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We report a study of 2D colloidal crystals with anisotropic ellipsoid impurities using video microscopy.
It is found that at low impurity densities, the impurity particles behave like floating disorder with which the
quasi-long-range orientational order survives and the elasticity of the system is actually enhanced. There is
a critical impurity density above which the 2D crystal loses the quasi-long-range orientational order. At
high impurity densities, the 2D crystal breaks into polycrystalline domains separated by grain boundaries
where the impurity particles aggregate. This transition is accompanied by a decrease in the elastic moduli,
and it is associated with strong heterogeneous dynamics in the system. The correlation length vs impurity
density in the disordered phase exhibits an essential singularity at the critical impurity density.
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Impurities are ubiquitous in crystals trapped during
crystal growth [1]. They can significantly change the
physical properties of the host crystals [2]. Under-
standing the effects of the impurities on the structures
and dynamics of the crystal [3–5] has been an important
task in condensed matter physics. It was pointed out by
Larkin [4] and later by Imry and Ma [6] that impurities may
have benign or devastating effects on the ordering of the
host crystal lattice depending on how they interact with the
lattice. Because of the separation of energy scales, e.g., the
rigidity of the atomic lattice is several orders of magnitude
larger than that of the vortex lattice formed inside a type-II
superconductor, thus it was widely believed that an
arbitrary amount of atomic “quenched disorder” will act
like a random pinning potential landscape that will destroy
the crystalline order in the soft vortex lattice. This so-called
Larkin-Imry-Ma effect [4,6] was indeed observed exper-
imentally in 2D colloidal crystals with a random pinning
potential created by a disordered substrate [7]. For systems
with no obvious separation of energy scales between those
particles forming the lattice and those deemed to be
impurities, the physical picture is not at all clear. It was
conjectured [4] that at low concentration of atomic impu-
rities, they should behave as “floating” defects, having
minor effects on the order of the lattice. At high concen-
trations, however, the effect of these impurities on the order
of the host lattice is not well understood. In fact, adding
impurities to metals to enhance their mechanical strength is
a well-known method in metallurgy [8] although the
underlying physics is poorly understood.
In this Letter, we explore these issues by using a 2D

colloidal model system. The colloidal particles can be
directly observed using optical microscopy [9], making the

colloidal system a convenient model for studying the phase
behaviors of crystals with impurities [10]. A colloidal
crystal is generally composed of monodispersed micro-
spheres, and the common way of introducing impurities is
adding spheres of a different size to the system [11–17]. For
example, smaller spheres were added to a colloidal crystal
as impurities, and the changes in structures and dynamics
of the system were observed [16,17]. Recently, the shape
anisotropy of particles has emerged as an important factor
in the phase behavior [18–20] and dynamics [21]. One
immediate question is, What are the effects of impurities
with an anisotropic shape in the phase behavior and
dynamics of a 2D colloidal crystal consisted of spheres?
In this experiment, we use ellipsoids as impurities in a 2D

colloidal crystal and investigate the structure, elasticity, and
dynamics of the resulting system. We find that structural
defects form around the impurities and the orientational
correlation exhibits a change from quasi-long-range to
short-range order, i.e., an order-disorder transition, above
a critical impurity density that can be characterized using the
concepts from the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory. We find that with increasing
impurity density, the elastic constant of the system shows
an enhancement at first, similar to impurity enhancement in
metals [8], and then exhibits a sharp decrease at high
impurity densities associated with the appearance of hetero-
geneous dynamics. However, the dynamics of the system
behaves monotonically with increasing impurity density.
The findings shed new light into the correlations between
microstructures, dynamics, and macroscopic properties in
colloidal crystal with impurities.
In our experiments, the colloidal crystal was

