞi;
ð2Þ

where we have a plus sign if q0 ¼ NR, and a minus sign if
q0 ¼ R, and where T̃FPðr0; λÞ ¼ he−sTFPðr0Þijs¼λ is the
Laplace transform of TFPðr0Þ evaluated at λ. Note that
as r0 is pushed far away from the origin, T̃FPðr0; λÞ
becomes negligible since e−λTFPðr0Þ is then typically very
small. In this limit, the internal state equilibrates before the
particle arrives at the origin, and the mean reaction time in
Eq. (2) becomes independent of the initial internal state.
The distribution of the gated reaction time can also

be computed. Taking the Laplace transform of Eq. (1), we
find [74]

T̃ðx0; sÞ ¼ T̃FPðr0; sÞ½πR þ πNRT̃ð0NR; sÞ�
� ð1 − πq0ÞT̃FPðr0; sþ λÞ½T̃ð0NR; sÞ − 1�; ð3Þ

where we have a plus sign if q0 ¼ NR, and a minus
sign if q0 ¼ R. Here, too, the above expression simplifies

FIG. 2. The gated reaction time Tðx0Þ from Eq. (1) has two
contributing factors: (i) the first-passage time of the particle to the
origin TFPðr0Þ; and (ii) the time it takes the particle to react after it
has first reached the origin. In the illustration this time is given by
Tð0NRÞ, and IFP in Eq. (1) takes care of situations where the
particle arrives at the origin in the reactive state and reacts
immediately. On the time axis, J stands for jump and T for
transition between internal states.
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considerably when r0 is far away from the origin. In this
limit T̃FPðr0; sþ λÞ is negligible, and one is left with the
first term which is independent of the initial internal state.
Examining Eqs. (2) and (3) above reveals that part of the

work required to determine the mean and distribution of a
gated reaction time can be reduced to the solution of a
standard (ungated) first-passage time problem. Namely, one
requires TFPðr0Þ which can be obtained by standard
methods [4]. However, we are still left with the task of
computing the gated reaction time Tð0NRÞ. The mean and
distribution of this random time will be our main focus
going forward.
Let W0 denote the random time the particle waits at the

origin before jumping to a different site, and let the random
variable X1 stand for the location of the particle following
this jump, e.g., �1 with equal probability for a symmetric
random walk in 1D; and see [74] for further discussion.
Setting WNR as the random waiting time of the particle in
the nonreactive state, we observe that the gated reaction
time Tð0NRÞ can be written as follows:

Tð0NRÞ¼
�
WNR if WNR <W0;

W0þTFPðX1Þþ IFPT 0ð0NRÞ if WNR ≥W0;

ð4Þ

where TFPðX1Þ is the first-passage time to the origin
starting from X1, IFP is the internal state indicator asso-
ciated with this first-passage process (defined as before),
and T 0ð0NRÞ is an IID copy of Tð0NRÞ. Indeed, if
WNR < W0, the particle transitions to the reactive state
before jumping out of the origin and a reaction immediately
follows. Conversely, if WNR ≥ W0, the particle jumps out
of the origin before transitioning to the reactive state. It then
requires a time TFPðX1Þ to return to the origin, and an
additional gated reaction time T 0ð0NRÞ provided it returned
in the nonreactive state. We thus see that the gated reaction
time Tð0NRÞ can be expressed in terms of an ungated first-
passage time TFPðX1Þ and the waiting times WNR and W0.
The mean completion time of a gated reaction.—To

proceed, we recall that here we assumed Markovian
internal dynamics which means that WNR is exponentially
distributed with rate β. We will now also assume thatW0 is
exponentially distributed with rate γ, but note that this
assumption is made for clarity and that it can be easily
generalized. Also, note that waiting times in other sites are
kept general. Taking expectations in Eq. (4) we find [74]

hTð0NRÞi ¼
γ−1 þ hTFPðX1Þi

KD þ πR½1 − T̃FPðX1; λÞ�
; ð5Þ

where KD ¼ β=γ, πR ¼ β=λ, and with λ ¼ αþ β.
Equation (5) asserts that hTð0NRÞi can be determined
provided the mean and distribution of the ungated return
time TFPðX1Þ.