composed of polystyrene (PS) spheres (nominal diameters
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σs ¼ 2.5 μm, Duke Scientific). The impurities were ellip-
soids (long axis a ¼ 13.4 μm and short axis b ¼ 2.2 μm),
fabricated by a common stretching method [22]. To
introduce the impurities, we mixed the spheres and ellip-
soids in an aqueous solution of 3 mM sodium dodecyl
sulfate (SDS) and confined a tiny drop of the mixture
between two glass coverslips with a spacing of ∼1.1σs to
form monolayer samples. The SDS is used to stabilize the
particles in the aqueous solution. At the ionic strength in the
aqueous solution (3 mM) the particles have a Debye length
of ∼20 nm. Thus for the phase behavior, the colloidal
particles can be considered as hard particles [18,21].
The areal fraction of the sample was calculated as
ϕall ¼ ½nsπðσs=2Þ2 þ neπab=4Þ�=AT , where nsðneÞ is the
number of sphere (ellipsoid) particles in the field of view,
AT is total area of the field of view. Our experiments
employed the colloidal samples with a constant ϕall, ∼0.89,
and varied impurity density, i.e., area fraction of impurity
(ϕ). This enabled us to trace sample evolution as a function
of impurity density. Video microscopy (Zeiss Observer A1)
was used to collect image data with a CCD camera (Basler
ACE) at a rate of 3 frames per second. Before each
measurement, the sample was allowed to equilibrate for
up to 8 h, and during the measurement the number of
particles in the field of view remained constant and no drift
was observed. The positions of the centers of individual
particles were obtained using the open source program
ImageJ(NIH). The spatial resolution was 60 nm.
Figure 1(a) shows the typical micrographs of the systems

with different impurity concentrations. In the absence of
ellipsoidal impurities, the colloidal spheres form ordered
structures representing a 2D crystal phase. In the presence
of a finite concentration of impurities, structural defects
such as disclinations and edge dislocations form around
these impurity particles. Such structural change can be
clearly characterized by Voronoi diagrams [23] [Fig. 1(b)].
The color denotes the number of the nearest neighbors (ni)
for particle i, which can semiquantitatively characterize the
structures in 2D [24]. ni ¼ 6 indicates the ordered struc-
tures while ni ≠ 6 denotes the disordered structures [24].
With increasing density of impurities, the number of
particles with ni ≠ 6 increases as expected so that the
defect density increases. It is observed that the defects are
localized around the ellipsoids.
To further precisely capture the structural evolution

induced by the ellipsoids, the ordering of each particle is
quantified by calculating the bond orientational order
parameter: ψ6i ¼ 1=ni

Pni
j¼1 e

i6θij , where the sum goes
over all ni nearest neighbors of particle i, θij is the angle
of the jth bond in respect to a reference axis. This
parameter has been widely used to quantify the crystalline
ordering in 2D systems composed of spheres [25–29]. Note
that jψ6ij ¼ 1 means the perfect hexagonal arrangement of
six nearest-neighbor particles around the ith particle and
jψ6ij ∼ 0 means that the nearest-neighbor particles deviate

from the hexagonal arrangement indicating a disorder
structure [25–29]. Figure 2(a) shows that jψ6ij of the
spheres around the ellipsoids tend to smaller values than
that of the spheres away from the ellipsoids. This confirms
that the defects originate from the ellipsoid impurities. As
the impurity concentration increases, the ellipsoids tend to
aggregate. We conjecture that there is an effective attraction
between the ellipsoid particles mediated by the host lattice,
similar to how interstitials and vacancies attract each other
in a 2D crystal [30]. The impurity aggregates tend to break
the host lattice into domains of ordered regions.
At very low densities, the impurities rarely form aggre-

gates and they have minimal effects on the ordering of the
2D crystal, i.e., the quasi-long-range o rder survives.
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FIG. 1. (a) Brightfield micrographs of monolayers of spheres
and ellipsoids at different ellipsoid densities (ϕ). (b) The corre-
sponding Voronoi diagrams. The scale bar is 20 μm and applies
to all graphs.
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In contrast, at high impurity densities the defective
regions seem to percolate through the whole system and
there exist only local crystalline domains. As a result the
system becomes highly heterogeneous. We suggest that at
high densities, the impurities spontaneously aggregate to
form effective pinning centers, i.e., becoming a type of
quenched disorder, resulting in the breakdown of
the quasi-long-range order. To clarify this observation,
the orientational correlation function is calculated;

g6ðr ¼ jri − rjjÞ ¼ hψ�
6iðriÞψ6jðrjÞi, where ri and rj are

the positions of particles i and j [24]. Figure 2(b) shows the
results of g6ðrÞ at different impurity densities. At ϕ ¼ 0,
g6ðrÞ is constant with r, which demonstrates the orienta-
tional long-range order of the 2D crystal. At ϕ ¼ 0.0216,
g6ðrÞ is compatible with algebraic decay, suggesting quasi-
long-range orientational order of a hexatic phase, confirm-
ing that at low impurity density the impurity particles
behave as floating disorder [4]. At high impurity densities
(ϕ > 0.0216Þ, g6ðrÞ shows exponential decay, associated
with short-range orientational order, verifying that the
impurity induced quenched disorder drives the system
disordered. This is consistent with the KTHNY theory,
demonstrating a two-step order-disorder transition with
increasing impurities that is similar to the 2D melting of
paramagnetic colloidal crystals [31]. The data suggest that
there is a critical impurity density above which the 2D
crystal loses the quasi long-range orientational order. This
is consistent with some aspects of the early theoretical
studies of 2D XY models with disorder [32,33] and the
experimental work of colloidal crystal with sphere impu-
rities [17]. It should be noted that our anisotropic impurity
induced order-disorder transition differs significantly from
the 2D melting with anisotropic interparticle interactions
where the KTHNY scenario of isotropic melting is modi-
fied and a smecticlike phase is observed [34].
To quantify the impurity-induced order-disorder transi-

tion, the characteristic length (ξ) of the orientational
correlation is obtained by fitting the g6ðrÞ data to an
exponential decay form e−r=ξ. It is interesting to find that
ξ exhibits an essential singularity ξ ∼ expðb=jϕ − ϕcj0.5Þ
with ϕc ¼ 0.0493 [Fig. 2(c)], which demonstrates the
existence of a critical impurity density. This essential
singularity was the hallmark of the KTHNY theory
[35–37] that has been confirmed in many experimental
studies of 2D melting [24,26,38].
Next, we focus on the dynamics of the system influenced

by the ellipsoid impurities. Here, to avoid the long-wave-
length elastic deformations in the 2D system, the relative
position r0 ¼ r − hrki is used for characterizing the dynam-
ics, where rk is the position of the near neighbor and the
bracket denotes the average over all near neighbors [39,40].
We first calculated the mean square displacements at
different impurity densities: hΔr2ðtÞi ¼ hjr0ðtÞ − r0ð0Þj2i.
As impurity density increases, hΔr2i increases [Fig. 3(a)]
demonstrating a faster dynamics with more impurities.
However, hΔr2i shows a plateau independent of the
impurity density in the experimental time windows.
This demonstrates that the system exhibits confined
dynamics, namely, the particles appear to be caged in by
their neighbors. To elucidate the origin of the fast dynam-
ics, the hΔr2i of ordered particles and disordered
particles were calculated [Fig. 3(b)]. Here the ordered
(disordered) particles are defined as the particles with
ψ6 ≥ 0.8ðψ6 < 0.8Þ. The result shows that the hΔr2i of

FIG. 2. (a) Spatial distributions of the bond orientational order
parameter jψ6ij at different ellipsoid densities (ϕ). The ellipsoids
are marked by orange ellipses. The scale bar is 20 μm and applies
to all graphs. (b) Orientational correlation function at different ϕ.
The dashed curves are fits of g6ðrÞ to e−r=ξ. (c) ξ vs ϕ. The data
suggest an essential singularity at ϕc ¼ 0.049� 0.001, as in-
dicated by the fitting curve (in red). The dashed line marks the
critical impurity density.
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ordered particles is almost the same independent of the
impurity density, while the hΔr2i of disordered particles
increases with increasing the impurity density which
dominates the enhancement of the dynamics of the systems.
Such enhanced dynamics originates from the destruction
of the periodic crystalline structure due to the disorder,
which lowers the energy barrier for thermally activated
motion [41,42].
We find that with increasing impurity density, there is a

nonmonotonic change of mechanical properties. However,
the dynamics of the system experiences a monotonic
increase due to the increased disordering. This is clarified
by analyzing the elastic moduli of the system. The elastic
moduli of a 2D colloidal crystal can be measured from the
dispersion relations calculated from displacement covari-
ance matrices (see Supplemental Material [43]) [44–47].
The obtained shear and bulk moduli for the system without
impurities [Fig. 3(c)] are consistent with those of 2D
colloidal crystal measured in the previous work [48].
When the impurity density rises, increases of the elastic
moduli are found. This effect is similar to impurity
strengthening in metallurgy [8]. Once the impurity density
further increases beyond ϕc, the elastic moduli experience a
monotonic decrease and at last reach small values lower
than those of the crystal without impurities. One might be
surprised that there is no sharp drop in shear modulus at ϕc.
Strictly speaking, the shear modulus dropping to zero at the
KTHNY melting transition is only for infinite time and
length scales. For measurements at finite time and length