To better understand Eq. (5), we observe that the
hTð0NRÞi ∼ β−1 asymptotics holds for both large and
small value of β. Specifically, when β ≫ 1 a reaction is
almost sure to happen before the particle leaves the
origin. In this limit one can safely neglect Tð0NRÞ in
Eqs. (1) and (2) concluding that the gated and ungated
problems are practically equivalent. In the other extreme,
β ≪ 1, the transition to the nonreactive state becomes rate
limiting and hTð0NRÞi ≫ 1.
Next, consider the limit γ ≫ 1 in which the particle leaves

the origin almost instantaneously and without reacting. We
then find hTð0NRÞi ≃ π−1R ½1 − T̃FPðX1; λÞ�−1hTFPðX1Þi. To
understand this result observe that in this limit the proba-
bility that the particles return to the origin in the reactive
state is given by p ¼ πR½1 − T̃FPðX1; λÞ�. Thus, on average,
the particle returns to the origin 1=p times before a reaction
occurs with each return taking hTFPðX1Þi time units
on average. In the other extreme γ ≪ 1, the particle is slow
to leave the origin and a reaction occurs following a
transition to the nonreactive state. In this limit we
find hTð0NRÞi ≃ 1=β.
The mean reaction time in Eq. (5) scales linearly with the

mean of TFPðX1Þ as expected. To better understand how
fluctuations in the return time to the origin affect the result,
we neglect the dissociation time γ−1 and expand T̃FPðX1; λÞ
by its moments to second order in λ. Doing this we obtain
hTð0NRÞi ≃ β−1 þ 1

2
π−1R ð1þ CV2ÞhTFPðX1Þi, where CV ¼

σ(TFPðX1Þ)=hTFPðX1Þi stands for the coefficient of varia-
tion [74]. We thus see that fluctuations in TFPðX1Þ tend to
increase the mean completion time of the gated reaction. In
fact, invoking Jensen’s inequality we get

hTð0NRÞi ≥
γ−1 þ hTFPðX1Þi

KD þ πR½1 − e−λhTFPðX1Þi� ; ð6Þ

where the equality holds if and only if σ(TFPðX1Þ) ¼ 0. A
deterministic return time thus yields a universal lower
bound for hTð0NRÞi, and any fluctuation around the mean
return time hTFPðX1Þi will necessarily slow down the
completion of the gated reaction. This effect is illustrated
in Fig. 3.
Beyond the mean.—We now turn attention to the

distribution of Tð0NRÞ. Laplace transforming Eq. (4) we
get [74]

T̃ð0NR;sÞ

¼ π−1R KDþ T̃FPðX1;sÞ− T̃FPðX1;sþλÞ
π−1R ½ðs=γÞþKDþ1�−KeqT̃FPðX1;sÞ− T̃FPðX1;sþλÞ ;

ð7Þ

whereKeq ¼ α=β; and it can once again be appreciated that
the gated reaction time can be put in terms of the ungated
return time to the origin TFPðX1Þ.
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Equation (7) is indispensable in cases where hTFPðX1Þi
diverges. Equation (5) then provides little information, but
Eq. (7) can still be used to, e.g., show that Tð0NRÞ inherits
the tail asymptotics of TFPðX1Þ. Specifically we find that if
T̃FPðX1; sÞ ≃ 1 − ðτsÞθ for s ≪ 1, with 0 < θ < 1 and
τ > 0, then [74]

T̃ð0NR; sÞ ≃ 1 −
π−1R

1 − T̃FPðX1; λÞ þ λ=γ
ðτsÞθ: ð8Þ

From here it follows that if the survival function of TFPðX1Þ
decays as ∼t−θ, then so does that of Tð0NRÞ; and the
prefactor can be determined by Eq. (8) and the Tauberian
theorem.
Putting it all to work.—To illustrate the applicability

of our approach, consider now a simple symmetric
random walk on a 1D lattice. Starting the walk at r0,
and working in discrete time, it is well known that
the generating function of the first-passage time to the
origin is given by T̂FPðr0; zÞ ¼ ½ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ=z�jr0j [14].

The corresponding solution in continuous time is then
given by T̃FPðr0; sÞ ¼ ½ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ψ̃ðsÞ2

p
Þ=ψ̃ðsÞ�jr0j, where

we have simply replaced z with the Laplace transform of
the waiting-time distribution ψ̃ðsÞ in the CTRW [75].
Finally, we trivially observe that when such a symmetric
random walk leaves the origin it will be found at �1
with equal probability. As the return time from these
lattice points to the origin is equal in law, we have