scales such as this experiment, no sharp drop in the shear
modulus G is expected at Tm, or ϕc here. Indeed, we
find that the sharp drop in G occurs deep into the
disordered phase, as expected from the dynamics of 2D
melting [49].
The fast dynamics direct linking to the disordered

structures in Fig. 3(b) is clearly reflected by the spatial
distributions of particle displacements shown in Fig. 4(a).
The fast-moving particles localized around the ellipsoids
are associated with the disordered structures while the
slow-moving particles correspond to the ordered structures
[Fig. 1 and Fig. 2(a)]. These thereby lead to dynamical
heterogeneity at high impurity densities, demonstrating
a direct link between structures and heterogeneous
dynamics. The spatial distributions of displacements
clearly indicate heterogeneous dynamics at high impurity
densities. The heterogeneous dynamics is further charac-
terized by calculating the four-point susceptibilities at
different impurity densities [17,50] [Fig. 4(b)]: χ4ða;ΔtÞ ¼
N½hQ2ða;ΔtÞ2i − hQ2ða;ΔtÞi2�, where Q2ða;ΔtÞ ¼
1=N

P
N
i¼1 expð−Δr2i =2a2Þ is the two-time self-correlation

function, a is a preselected length scale to be probed,Δr2i is
the mean squared displacement of particle i in time Δt, and
N is the total number of particles. Here a ¼ 0.5 μm, and the
other choices give a similar result. χ4 is small at low
impurity densities, corresponding to the homogeneous
dynamics. This agrees with the observation that there are
no obvious cooperative motions of the particles in the
systems [Fig. 4(a)]. In contrast, at high impurity densities,
χ4 exhibits large value at long times corresponding to the
heterogeneous dynamics. This is consistent with the sig-
nificant cooperative motions reflected by the existence of
the clusters of the fast-moving particles [Fig. 4(a)] origi-
nating from the increased disordered structures.
It is important to point out that at ϕ ¼ 0.0216, the

statics of the system appears to be in the hexatic phase
with quasi-long-range orientational order. The system
shows homogeneous dynamics, which is different from
the obvious heterogeneous dynamics in the hexatic phase
of the 2D melting [51]. This distinction between the
impurity induced disorder-order transition here and the
normal 2D melting [51] is worthy of further study.
Furthermore, the ellipsoid impurity induced dynamical
heterogeneity at high impurity densities is in agreement
with that found in 2D crystal with sphere impurities [17].
However, unlike the discontinuous jump of dynamical
heterogeneity for the 2D crystal with sphere impurities
[17], a gradual increase of the dynamical heterogeneity is
found in the system with increasing ellipsoid impurities
here. Moreover, besides the correlation between structures
and heterogeneous dynamics, a relationship between the
heterogeneous dynamics and the elasticity is revealed.
At low impurity densities, there is an enhancement of the
elastic moduli and the system exhibits homogeneous
dynamics. At high impurity densities, the effective elastic

FIG. 3. (a) Mean square displacements at different ellipsoid
densities (ϕ). (b) Mean square displacements of ordered particles
and disordered particles for lag time ¼ 10 s. Different choice of
the lag time yields similar results. (c) Shear modulus at different
ϕ. (d) Bulk modulus at different ϕ. The moduli are given in units
of kBT=a3, with a the lattice constant. The vertical dotted lines
mark the critical impurity density, and the horizontal dashed lines
label the moduli for the crystal without impurities.
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moduli are lower than those of the host crystal
and the heterogeneous dynamics is enhanced in the
system.
In summary, we performed real-time video microscopy

experiments on 2D colloidal crystals with ellipsoid impu-
rities to study their effects on the structure, elasticity, and
dynamics of the colloidal crystals. The results show that the
impurities give rise to two kinds of disordering effects. At
low densities, ellipsoid particles act as floating disorder as
envisioned by Larkin [4], the quasi-long-range orienta-
tional order of the host lattice persists. At high densities, the
impurity particles spontaneously aggregate at grain boun-
daries in the host lattice, destroying the quasi-long-range
orientational order. The correlation length in the disordered
phase as a function of the impurity density follows an
essential singularity, similar to that in the KTHNY theory
of 2D melting.
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