T̃FPðX1; sÞ ¼ T̃FPðþ1; sÞ. Substituting these results into
Eq. (7) and then (3), the solution to the corresponding
gated problem is readily obtained; and we have verified
that this solution identifies with the solution obtained by
Budde, Cáceres, and Ré for a particle that is initially
prepared in the reactive state [41,42]. In lieu of the general
approach developed herein, the latter was obtained with
admirable effort.
Continuing with the same example, we plot numerical

inversions [76] of the reaction time distribution in Eq. (3)
(Fig. 4). Two gated cases, and the corresponding ungated
case, are compared. We first observe that the power law
governing the long time asymptotics of all distributions is
identical to the ∼t−3=2 decay which is characteristic to the
first-passage probability of the 1D random walk. These
asymptotic results agree with the prediction of Eq. (8).
However, the behavior at intermediate times differs sig-
nificantly between gated cases. For the first case (orange),
we take β ¼ 1 which gives an overall behavior that is
almost identical to that observed for the ungated case where
the particle is always reactive. In the second case (red), we
take β ¼ 10−3 and find that this leads to the emergence of a
wide intermediate time window that is governed by a
∼t−1=2 power-law decay. This “cryptic regime" was also
observed in the analogous diffusion problem studied by
Mercado-Vásquez and Boyer [55], but here we see that it
can also be accompanied by an additional exotic and
previously unobserved kinetic effect which renders the
gate reaction time distribution multimodal (Fig. 4, inset).
We trace this effect to the existence of two populations of
particles: those which reached the origin without ever
switching to the nonreactive state and those which switched

FIG. 3. Fluctuations in the return time to the origin increase the
mean completion time of a gated reaction (see [74] for additional
details and analysis). The mean reaction time hTð0NRÞi from
Eq. (5) vs the internal relaxation rate λ ¼ αþ β. Here, we
consider the symmetric case α ¼ β ¼ λ=2 with γ ¼ 100, and
illustrate the effect by taking the return time TFPðX1Þ from a
gamma distribution with unit mean and increasing values of the
CV. The black line corresponds to the deterministic, CV ¼ 0,
case which gives rise to the lower bound in Eq. (6). Higher CVs
lead to higher mean completion times as predicted. It can be
appreciated that the asymptotic hTð0NRÞi ∼ β−1 ∼ λ−1 behavior is
common to all curves in both the high and low λ regimes as
discussed below Eq. (5).

FIG. 4. Gated reaction time distributions for CTRW on a 1D
lattice and the ungated behavior for comparison. Here, the
particle is taken to start from position r0 ¼ þ5 in the reactive
state. The transition rate to the nonreactive state is α ¼ 1 and two
different rates are considered for the reverse reaction: β ¼ 10−3

(red) and β ¼ 1 (orange). The waiting time distribution in all sites
(origin included) is taken to be exponential with rate γ ¼ 1. Solid
lines come from numerical inversion of Eq. (3) and full circles
from Monte Carlo simulations.
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prior to reaching. As the latter are blocked from reacting for
a mean time 1=β ≫ 1 that is much larger than the median
return time to the origin, two distinct peaks are formed.
Numerical applications.—The approach taken for the

1D CTRW extends to many other first-passage time
problems for which analytical results are known. In all
such cases, the framework developed herein can be used to
readily yield corresponding solutions for gated reaction
times. However, in many complicated scenarios analytical
results are not available and one must then resort to
numerical simulations. We now explain how these can
be considerably sped up by taking advantage of the
relations derived above. Consider, for example, the mean
time of a gated reaction, and imagine that the latter should
be determined via numerical simulations for a wide range
of rate constants α, β, and γ. While this process can be
extremely time consuming, one can instead take advantage
of Eq. (5) which only requires numerical determination of
the mean and distribution of the ungated first-passage time
TFPðX1Þ. As the latter does not depend on the above
parameters it can be determined once and for all, thus
providing a quick and efficient way of getting gated
reaction times. Similar reasoning applies to the mean gated
reaction time in Eq. (2), which in turn requires determi-
nation of one additional ungated first-passage time:
TFPðr0Þ. In [74] we exemplify successful implementation
of this procedure for the gated reaction depicted in Fig. 1.
Conclusions.—In this Letter, we developed a unified

approach to gated reactions on networks, and the results
obtained were used to extract considerable insight.
Applications cover the entire spectrum of chemical reac-
tions and are especially relevant to the emerging field of
single-molecule chemistry where recent technological
advancements allow predictions coming from our frame-
work to be tested experimentally. As our framework
extends current knowledge on the long studied topic of
first-passage it also applies more broadly, and shall be
particularly useful in the context of search and foraging
where similar ideas also apply.
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